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Abstract Let XC
l be the set of l Chebyshev points in the interval [−1, 1]. If n and

n0 are such that n = 2mn0 − 1 for some positive integer m, then XC
n0

⊂ XC
n . This

property can be utilized in order to reuse previous function values when one wants
to increase the degree of the polynomial interpolation. For given n0 and n, n > n0,
where n �= 2mn0 − 1, we give a simple procedure to build a set of n points in
the interval [−1, 1] that include the set of n0 Chebyshev points and have favorable
interpolation properties. We show that the nodal polynomial for these points has a
maximum norm that is at most O(n) times larger than that of the Chebyshev points
of the same size. We also present numerical evidence suggesting that the Lebesgue
constant for these points grows at most linearly in n.

Keywords Polynomial interpolation · Chebyshev points · Lebesgue constant

1 Introduction

Chebyshev points of the second kind, defined as the extrema XC
n = {cos( (k−1)π

n−1 ) :
1 ≤ k ≤ n} of the Chebyshev polynomials of the first kind, are a favorite choice
for polynomial interpolation and integration [5, 12, 14] of functions on the interval
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D = [−1, 1] (in the literature, they are also referred to as Clenshaw-Curtis points in
the context of numerical integration). In this work, by Chebyshev points, we always
mean the Chebyshev points of the second kind (as opposed to Chebyshev points of
the first kind which are the roots of the same Chebyshev polynomials). Among many
other reasons, their popularity is due to their very slowly growing Lebesgue constant.
The Lebesgue constant for a set of n points Xn = {x1, x2, · · · , xn} ⊂ D is defined as

�(Xn) = sup
f ∈C(D),f �=0

||p||D
||f ||D , (1.1)

where C(D) is the space of all continuous functions defined over the domain D, ||.||D
is the supremum norm over D, and p is the polynomial of degree at most n − 1 that
interpolates f at the points in Xn [16, Chapter 15].

The importance of �(Xn) is due to the following error estimate. Let P ∗
n−1[f ] be

the best approximation to f in the supremum norm among all polynomials of degree
at most n−1, and PXn[f ] be the polynomial of degree at most n−1 that interpolates
f at the points in Xn. Then by a simple use of the triangular inequality it can be
shown that

||f − PXn[f ]||D ≤ (�(Xn) + 1)||f − P ∗
n−1[f ]||D. (1.2)

Therefore, the smaller �(Xn), the closer our approximation to the true best poly-
nomial approximation. It is well known that for any sequence of point-sets {Xn}∞n=1,
the Lebesgue constant grows at least logarithmically in n [2, 6, 16]. Chebyshev points
are one system of points that have this optimal (logarithmically growing) Lebesgue
constant [16].

Another feature of Chebyshev points is their nestedness property. For any n0, the
set of n0 Chebyshev points XC

n0
is a subset of n = 2n0 − 1 Chebyshev points XC

n .
If we have previously interpolated a function f at n0 Chebyshev points, and now
want to increase the degree of our polynomial interpolation to n, we only need to
evaluate the function atthen0− 1 new points. Other than saving computational cost
when increasing the polynomial degree, this property is usful in other applications.An
example is sparse grid quadratures for interpolation and integration of multivariate
smoothfunctionsthatexploitthe nestednesspropertyof theClenshaw-Curtisnodes[11].

However, there might be situations where we have interpolated a function at n0
Chebyshev points, and we want to increase the degree of our interpolating polynomial
to an n that is smaller than 2n0−1. This can happen when the function evaluations are
very expensive. Similarly, when we are interpolating a multivariate function at tensor-
product Chebyshev points, doubling the number of points in each variable would
increase the total number of points by a factor of 2d (d is the number of independent
variables), which depending on d and n0, may become prohibitively expensive. If
some variables are not as important as others, one could double the number of points
only in the important variables. However, if the variable are equally important, one
would have to settle for a smaller increase in the number of points i.e., an increase by
a factor that is smaller than 2 in each direction. With this motivation, for a set of n0
Chebyshev points, XC

n0
and an n < 2n0 − 1, we try to find a set of n points X̃n,n0 that

is a superset of XC
n0
, and at the same time has a reasonably small Lebesgue constant.

It is worth mentioning that there are sets of interpolation points called Leja points
[1, 9] that allow for reusing function values from smaller sets of points. Given an
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arbitrary point xL
1 ∈ D, the set of Leja points XL

n is defined recursively by the
equation

xL
n = argmax

x∈D

n−1∏

i=1

|x − xL
i |. (1.3)

Note that this optimization may have more than one solution. Therefore the Leja
points are not unique. We can see from equation (1.3) that for any n1 and n2 with
n1 < n2, we have XL

n1
⊂ XL

n2
. Although Leja points are completely nested, they

are not suited for our purpose. First, their Lebesgue constant has only been shown to
grow sub-exponentially in n [13] (compare this with the logarithmic growth of the
Lebesgue constant for Chebyshev points). Besides, here we are trying to add n − n0
new points to an already fixed set of n0 Chebyshev points, and not build a completely
nested set of points. It is possible to start from the n0 Chebyshev points and find the
new points using (1.3), but this will result in a sub-optimal set of points because if
we add the points one by one, we will not be taking full advantage of the freedom in
choosing the n − n0 extra points.

The rest of this paper is organized as follows. Section 2 presents a procedure for
constructing a set of n < 2n0 − 1 points that includes n0 Chebyshev points, and
analyze some of its properties. In particular, we show that the nodal polynomial for
these nodes has a supremum norm that is at most O(n) times larger than that of
the set of Chebyshev points of the same size. Section 3 presents numerical results
which show that the Lebesgue constant for these nodes grows at most linearly in n.
We also study the norm of the inverse of the interpolation matrix (with Chebyshev
polynomials as basis polynomials) for these points, and measure its performance in
approximating two test functions. The concluding remarks are given in Section 4.

2 Description and analysis of the procedure

Our method for construction the set of nodes is somewhat similar to the idea of
“mock-Chebyshev” points used by Boyd [3] for sampling a subset of uniformly dis-
tributed points that mimic the behavior of Chebyshev points. In other words, we want
to find a set of n points in the interval [−1, 1] that i) include our n0 Chebyshev points,
ii) are distributed like Chebyshev points, i.e., according to 1

π
√

1−x2
, and iii) there are

no two points that are too close to each other. Before we describe the algorithm for
generating the points, we state and prove a very simple proposition that we will use
later.

Proposition 1 Let n0 and n be two positive integers with n0 < n < 2n0 − 1, and let
h0 = π

2(n0−1) and h = π
2(n−1) . Let �n0 = {θ(n0)

j = 2(j −1)h0 : 1 ≤ j ≤ n0}. Also let
I1 = [0, h), In = [(2n−3)h, π ], and Ik = [(2k −3)h, (2k −1)h) for 2 ≤ k ≤ n−1.
If we show the cardinality of a set by |.|, then the following statements are true:

1. |Ik ∩ �n0 | ≤ 1, 1 ≤ k ≤ n.
2. For any 2≤ k≤ n−1, if |Ik∩�n0 | = 0, then |Ik−1∩�n0 |=1 and |Ik+1∩�n0 |=1.

3. If θ(n0)
j ∈ Ik−1 and θ

(n0)
j+1 ∈ Ik+1, then

1
2 (θ

(n0)
j + θ

(n0)
j+1) ∈ Ik .
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Proof In the following proofs we use the the inequalities h0 < 2h < 2h0. To see
this, subtract one from n0 < n < 2n0 − 1 to get n0 − 1 < n − 1 < 2(n0 − 1). Now,
inverting and multiplying by π gives us h0 < 2h < 2h0.

1. The length of each interval Ik is at most 2h, while the distance between any two
θ

(n0)
j and θ

(n0)

j ′ is at least 2h0 > 2h. Therefore there can not be two or more of
them in any Ik .

2. If there is no θ
(n0)
j in any two neighboring Ik’s, then there is no θ

(n0)
j in a

sub-interval of length at least 3h0, which contradicts the fact that the distance
between any two neighboring θ

(n0)
j ’s is 2h0.

3. The distance between 1
2 (θ

(n0)
j + θ

(n0)
j+1) and any of θ

(n0)
j or θ

(n0)
j+1 is h0, while the

distance between Ik−1 and Ik+1 is 2h > h0. Therefore 1
2 (θ

(n0)
j + θ

(n0)
j+1) must be

in Ik .

Notice that for the set of n Chebyshev points XC
n , we have x

(n)
k = cos(θ(n)

k ), where

θ
(n)
1 = 0, θ(n)

n = π , and θ
(n)
k is the middle point of Ik for all 2 ≤ k ≤ n−1. Now if we

look at all the n subintervals, n0 of them have a θ
(n0)
j in them (there are n0 θ

(n0)
j ’s, and

each interval contains at most one of them). For the remaining n − n0 intervals that
do not contain any θ

(n0)
j ’s, based on Proposition 2.1, their adjacent intervals contain

a θ
(n0)
j each, and their average is in Ik . So, if we set �̃n,n0 to be the union of �n0 with

the set of n − n0 averages that we compute for each Ik with Ik ∩ �n0 = ∅, then the
set �̃n,n0 will have the following properties:

1. |Ik ∩ �̃n,n0 | = 1, 1 ≤ k ≤ n.
2. The minimum distance between any two points in �̃n,n0 is h0 = π

2(n0−1) .

These two properties mean that, roughly speaking, the points in �̃n,n0 are uni-
formly distributed in [0, π ], and no two of them are too close to each other. The
following summarizes this procedure:
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*: Based on Proposition 2.1, if Ik ∩ �n0 = ∅, then Ik−1 ∩ �n0 and Ik+1 ∩ �n0

will both have exactly one element. This is why we abuse the notation to take their
average.

We finally build X̃n,n0 from �̃n,n0 by taking the cosine of each of its members,
X̃n,n0 = {x̃ = cos(θ̃) : θ̃ ∈ �̃n,n0}. Figure 1 shows the nodes (both θj and xj ) for
n0 = 20, and four different values of n: 21, 26, 32, and 38.

Now we show that the nodal polynomial for these points will be at most O(n)

times larger than that of the Chebyshev points in the supremum norm. But first let us
review the Lagrange interpolation theorem to see why this is an important quantity.
The following is Theorem 3.2 in [7].

Theorem 1 (Lagrange’s Interpolation Theorem) Given a function f that is defined
at a set of n distinct nodes Xn = {x1, x2, · · · , xn} in D = [−1, 1], there exists a
unique polynomial of degree at most n − 1, Pn−1(x) such that

Pn−1(xi) = f (xi), 1 ≤ i ≤ n.

This polynomial is given by

Pn−1(x) =
n∑

i=1

f (xi)Li(x),

where Li(x) is defined by

Li(x) = wXn(x)

(x − xi)w
′
Xn

(x)
=

∏n
j=1,j �=i (x − xj )∏n
j=1,j �=i (xi − xj )

, (2.1)

wXn(x) being the nodal polynomial wXn(x) = ∏n
j=1(x − xj ).

Fig. 1 n0 = 20 Chebyshev points (blue) and n−n0 added points (red), for a n = 21, b n = 26, c n = 32,
d n = 38
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Additionally, if f ∈ Cn[−1, 1], then for any x ∈ D there exists a ζx ∈ (−1, 1),
such that

f (x) − Pn−1(x) = f (n)(ζx)

n! wXn(x). (2.2)

The error expression in equation (2.2) suggests that a set of points with a smaller
upper bound on |wXn(x)| should in general give us a smaller interpolation error. In
fact |wXn(x)| is bounded by 1

2n−1 and 1
2n−2 for the roots and extrema of Chebyshev

polynomials (Chebyshev points of the first and second kinds), respectively [12]. For
a set of points constructed using our procedure we have the following theorem.

Theorem 2 For a positive integer n, let the intervals Ik be as in Proposition 2.1. Let
�n = {θ1, θ2, · · · , θn} be such that θ1 = 0, θn = π , and θk ∈ Ik for 2 ≤ k ≤ n − 1.
If we define w�n(θ) = ∏n

j=1(cos(θ) − cos(θj )), we have

|w�n(θ)| ≤ π(n − 1)

2n−2
.

Trivially, the same bound holds for |wXn(x)|, where xj = cos(θj ), 1 ≤ j ≤ n.

Proof See Appendix A.

The connection between this bound and the bound on the Lebesgue constant can
be seen through equation (2.1). The Lebesgue constant for Xn can be computed by
the following formula [16, Chapter 15]:

�(Xn) = sup
x∈D

n∑

i=1

|Li(x)|. (2.3)

We can use Theorem 2 to bound each |Li(x)|, which can in turn be used to bound
�(Xn). Also note that the conditions of Theorem 2 are less restrictive than those we
imposed on our points. More specifically, it does not require them to be far enough
from each other. This latter condition is needed to prevent the denominator of |Li(x)|
from becoming too small. In fact, using this condition and Theorem 2, it is not very
hard to prove an upper bound on |Li(x)| that is linear in n, which in turn gives us a
quadratic upper bound on the Lebesgue constant. However, we do not include such
a proof here since our numerical results suggest that the Lebesgue constant grows at
most linearly in n, and therefore a quadratic bound would be very pessimistic.

3 Numerical results

In this section we test the performance of polynomial interpolation at the points
obtained by the procedure given in the previous section. To do this, we look at both
the Lebesgue constant and the norm of the inverse of the interpolation matrix (for
the definition of the interpolation matrix see Section 3.2), and study their growth as
a function of the number of interpolation points. We also look at the L∞ and L2
approximation errors when we interpolate a test function at these points for a fixed n
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and different values of n0, and finally, we look at the L2 errors when we interpolate
a function of three variables at a tensor-product grid constructed on the basis of these
points.

3.1 The Lebesgue constant

Assume that we have n points in the interval [−1, 1] obtained by adding n−n0 points
to n0 Chebyshev points (n0 < n < 2n0−1) using our procedure. First, let us consider
the rather extreme cases where n is either very close to n0 or very close to 2n0 − 1.
Figure 2 shows the growth of the Lebesgue constant with the number of interpolation
points for six different cases, n = n0 + 1, n = n0 + 3 n = n0 + 5, n = 2n0 − 6,
n = 2n0 − 4, and n = 2n0 − 2. The Lebesgue constant for Chebyshev points has
also been plotted for reference. It can be seen that the Lebesgue constant grows very
slowly when we add only one point to n0 = n − 1 Chebyshev points, and that it
is slightly faster when n = n0 + 3 or n = n0 + 5. In both cases the growth of the
Lebesgue constant is very close to that of the Chebyshev points. On the other hand,
when n is very close to 2n0−1, the Lebesgue constant grows much faster, but this fast
growth rate drops quickly as we move away from 2n0 − 1. It is worth emphasizing
that our points are not any closer to n Chebyshev points when n = n0 + 1 compared
to n = 2n0 −2, therefore the smaller Lebesgue constant is not the result of the points
being closer to the actual Chebyshev points.

By looking at Fig. 2, one can see that for any n, the Lebesgue constant is the largest
when n = 2n0−2 compared to all the other values of n0 in that plot. We experimented
with various values of n and n0, and for any fixed n, the Lebesgue constant was the
largest when n = 2n0 − 2, compared to any other n0 with n+2

2 < n0 < n (for which
n0 < n < 2n0−2). Additionally, for n = 2n0−2, the plots suggest that the Lebesgue
constant grows linearly with n. In fact, in our experiments, the Lebesgue constant is
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Fig. 2 The Lebesgue constant as a function of n when n is very close to either n0 or 2n0 − 1



256 Numer Algor (2015) 70:249–267

exactly n − 1. These observations suggest that the Lebesgue constant, for any set of
n points constructed by this procedure, should be at most n − 1.

Figure 2 tells us about the growth of the Lebesgue constant when n is obtained
by either adding a small number to n0 or subtracting a small number from 2n0 − 1.
However, from a practical standpoint, it might be better to study the behavior of the
Lebesgue constant when n is proportional to n0. Figure 3 shows the growth of the
Lebesgue constant as a function of n, when n = �αn0, for four different values of
α (note that α must be between 1 and 2), along with the Lebesgue constants for the
fast Leja points of the same size [1]. Roughly the same pattern can be seen here: the
Lebesgue constant tends to be larger for larger values of α.

We also see that for all four values of α, and particularly for large values of n,
the Lebesgue constant for the points constructed by our procedure is significantly
smaller than that of the fast Leja points.

The observation that the growth of the Lebesgue constant is slower for smaller
α, i.e., when n is close to n0, could be important from a practical point of view. In
practice, the cases where n is close to 2n0 − 1 are much less common. For example,
if it is not too expensive to evaluate the target function at n = �1.95n0 points, then
for a little extra cost we can evaluate the function at n = 2n0 − 1 Chebyshev points.

All the Lebesgue constants in this section were computed using the “Chebfun”
package [15].

3.2 Norm of the inverse of the interpolation matrix

Besides the Lebesgue constant, the condition number [4, 8] or the norm of the inverse
(the smallest singular value) [10] of an interpolation matrix constructed using appro-
priate basis functions, can also be used in order to asses the quality of an interpolation
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Fig. 3 The Lebesgue constant as a function of n when n is related to n0 by n = �αn0
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procedure. Here, we look at the norm of the inverse of the interpolation matrix con-
structed from orthonormal Chebyshev polynomials, {T̂0(x), T̂1(x), · · · , T̂n−1(x)}.
The orthonormality property satisfied by these polynomials is

∫ 1

−1
T̂i (x)T̂j (x)w(x)dx = δij , 0 ≤ i, j ≤ n − 1, (3.1)

where w = 1

π
√

1−x2
is the weight function and δij is the Kronecker delta. Monic

Chebyshev polynomials Tj (x) = cos(j arccos(x)) are orthogonal with respect to
w(x), and we have

∫ 1

−1
T 2

j (x)w(x)dx =
{
1, i = j = 0;
1
2 , j ≥ 1.

(3.2)

Therefore, in order to obtain the orthonormal Chebyshev polynomials we only need
to multiply the monic Chebyshev polynomials (except the one with degree zero) by√
2, i.e.,

T̂j (x) =
{

Tj (x), j = 0;√
2Tj (x), 1 ≤ j ≤ n − 1.

(3.3)

For a set of n points Xn = {x1, x2, · · · xn} ⊂ D, we define the interpolation matrix
with orthonormal Chebyshev polynomials of degree up to n − 1 as basis functions as
follows:

P = 1√
n

⎡

⎢⎢⎢⎣

T̂0(x1) T̂1(x1) · · · T̂n−1(x1)

T̂0(x2) T̂1(x2) · · · T̂n−1(x2)
...

...
. . .

...

T̂0(xn) T̂1(xn) · · · T̂n−1(xn)

⎤

⎥⎥⎥⎦ . (3.4)

For a function f and a set of interpolation points Xn, let p = ∑n−1
j=0 aj T̂j (x) be

the polynomial of degree at most n−1 that interpolates f at the nodes in Xn. If we let
b = [f (x1), f (x2), · · · , f (xn)]T , and a = [a0, a1, · · · , an−1]T , then one can easily
verify that,

Pa = 1√
n
b. (3.5)

The importance of ‖P −1‖2 is due to the following Theorem.

Theorem 3 Let D = [−1, 1] and let f : D → R have a convergent expansion f =∑∞
j=0 aj T̂j (x), where T̂j (x) is the normalized Chebyshev polynomial of degree j .

For a set of points, Xn = {x1, x2, · · · xn} ⊂ D, let P be the associated interpolation
matrix and p be the polynomial of degree at most n − 1 that interpolates f at the
points in Xn. If there exist C > 0 and s > 1 such that for any k ≥ n, |ak| ≤
C(k + 1)−s , then

‖f − p‖L2(D,w) ≤ C

[
1√

2s − 1
n−(s− 1

2 ) +
√
2

s − 1
‖P −1‖2n−(s−1)

]
, (3.6)
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or if there exist C > 0 and ρ > 1 such that for any k ≥ n, |ak| ≤ Cρ−n, then

‖f − p‖L2(D,w) ≤ Cρ−n

[
1

√
1 − ρ−2

+
√
2

1 − ρ−1
‖P −1‖2

]
, (3.7)

where ‖.‖L2(D,w) is the weighted L2 norm on D with w(x) = 1

π
√

1−x2
.

Proof See Appendix B.

Equations (3.6) and (3.7) show how ‖P −1‖2 can control the L2 error of interpo-
lation. It is worth mentioning that ‖P −1‖2 is equal to 1 for Chebyshev points of the
first kind, and about

√
2 for Chebyshev points of the second kind. Also note that

inequalities of the type |ak| ≤ C(k + 1)−s and |ak| ≤ Cρ−n hold when f has a num-
ber of continuous derivatives, or an analytic continuation in a neighborhood of D in
the complex plane [14].

We now look at the norm of the inverse of P for the nodes constructed by our pro-
cedure. As before, we plot ‖P −1‖2 as a function of the grid size n for four different
cases: n = n0 + 1, n = n0 + 3, n = 2n0 − 4, and n = 2n0 − 2. Figure 4 shows
the plot of ‖P −1‖2 when n is very close to either n0 or 2n0 − 1. The growth rate of
‖P −1‖2 in this case is not necessarily faster when n is close to 2n0 − 1.

Like Fig. 3, Fig. 5 shows the plot of ‖P −1‖2 as a function of n, when n = �αn0,
for different values of α, along with that of the fast Leja points. Again, it can be
seen that the norm of the inverse of the interpolation matrix is smaller for the points
constructed by our procedure compared to the fast Leja points, especially for large n.
These plots of ‖P −1‖2 as a function of n (with different values for n0) suggest that
‖P −1‖2 grows sub-linearly with n.
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3.3 Interpolating two test functions

We finish this section by using the points constructed by our procedure to inter-
polate two test functions, and compare the results to the results obtained from the
same number of Chebyshev points. First, we look at a function of one variable, and
then we interpolate a function defined on the cube [−1, 1]3 at a tensor-product grid
constructed from our points.

3.3.1 One-dimensional example

Consider the function f (x) = 1
1+25(x+0.4)2

defined in [−1, 1]. Figure 6 shows the
absolute error of interpolation at n = 45 points, for four different values of n0. The
absolute error from interpolation at n = 45 Chebyshev points has also been plotted
for reference. Again, we see that the approximation is more accurate when n is closer
to n0.

Now let us look at the relative L2 error E = ||f (x)−p̃(x)||L2([−1,1],w)

||f (x)||L2([−1,1],w)
when we

approximate f by a polynomial p̃(x) that interpolates it at the same n = 45 inter-
polation nodes. Here, we approximate the integrals that appear in the expression for
E using the Clenshaw-Curtis quadrature rule with 4000 quadrature points and treat
them as the exact values for the L2 norms. The relative errors for different values of
n0, and also n = 45 Chebyshev points are given in Table 1.

Figure 7 shows a comparison of the Chebyshev expansion coefficients of f

(in absolute value) computed using different nodes.

3.3.2 Three-dimensional example

As we mentioned earlier, if we have a function in d dimensions that we are inter-
polating at tensor-product Chebyshev points, then doubling the number of points in
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Fig. 6 Horizontal axis: x. Vertical axis: absolute error in interpolating f at n = 45 points. Top left:
n0 = 25. Top right: n0 = 31. Bottom left: n0 = 37. Bottom right: n0 = 43. The absolute error for 45
Chebyshev points is plotted (blue curves) for comparison

each direction will increase the total number of points by a factor of 2d , and in order
to keep the final number of points in a manageable range, we may need to settle
for a smaller increase in the number of points than a factor of 2. Here, we give an
example of this in three dimensions and measure the quality of the resulting sets
of interpolation points by interpolating a test function at those points, computing
the relative L2 error, and comparing the result to the relative L2 error of interpola
ting f at tensor-product Chebyshov points of the same size. Consider the function
f (x1, x2, x3) = e2(x1,+x2+x3) defined in [−1, 1]3, and assume that we have initially
interpolated this function at a set of tensor-product Chebyshev points with n0 = 10
points in each direction. The total number of initial points is N0 = n30 = 1000.
We build three sets of tensor-product interpolation points based on one-dimensional

Table 1 The relative L2 errors
in approximating f by
polynomial interpolation at
n = 45 points, with four
different values of n0

n0 = 25 E = 2.5627e − 004

n0 = 31 E = 1.2197e − 004

n0 = 37 E = 1.2805e − 004

n0 = 43 E = 1.2685e − 004

Chebyshev points E = 9.3368e − 005
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points obtained by adding one, two, and three points to the original 10 Chebyshev
points. The total number of points N = n3 will be 1331, 1728, and 2197, respec-
tively. Figure 8 shows the original tensor-product grid and the grid based on adding
one point in each direction. Figure 9 shows the tensor-product grids based on adding
two and three points in each direction.

Let p̃(x1, x2, x3) be the polynomial that interpolates f at these points and
whose degree in each variable is smaller than n. Here, we look at the relative

L2 error of interpolation defined as E = ||f (x1,x2,x3)−p̃(x1,x2,x3)||L2([−1,1]3,w)

||f (x1,x2,x3)||L2([−1,1]3,w)
, where

w(x1, x2, x3) = ∏3
k=1

1

π

√
1−x2k

. Table 2 summarizes the relative L2 errors in approxi-

mating f by interpolation at the grid points shown in Figs. 8 and 9, and tensor-product
Chebyshev points of the same size. It can be seen that the accuracy lost due to the
fact that our points are not exactly Chebyshev points is very small, especially when
n is close to n0.

Table 2 The relative L2 errors in approximating f at tensor-product grids based on various sets of points
in one dimension

Tensor-product grid based on X̃n,n0 Tensor-product grid based on XC
n

n0 = 10, n = 10 − 3.1215e − 007

n0 = 10, n = 11 2.8241e − 008 2.8147e − 008

n0 = 10, n = 12 2.7717e − 009 2.3295e − 009

n0 = 10, n = 13 2.5194e − 010 1.7815e − 010
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Fig. 8 The blue stars are the initial points and the red stars are the added points. Left: Tensor-product
Chebyshev points with n0 = 10 points in each direction. Right: Tensor-product of n0 = 10 and one added
point (n = 11) in each direction
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Fig. 9 Blue stars are the initial points and the red stars are the added points. Left: Tensor-product of
n0 = 10 and 2 added points (n = 12) in each direction. Right: Tensor-product of n0 = 10 and 3 added
point (n = 13) in each direction

4 Conclusion

We presented a procedure for constructing interpolation points of arbitrary size n, that
include a set of n0 Chebyshev points in the interval D = [−1, 1]. It was shown that
the maximum norm of the monic nodal polynomial for these points is at most O(n)

times larger than that of Chebyshev points, and numerical evidence was presented
suggesting that the Lebesgue constant and the norm of the inverse of the interpolation
matrix associated with these points grow slowly with n.
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Appendix A: Proof of Theorem 2

Proof First note that at the nodes θi, i = 1, 2, · · · , n, we have w�n(θi) = 0, which
trivially satisfies the bound. So it remains to show that the bound holds for θ �= θi .
For an arbitrary i, 1 ≤ i ≤ n − 1, consider the interval I = [θi, θi+1]. Now set
h = π

2(n−1) as before, and let 
 = {φ1, φ2, · · · , φn} be another set of points in the
interval [0, π ] with the following properties:

1. φ1 = 0 and φn = π .
2. If i > 1, for all 1 < j ≤ i, φj = (2j − 3)h. This is the leftmost point in

the interval [(2j − 3)h, (2j − 1)h] which is the closure of the interval which θj

belongs to.
3. If i < n − 1, for all i + 1 ≤ j < n, φj = (2j − 1)h. Again, this is the rightmost

point in the interval [(2j − 3)h, (2j − 1)h] which is the closure of the interval
which θj belongs to.

These properties imply that for any 1 ≤ j ≤ n, and any θ ∈ I , we have |θ − θj | ≤
|θ − φj |, which in turn means that | cos(θ) − cos(θj )| ≤ | cos(θ) − cos(φj )|. By
multiplying these for all j we get

n∏

j=1

| cos(θ) − cos(θj )| ≤
n∏

j=1

| cos(θ) − cos(φj )|, θ ∈ I,

or
|w�n(θ)| ≤ |w
(θ)|, θ ∈ I.

Since |w�n(θ)| ≤ |w
(θ)| in I , an upper bound for |w
(θ)| will also bound
|w�n(θ)| in this interval. Also, we have I = [θi, θi+1] ⊆ [φi, φi+1]. Therefore, it
is sufficient to prove the bound for |w
(θ)| in the interval [φi, φi+1]. But note that
for 2 ≤ j ≤ n − 1, the φj ’s are n − 2 (out of n − 1) zeros of cos((n − 1)θ),
and φ̄ = (2i − 1)h is the only one that is missing. Using this, and the identity
cos((n − 1)θ) = 2n−2 ∏n−1

j=1(cos(θ) − cos((2j − 1)h)), for θ �= φ̄ we can write

w
(θ) = (cos(θ) − 1)(cos(θ) + 1)

cos(θ) − cos(φ̄)

(
cos(θ) − cos(φ̄)

) n−1∏

j=2

(cos(θ) − cos(φj ))

= 1

2n−2

− sin2(θ) cos((n − 1)θ)

cos(θ) − cos(φ̄)
. (A.1)

Since w
(θ) is continuous, its value at φ = φ̄ can be obtained by computing the
limit when θ goes to φ̄ in equation (A.1). Using the ’Hospital rule,

w
(φ̄) = 1

2n−2

− sin(2φ̄) cos((n − 1)φ̄) + (n − 1) sin2(φ̄) sin((n − 1)φ̄)

− sin(φ̄)

= − sin(φ̄) sin((n − 1)φ̄)
n − 1

2n−2
. (A.2)

Taking the absolute value of equation (A.2) yields

|w
(φ)| ≤ n − 1

2n−2
. (A.3)
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Now it remains to prove that the bound holds for θ �= φ̄. For this, we look at
equation (A.1) again. Let us denote the numerator of the second fraction by A and its
denominator by B. In the interval [φi, φi+1] we have

|A| ≤ (n − 1) sin2(θ)|θ − φ̄|. (A.4)

To see this, note that | cos((n − 1)θ)| is concave in both intervals [φi, φ̄] and
[φ̄, φi+1], and its left and right derivatives at θ = φ̄ are −(n − 1) and (n − 1),
respectively. This will give us | cos((n − 1)θ)| ≤ (n − 1)|θ − φ̄|, and multiplying by
sin2(θ) gives us equation (A.4).

For the denominator we have,

cos(θ) − cos(φ̄) = −2 sin

(
θ − φ̄

2

)
sin

(
θ + φ̄

2

)
,

which after taking the absolute value becomes

| cos(θ) − cos(φ̄)| = 2 sin

( |θ − φ̄|
2

)
sin

(
θ + φ̄

2

)
. (A.5)

Now, noting that θ+φ̄
2 ∈ [0, π ] and |θ−φ̄|

2 ∈ [0, π
2 ], and using the fact that sin(θ)

is concave and non-negative in [0, π ], we can write

sin

(
θ + φ̄

2

)
≥ 1

2
[sin(θ) + sin(φ̄)] ≥ 1

2
sin(θ), (A.6)

and

sin

( |θ − φ̄|
2

)
≥

|θ−φ̄|
2
π
2

= |θ − φ̄|
π

. (A.7)

If we plug (A.6) and (A.7) into equation (A.5), we will have

|B| ≥ 1

π
sin(θ)|θ − φ̄|. (A.8)

Using (A.4) and (A.8) in (A.1) and taking the absolute value will give us for θ ∈
[φi, φi+1] and θ �= φ:

|w
(θ)| ≤ π(n − 1) sin(φ̄)

2n−2
≤ π(n − 1)

2n−2
, (A.9)

which together with (A.3) proves the bound for the interval [φi, φi+1] and therefore
[θi, θi+1]. Since i was arbitrary, the bound holds for all subintervals, and therefore
the whole interval [0, π ].

Appendix B: Proof of Theorem 3

We break the proof into two lemmas.

Lemma 1 Let D = [−1, 1] and let f : D → R have a convergent expansion f =∑∞
j=0 aj T̂j (x), where T̂j (x) is the normalized Chebyshev polynomial of degree j .
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For a set of nodes Xn = {x1, x2, · · · xn} ⊂ D, let P be the associated interpolation
matrix and p be the polynomial of degree at most n − 1 that interpolates f at the
nodes in Xn. We have

‖f − p‖L2(D,w) ≤
( ∞∑

k=n

a2k

) 1
2

+ ‖P −1‖2
√
2

∞∑

k=n

|ak|. (B.1)

Proof Let p∗ be the Chebyshev projection of f onto the space of polynomials of
degree at most n − 1, Pn−1. Using the triangular inequality, we can write

‖f − p‖L2(D,w) ≤ ‖f − p∗‖L2(D,w) + ‖p∗ − p‖L2(D,w). (B.2)

Since p∗ = ∑n−1
k=0 akT̂k(x), the first term in the right hand side of Equation (B.2) is

simply
(∑∞

k=n a2k

) 1
2 .

For the second term, if we denote the coefficients in the Chebyshev expan-
sion of the interpolant p by ãj , 0 ≤ j ≤ n − 1, we have ‖p∗ − p‖L2(D,w) =
‖a − ã‖2, where a = [a0, a1, · · · , an−1]T and ã = [ã0, ã1, · · · , ãn−1]T . There-
fore we only need to show that ‖a − ã‖2 ≤ ‖P −1‖2

√
2

∑∞
k=n |ak|. Let us define

b = [p∗(x1), p∗(x2), · · · , p∗(xn)]T and b̃ = [f (x1), f (x2), · · · , f (xn)]T . Since p

interpolates f and p∗ interpolates itself at Xn, we have

Pa = 1√
n
b, P ã = 1√

n
b̃.

By subtracting these equations we can write

a − ã = 1√
n
P −1(b − b̃).

Therefore,

‖a − ã‖2 ≤ ‖P −1‖2 1√
n
‖b − b̃‖2

= ‖P −1‖2
(
1

n

n∑

i=1

(
f (xi) − p∗(xi)

)2
) 1

2

= ‖P −1‖2
⎛

⎝1

n

n∑

i=1

( ∞∑

k=n

akT̂k(xi)

)2
⎞

⎠

1
2

≤ ‖P −1‖2 max
1≤i≤n

∣∣∣∣∣

∞∑

k=n

akT̂k(xi)

∣∣∣∣∣

≤ ‖P −1‖2
∞∑

k=n

|ak| max
1≤i≤n

∣∣∣T̂k(xi)

∣∣∣

≤ ‖P −1‖2
√
2

∞∑

k=n

|ak| ,
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where in the last line we have used equation (3.3).

Lemma 2 Let {ak}∞k=0 be a sequence of real numbers. For a positive integer n, if
there are C > 0 and s > 1 such that for any k ≥ n, |ak| ≤ C(k + 1)−s , then,

( ∞∑

k=n

a2k

) 1
2

≤ C√
2s − 1

n
−

(
s− 1

2

)

(B.3)

and
∞∑

k=n

|ak| ≤ C

s − 1
n−(s−1). (B.4)

If there are C > 0 and ρ > 1 such that for any k ≥ n, |ak| ≤ Cρ−n, then,

( ∞∑

k=n

a2k

) 1
2

≤ C
√
1 − ρ−2

ρ−n (B.5)

and
∞∑

k=n

|ak| ≤ C

1 − ρ−1
ρ−n. (B.6)

Proof Inequality (B.4) can be proven using the common technique of bounding by
an improper integral,

∞∑

k=n

C

(k + 1)s
<

∫ ∞

n

C

xs
dx.

Inequality (B.3) can be obtained in a similar fashion. Inequalities (B.5) and (B.6)
can be shown using geometric series.

Proof of Theorem 3 The proof follows directly from Lemmas 1 and 2.
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