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Abstract The paper presents a trigonometrically-fitted implicit third derivative
Runge-Kutta-Nystöm method (TTRKNM) whose coefficients depend on the fre-
quency and stepsize for periodic initial value problems. The TTRKNM is a pair of
methods which is obtained from its continuous version and applied to produce simul-
taneous approximations to the solution and its first derivative at each point in the
interval of interest. A discussion of the stability property of the method is given.
Numerical experiments are performed to demonstrate the accuracy and efficiency of
the method.
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1 Introduction

Although Second Order Differential Equations (DEs) can always be transformed
into an equivalent first order system, second order DEs naturally arise in several
areas of application, such celestial mechanics, circuit theory, control theory, chemical
kinetics, astrophysics, and biology. Therefore, it is imperative to seek numerical tech-
niques that can solve them directly. Initial value problems (IVPs) in which the first
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derivative does not appear explicitly are an important subclass of second order DEs;
a vast number of which does not posses theoretical solutions. Thus, several numerical
techniques for directly solving this subclass of IVPs has been proposed (see Lambert
and Watson [20], Twizell and Khaliq [27], Ananthakrishnaiah [2], Simos [24], Hairer
[11], Nörsett, and Wanner [10], Van der Houwen and Sommeijer [28], and Tsitouras
[26]). In the case of direct solution for the general second order IVPs in which the
first derivative does appear explicitly, fewer methods have been proposed (see Vigo-
Aguiar and Ramos [29], Chawla and Sharma [4], Jator, [16], Mahmoud and Osman
[18], and Awoyemi [3]). It turns out that some of these IVPs possess solutions with
special properties that may be known in advance, taking advantage of when designing
numerical methods.

A reasonable amount of attention has been focused on developing methods that
take advantage of the special properties of the solution that may known in advance
(see Coleman and Ixaru [6], Simos [23], Vanden et al. [30], Vigo-Aguiar et al. [33],
Franco [9], Fang et al. [7], Nguyen et al. [21], Wua and Tian [34], Ramos and
Vigo-Aguiar [31], Franco and Gomez [8], Kalogiratou [12], and Ozawa [22]).
Nevertheless, most of these methods are restricted to solving special second order
IVPs in step-by-step fashion.

In this paper, we propose a TTRKNM whose coefficients are functions of the
frequency and the stepsize, which takes advantage of the special properties of the
solution. For instance, when the frequency or a reasonable estimate of it is known
in advance, the method performs better than the polynomial based methods. More-
over, the TTRKNM is applied as a pair of methods that simultaneously produce
approximations to the solution and its first derivative at each point in the interval of
interest (see Jator et al. [17] and Ngwane and Jator [19]). In this way, the method
performs better than its predictor-corrector implementation as demonstrated in
Section 5.2.

This paper is organized as follows. In Section 2, we derive the TTRKNM. The
error and stability analysis of the TTRKNM are discussed in Section 3 and in
Section 4 the implementation of the method is discussed. Numerical examples are
given in Section 5 to show the accuracy and efficiency of the TTRKNM. Finally, we
give some concluding remarks in Section 6.

2 Derivation of the TTRKNM

Consider the general second order IVP

y ′′ = f (x, y, y′), y(x0) = y0, y′(x0) = y′
0, x0 ≤ x ≤ xN, (1)

where f : �×�2s → �s , N > 0 is an integer, and s is the dimension of the system.
However, we assume the scalar form of (1) in the derivation process, since the pro-
posed method can be applied to the system (1) by obvious notational modifications.
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In what follows, we defined the TTRKNM as a pair of methods for the numerical
integration of (1) by

yn+1 = yn + hy′
n + h2

1∑

j=0

βjfn+j + h3
1∑

j=0

γjgn+j , (2)

hy′
n+1 = hy′

n + h2
1∑

j=0

β ′
j fn+j + h3

1∑

j=0

γ ′
j gn+j , (3)

where βj , and γj , j = 0, 1 are continuous coefficients. We assume that yn+j

is the numerical approximation to the analytical solution y(xn+j ), y′
n+j is an

approximation to y′(xn+j ),

fn+j = f (xn+j , yn+j , y
′
n+j ), gn+j = g(xn+j , yn+j , y

′
n+j ),

gn+j = df (x, y(x), y ′(x))

dx
|(xn+j , yn+j , y′

n+j
), j = 0, 1.

In order to derive (2) and (3), we initially seek a continuous local approximation
U(x) on the interval [xn, xn+1] of the form

U(x) = α0(x)yn + δ0(x)hy′
n + h2

1∑

j=0

βj (x)fn+j + h3
1∑

j=0

γj (x)gn+j (4)

whose first derivative is given by

U ′(x) = d

dx
U(x) (5)

where α0(x), δ0(x), βj (x), and γj (x), j = 0, 1 are continuous coefficients. We
assume that yn+j = U(xn + jh) is the numerical approximation to the analytical
solution y(xn+j ), y′

n+j = U ′(xn + jh) is an approximation to y′(xn+j ), fn+j =
U ′′(xn + jh) is an approximation to y′′(xn+j ), and gn+j = U ′′′(xn + jh) is an
approximation to y′′′(xn+j ), j = 0, 1.

The construction of the continuous method (4) with(5) as a consequence is given
in the following theorem:

Theorem 2.1 Let Pj (x) = xj , j = 0, . . . , 3, P4 = sin(wx), P5 = cos(wx)

be basis functions and V = (yn, y
′
n, fn, fn+1, gn, gn+1)

T a vector, where T is the
transpose. Consider the matrices W defined as

W =

⎛

⎜⎜⎜⎜⎜⎜⎝

P0(xn) · · · P5(xn)

P ′
0(xn) · · · P ′

5(xn)

P ′′
0 (xn) · · · P ′′

5 (xn)

P ′′
0 (xn+1) · · · P ′′

5 (xn+1)

P ′′′
0 (xn) · · · P ′′′

5 (xn)

P ′′′
0 (xn+1) · · · P ′′′

5 (xn+1)

⎞

⎟⎟⎟⎟⎟⎟⎠
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and Wj obtained by replacing the j th column of W by the vector V , and let the
following conditions be satisfied

U (xn) = yn, U ′ (xn) = y′
n (6)

U ′′ (xn+j

) = fn+j , U ′′′ (xn+j

) = gn+j , j = 0, 1, (7)

then, the continuous representations (4) and (5) are equivalent to the following:

U(x) =
5∑

j=0

det(Wj )

det(W)
Pj (x), (8)

U ′(x) = d

dx

⎛

⎝
5∑

j=0

det(Wj )

det(W)
Pj (x)

⎞

⎠ , (9)

Proof The proof follows the approach given in Jator [16] with slight notational mod-
ifications. We begin the proof by requiring that the method (4) be defined by the
assumed basis functions
⎧
⎨

⎩

α0(x) = ∑5
i=0 αi+1,0Pi(x), δ0(x) = ∑5

i=0 hδi+1,0Pi(x),

h2βj (x) = ∑5
i=0 h2βi+1,jPi(x), h3γj (x) = ∑5

i=0 h3γi+1,jPi(x), j = 0, 1,
(10)

where αi+1,0, hδi+1,0, h2βi+1,j , and h3γi+1,j , are coefficients to be determined.
Substituting (10) into (4) we have

U(x) =
∑5

i=0
αi+1,0Pi(x)yn +

∑5

i=0
hδi+1,0Pi(x)y′

n

+
∑1

j=0

∑5

i=0
h2βi+1,jPi(x)fn+j +

∑1

j=0

∑5

i=0
h3γi+1,jPi(x)gn+j ,

which is simplified to

U(x) =
∑5

i=0
{αi+1,0Pi(x)yn + hδi+1,0Pi(x)y′

n +
∑1

j=0
h2βi+1,jPi(x)fn+j

+
∑1

j=0
h3γi+1,jPi(x)gn+j },

and expressed as

U(x) =
5∑

i=0

�iPi(x), (11)

where

�i = αi+1,0Pi(x)yn + hδi+1,0Pi(x)y′
n +

∑1

j=0
h2βi+1,jPi(x)fn+j

+
∑1

j=0
h3γi+1,jPi(x)gn+j .

By imposing conditions (6) and (7) on (11), we obtain a system of six equations,
which can be expressed as

WL = V,
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where L = (�0, �1, . . . , �5)
T is a vector of six undetermined coefficients.

We then proceed to determining the elements of L via Cramer’s Rule. Thus,

�j = det(Wj )

det(W)
, j = 0, 1, . . . , 5,

where Wj is obtained by replacing the j th column of W by V . In order to obtain our
continuous approximation, we use the newly found elements of L to rewrite (11) as

U(x) =
5∑

j=0

det(Wj )

det(W)
Pj (x),

whose first derivative is given by

U ′(x) = d

dx

⎛

⎝
5∑

j=0

det(Wj )

det(W)
Pj (x)

⎞

⎠ .

The proof is complete.

The methods (2) and (3) are specified by evaluating (8) and (9) at x = xn+1. That
is, yn+1 = U(xn + h) and y ′

n+1 = U ′(xn + h) yield methods (2) and (3) whose
coefficients and their corresponding Taylor series equivalence are given as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β1,0 = (6u cos(u/2)+2u3 cos(u/2)−12 sin(u/2)−3u2 sin(u/2))
6u2(u cos(u/2)−2 sin(u/2))

= 7
20 + u2

8400 + u4

756000 + 37u6
2328480000 + 59u8

302702400000 + 2753u10
1144215072000000 + . . . ,

β1,1 = (−6u cos(u/2)+u3 cos(u/2)+12 sin(u/2)−3u2 sin(u/2))
6u2(u cos(u/2)−2 sin(u/2))

= 3
20 − u2

8400 − u4

756000 − 37u6
2328480000 − 59u8

302702400000 − 2753u10
1144215072000000 + . . . ,

γ1,0 = (−12u csc(u/2)−u3 csc(u/2)+12u cos(u) csc(u/2)−2u3 cos(u) csc(u/2)+9u2 csc(u/2) sin(u))

12u3(u cos(u/2)−2 sin(u/2))

= 1
20 + 19u2

25200 + 13u4
756000 + 109u6

258720000 + 28703u8
2724321600000 + 303689u10

1144215072000000 + . . . ,

γ1,1 = (2u3 csc(u/2)+u3 cos(u) csc(u/2)−3u2 csc(u/2)Sin(u))

12u3(u cos(u/2)−2 sin(u/2))

= − 1
30 − u2

1575 − u4

63000 − 59u6
145530000 − 7043u8

681080400000 − 12539u10
47675628000000 + . . . ,

(12)
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β ′
1,0 = (3u3 cos(u/2)−6u2 sin(u/2))

6u2(u cos(u/2)−2 sin(u/2))

= 1
2

β ′
1,1 = (3u3 cos(u/2)−6u2 sin(u/2))

6u2(u cos(u/2)−2 sin(u/2))

= 1
2

γ ′
1,0 = (−12u csc(u/2)−3u3 csc(u/2)+12u cos(u) csc(u/2)−3u3 cos(u) csc(u/2)+12u2 csc(u/2) sin(u))

12u3(u cos(u/2)−2 sin(u/2))

= 1
12 + u2

720 + u4

30240 + u6

1209600 + u8

47900160 + 691u10
1307674368000 + . . . ,

γ ′
1,1 = (12u csc(u/2)+3u3 csc(u/2)−12u cos(u) csc(u/2)+3u3 cos(u) csc(u/2)−12u2 csc(u/2) sin(u))

12u3(u cos(u/2)−2 sin(u/2))

= − 1
12 − u2

720 − u4

30240 − u6

1209600 − u8

47900160 − 691u10
1307674368000 + . . . ,

(13)
where u = wh and w is the frequency.

Remark 2.2 We note that when u → 0 the trigonometric coefficients given by
(10) and (11) are vulnerable to heavy cancelations and hence the coefficients of the
corresponding Taylor series expansion must be used (see Simos [16]).

3 Error analysis and stability

3.1 Local truncation error

We define the local truncation errors (LTEs) of (2) and (3) specified by the
coefficients (12) and (13) as

ℵ1[y(xn);h] = y(xn + h) − yn − hy′
n − h2

∑1

j=0
βjy

′′(xn + jh)

−h3
∑1

j=0
γjy

′′′(xn + jh),

ℵ2[y(xn);h] = hy′(xn + h) − hy′
n − h2

∑1

j=0
β ′

j y
′′(xn + jh)

−h3
∑1

j=0
γ ′
j y

′′′(xn + jh).

Assuming that y(x) is sufficiently differentiable, we can expand the terms in ℵ1 and
ℵ2 as a Taylor series about the point xn to obtain the expressions for the LTEs as

ℵ1[y(xn);h] = h6

1440
(w2y(4)(xn) + y(6)(xn)) + O(h7). (14)

ℵ2[y(xn);h] = h6

720
(w2y(4)(xn) + y(6)(xn)) + O(h7). (15)

Remark 3.1 The TTRKNM reduces to a polynomial based method as u → 0.
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3.2 Stability

The methods (2) and (3) specified by the coefficients (10) and (11) are combined to
give the TTRKNM, which is expressed as

A(0)Yμ = A(1)Yμ−1 + h2(B(1)Fμ−1 + B(0)Fμ), (16)

where Yμ, Fμ, Yμ−1, Fμ−1, μ = 1, . . . , N, n = 1, 2, . . . , N are given as
Yμ = (yn+1, hy′

n+1)
T , Fμ = (fn+1, hgn+1)

T , Yμ−1 = (yn, hy′
n)

T , Fμ−1 =
(fn, hgn)

T , A(i), B(i) , i = 0, 1 are 2 × 2 matrices whose entries are given by the
coefficients of the methods (2) and (3).

The linear-stability of the TTRKNM is discussed by applying the method to the
test equation y′′ = −λ2y, where λ is a real constant (see [6]). Letting ϒ = λh, it is
easily shown as in [5] that the application of (16) to the test equation yields

Yμ = M(ϒ2; u)Yμ−1 , M(ϒ2; u) := (A(0) + ϒ2B(0))−1(A(1) − ϒ2B(1)), (17)

where the matrixM(ϒ2; u) is the amplification matrix which determines the stability
of the method. In the spirit of [5], the eigenvalues of M(ϒ2; u) are the roots of the
characteristics equation

ρ2 − 2
(ϒ2; u)ρ + �(ϒ2; u) = 0, (18)

where 
(ϒ2; u) = 1
2 trace M(ϒ2; u) and �(ϒ2; u) = det M(ϒ2; u) are rational

functions.

Definition 3.2 A region of stability is a region in the q − u plane, throughout which
|ρ(ϒ2; u)| ≤ 1, where |ρ(ϒ2; u)| is the spectral radius of M(ϒ2; u) (see [6]).

We note that the periodicity condition is given by �(ϒ2; u) = 1, in which case,

(ϒ2; u) is the stability function and (18) becomes

ρ2 − 2
(ϒ2; u)ρ + 1 = 0. (19)

Definition 3.3 Let 
(ϒ2; u) be the stability function, we then define the interval of
periodicity as the largest interval (0, h0) such that |
(ϒ2; u)| < 1 for all steplengths
hε(0, h0). Suppose h0 is finite, and |
(ϒ2; u)| < 1 also holds for hε(η1, η2), for
η1 > h0, then, (η1, η2) is the secondary interval of periodicity (see [5]).

Remark 3.4 It is observed that in the q − u plane the TTRKNM is stable for
q ε [0, 55.59] and u ε [−π, π ] (see Fig.1). The stability region is also confirmed
numerically as demonstrated in Table 5. However, the TTRKNM has a primary
interval of periodicity for q ε (0, 9.87) and a secondary interval of periodicity for
q ε ([0, 55.59) for u ε [−2.6, 2.6].
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Fig. 1 The stability region for the TTRKNM plotted in the (q, u)-plane

4 Implementation of the TTRKNM

4.1 Block approach

The TTRKNM was implemented in a block-by-block fashion using a code written
in Mathematica 9.0 enhanced by the feature NSolve[ ] for linear problems, while
nonlinear problems were solved by the Newton’s method enhanced by the feature
FindRoot[ ] (see Keiper and Gear [13]). It is vital to note that Mathematica can sym-
bolically compute derivatives, hence the entries of the Jacobian matrix which involve
the partial derivatives of both f and g are automatically generated. In particular, the
TTRKNM (14) is applied to (1) on the range of interest as follows:

• ChooseN, h = (b−a)/N ; using (14), n = 1, μ = 1, the values of (y1, y′
1)

T are
simultaneously obtained over the sub-interval [x0, x1], as y0 and y′

0 are known
from the IVP (1).

• For n = 2, μ = 2, the values of (y2, y
′
2)

T are simultaneously obtained over the
sub-interval [x1, x2], as y1 and y′

1 are known from the previous block.
• The process is continued for n = 3, . . . , N and μ = 3, . . . , N to obtain the

numerical solution to (1) on sub-intervals [x2, x3], . . . , [xN−1, xN ].

4.2 Predictor-corrector approach

The TTRKNM was also implemented in a predictor-corrector mode in which on the
partition �N , an approximation is obtained at xn+1 only after an approximation at
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xn has been computed, where �N : a = x0 < x1 < . . . < xN = b, xn+1 =
xn + h, n = 0, . . . , N − 1. In order to facilitate this implementation, we use the
explicit versions of (2) and (3) as predictors, which are defined as follows:

⎧
⎪⎨

⎪⎩

yn+1 = yn + hy′
n + 1−cos(hw)

w2 (u)fn + hw−Sin[hw]
w3 gn,

hy′
n+1 = hy′

n + h sin(hw)
w

(u)fn + h−h cos(hw))

w2 gn.

(20)

5 Numerical examples

In this section, we have tested the TTRKNM on some numerical examples using
a constant stepsize to illustrate its accuracy and efficiency. In particular, we have
demonstrated the superiority of the block form by implementing the TTRKNM both
in the block-mode and predictor-corrector mode. We have included a test problem
which is traditionally used in the literature to discuss stability to validate the fact
that the TTRKNM has a moderately large stability region. We have calculated the
absolute error of the approximate solution as Err = |y(xN)− yN |. It is worth noting
that the number of function evaluations (NFEs) per step involved in implementing the
TTRKNM in block-mode is two, while its predictor-corrector mode implementation
requires four function evaluations per step due to the introduction of the predictor as
discussed in Section 5.2.

Example 5.1 We consider the following inhomogeneous IVP by Simos [23].

y′′ = −100y + 99 sin(x), y(0) = 1, y′(0) = 11, x ∈ [0, 1000]
where the analytic solution is given by

Exact : y(x) = cos(10x) + sin(10x) + sin(x).

The exponentially-fitted method in Simos [23] is of fourth order and hence compa-
rable to the fourth order TTRKNM. It is obvious from Table 1 that TTRKNM is more

Table 1 Results, with ω = 10, for Example 5.1

TTRKNM Simos [23]

N Err NFEs Err NFEs

1000 5.4 × 10−4 2002 1.4 × 10−1 8000

2000 1.9 × 10−4 4002 3.5 × 10−2 16000

4000 5.4 × 10−6 8002 1.1 × 10−3 32000

8000 3.0 × 10−7 16002 8.4 × 10−5 64000

16000 1.8 × 10−8 32002 5.5 × 10−6 128000

32000 5.2 × 10−10 64002 3.5 × 10−7 256000
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Table 2 Results, with ω = 1.01, for Example 5.2

TTRKNM Simos Ixaru et al.

N Err N Err N Err

150 3.6 × 10−3 150 − 150 −
300 1.3 × 10−6 300 1.7 × 10−3 300 1.1 × 10−3

600 2.4 × 10−6 600 1.9 × 10−4 600 5.4 × 10−5

1200 1.7 × 10−7 1200 1.4 × 10−5 1200 1.9 × 10−6

2400 1.1 × 10−8 2400 8.7 × 10−7 2400 6.2 × 10−8

accurate and requires fewer NFEs than the method in [23]. Hence, for this example,
TTRKNM is superior in terms accuracy and efficiency.

Example 5.2 We consider the nonlinear Duffing equation which was also solved by
Simos [23] and Ixaru and Vanden Berghe [15].

y′′ + y + y3 = B cos(�x), y(0) = C0, y′(0) = 0.

The analytic solution is given by

Exact : y(x) = C1 cos(�x) + C2 cos(3�x) + C3 cos(5�x) + C4 cos(7�x),

where � = 1.01, B = 0.002, C0 = 0.200426728069, C1 =
0.200179477536, C2 = 0.246946143 × 10−3, C3 = 0.304016 × 10−6, C4 =
0.374 × 10−9. We choose ω = 1.01

We compare the end-point global errors for TTRKNM with the fourth order
methods in Simos [23] and Ixaru et al. [15]. It is obvious from Table 2 that the
errors produced by TTRKNM are smaller than those given in Simos [23] and Ixaru
et al. [15]. Hence, for this example, the TTRKNM is superior in terms of accuracy.

Table 3 Results, with ω = 1, e = 0.005, for Example 5.3

TTRKNM FESDIRK4(3) ESDIRK4(3)

N Err N Err N Err

150 4.1 × 10−3 170 2.866 × 10−1 277 2.153 × 100

200 1.2 × 10−3 225 7.846 × 10−3 496 1.494 × 10−1

300 6.2 × 10−5 381 1.399 × 10−3 884 9.359 × 10−3

600 2.7 × 10−7 680 1.690 × 10−4 1573 6.200 × 10−4

800 2.7 × 10−8 1207 1.846 × 10−5 2796 4.416 × 10−5

1600 1.1 × 10−10 2144 1.938 × 10−6 4970 3.412 × 10−6

2400 4.3 × 10−12 3806 1.993 × 10−7 8833 2.848 × 10−7

3200 4.3 × 10−15 6762 2.021 × 10−8 15706 2.530 × 10−8
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Table 4 Results, with ω = 4, for Example 5.4

TIRK3 RADAU5 EFRK43 TTRKNM

NFEs Err NFEs Err NFEs Err NFEs Err

907 2.5 × 10−4 853 2.2 × 10−4 2057 3.7 × 10−4 804 6.6 × 10−5

1288 6.6 × 10−6 1208 4.4 × 10−4 1715 3.0 × 10−4 1204 1.3 × 10−5

1682 7.0 × 10−6 1639 6.0 × 10−6 3079 2.7 × 10−5 1604 4.1 × 10−6

Example 5.3 Consider the given two-body problem which was solved by Ozawa
[22].

y′′
1 = −y1

r3
, y′′

2 = −y2

r3
, r =

√
y2
1 + y2

2 ,

y1(0) = 1 − e, y′
1(0) = 0, y2(0) = 0, y′

2(0) =
√
1 + e

1 − e
, xε[0, 50π ],

where e, 0 ≤ e < 1 is an eccentricity. The exact solution of this problem is

Exact : y1(x) = cos(k) − e, y2(x) =
√
1 − e2 sin(k),

where k is the solution of the Kepler’s equation k = x + e sin(k). We choose ω = 1.

In Table 3, we compare the results obtained using the TTRKNM to those obtained
via the explicit singly diagonally implicit Runge-Kutta (ESDIRK) and the function-
ally fitted ESDIRK (FESDIRK) methods given in Ozawa [22]. It is obvious from
Table 3 that the TTRKNM performs better than those in Ozawa [22] in terms of
accuracy.

Example 5.4 We consider the nonlinear system of second order IVP (see [21])

y′′
1 = (y1 − y2)

3 + 6368y1 − 6384y2 + 42 cos(10x), y1(0) = 0.5, y′
1(0) = 0,

y′′
1 = −(y1 − y2)

3 + 12768y1 − 12784y2 + 42 cos(10x), y2(0) = 0.5, y′
2(0) = 0, xε[0, 10],

with exact solution y1(x) = y2(x) = cos(4x) − cos(4x)/2.

Table 5 Results, with ω = 1, for Example 5.5

N = 203(q ∈ [0, 59.88]) N = 202(q � [0, 59.88])

x Err Err

5.0 5.0 × 10−13 2.0 × 10−12

10.0 5.7 × 10−12 3.1 × 10−11

15.0 2.5 × 10−12 5.3 × 10−9

20.0 8.3 × 10−12 7.4 × 10−7

25.0 9.8 × 10−12 1.2 × 10−4

30.0 5.5 × 10−12 1.7 × 10−2
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Table 6 Results, with ω = 1, for Example 5.6

RK4 TTRKNM

N NFEs Err NFEs Err

8 64 5.7 × 10−4 9 1.4 × 10−4

16 128 2.2 × 10−4 17 1.7 × 10−5

32 256 1.8 × 10−5 33 1.2 × 10−6

64 512 1.3 × 10−6 65 7.9 × 10−8

128 1024 8.4 × 10−8 129 5.0 × 10−9

This problem was chosen to demonstrate the performance of the TTRKNM on a
nonlinear system. The accuracy and efficiency of the TTRKNM are measured by the
end-point global errors for the y-component and the corresponding NFEs used. The
results obtained using the TTRKNM are displayed in Table 4 and compare with those
given in [21]. It is seen from Table 4 that TTRKNM performs generally better than
those in [21] in terms of accuracy and efficiency.

Example 5.5 We consider the stiff second order IVP (see [1])

y′′
1 = (ε − 2)y1 + (2ε − 2)y2, y′′

2 = (1 − ε)y1 + (1 − 2ε)y2,

y1(0) = 2, y′
1(0) = 0, y2(0) = −1, y′

2(0) = 0 , ε = 2500, xε [0, 10π ].
y1(x) = 2 cos x, y2(x) = − cos x, where ε is an arbitrary parameter and w = 1.

This problem was chosen to justify the stability of the TTRKNM. The method is
stable when q ∈ [0, 59.88] and u ∈ [−π, π ]. In Table 5, we give the absolute errors
at selected values of x, which indicate that choosing N = 203, the method is stable
since for this value of N, q ∈ [0, 59.88]. However, for N = 202, q � [0, 59.88],
hence the method becomes unstable.

5.1 Problems where y ′ appears explicitly.

In this subsection, we show that the TTRKNM is applicable to problems where y′
appears explicitly.

Fig. 2 Efficiency curves for Example 5.1
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Fig. 3 Efficiency curves for Example 5.2

Example 5.6 We consider the given Bessel’s IVP solved on [1, 8] (see Vigo-Aguiar
and Ramos[33]).

x2y′′ + xy′ + (x2 − 0.25)y = 0, y(1) =
√

2

π
sin 1 	 0.6713967071418031,

y′(1) = (2 cos 1 − sin 1)/
√
2π 	 0.0954005144474746.

Exact : y(x) = J1/2(x) =
√

2

πx
sin x

The theoretical solution at x = 8 is y(8) =
√

2
8π sin(8) 	

0.279092789108058969 and we choose w = 1.
This problem was chosen to demonstrate the performance of the TTRKNM on a

general second order IVP with variable coefficients. It was solved using the fourth-
order Runge-Kutta method (RK4) and TTRKNM. We have chosen to compare these
methods because their orders are the same. It is obvious from Table 6 that TTRKNM
performs better than the RK4 method in terms of accuracy (smaller errors) and is
more efficient (smaller NFEs).

5.2 Block versus predictor-corrector implementations

In order to demonstrate the superiority of the Block implementation of the TTRKNM
over its predictor-corrector implementation, we have used the two techniques to solve

Fig. 4 Efficiency curves for Example 5.3
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Fig. 5 Efficiency curves for Example 5.4

examples 5.1, 5.2, 5.3, 5.4, 5.6 and the results are displayed in Figs. 2, 3, 4, 5, 6. We
note that example 5.5 is excluded since it is primarily included in the examples to
demonstrated the stability of the TTRKNM.

It is noticed from Figs. 2–6 that the block-implementation (Block-Mode) of the
TTRKNM is superior to its implementation in the predictor-corrector mode (PC-
Mode).

5.3 TTRKNM versus fourth-order standard Runge-Kutta-Nystöm method (N4)
given in Sommeijer [25]

In this subsection, the TTRKNM is compared to N4 given in [25], since the two meth-
ods are of the same order and use two function evaluations per step. It is observed the
TTRKNM is more accurate than N4. The details of the numerical results are in given
in Tables 7,8, 9,10, 11.

Example 5.7 We consider the following IVP taken from [25].

y ′′ + 25y + 100 cos(5x), y(0) = 1, y′(0) = 5, x ∈ [0, 10]

where the analytic solution is given by

Exact : y(x) = cos(5x) + sin(5x) + 10x sin(5x).

Fig. 6 Efficiency curves for Example 5.6
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Table 7 Results, with ω = 5, for Example 5.7

TTRKNM N4

N Err NFEs Err NFEs

200 1.4 × 10−4 402 1.1 × 10−1 400

400 8.9 × 10−6 802 1.3 × 10−2 800

800 5.6 × 10−7 1602 1.5 × 10−3 1600

1600 1.8 × 10−8 3202 1.9 × 10−4 3200

3200 2.1 × 10−9 6402 2.3 × 10−5 6400

Table 8 Results, with ω = 10, for Example 5.1

TTRKNM N4

N Err NFEs N Err NFEs

1000 5.4 × 10−4 2002 8000 1.3 × 100 16000

2000 1.9 × 10−4 4002 16000 1.3 × 100 32000

4000 5.4 × 10−6 8002 32000 1.3 × 100 64000

8000 3.0 × 10−7 16002 64000 9.0 × 10−1 128000

16000 1.8 × 10−8 32002 128000 4.1 × 10−2 256000

32000 5.2 × 10−10 64002 256000 5.2 × 10−3 512000

Table 9 Results, with ω = 1.01, for Example 5.2

TTRKNM N4

N Err N Err

150 3.6 × 10−3 600 5.9 × 10−2

300 1.3 × 10−6 1200 8.0 × 10−3

600 2.4 × 10−6 2400 1.0 × 10−3

1200 1.7 × 10−7 4800 1.3 × 10−4

2400 1.1 × 10−8 9600 1.6 × 10−5

Table 10 Results, with ω = 1, e = 0.005, for Example 5.3

TTRKNM N4

N Err N Err

200 1.2 × 10−3 800 1.4 × 100

300 6.2 × 10−5 1600 1.2 × 10−1

600 2.7 × 10−7 3200 1.2 × 10−3

800 2.7 × 10−8 6400 2.1 × 10−4

1600 1.1 × 10−10 12800 6.8 × 10−5

2400 4.3 × 10−12 25600 1.8 × 10−5

3200 4.3 × 10−15 51200 4.6 × 10−6
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Table 11 Results, with ω = 4, for Example 5.4

N4 TTRKNM

NFEs Err NFEs Err

1200 2.5 × 10−1 804 6.6 × 10−5

1600 1.4 × 10−4 1204 1.3 × 10−5

2400 4.1 × 10−5 1604 4.1 × 10−6

5.4 Estimating the frequency

A classical procedure for estimating the frequency is not available, however, some
techniques for estimating the frequency are given in [14, 32]. A preliminary testing
indicates that a good estimate of the frequency can be obtained by demanding that
LT E(2) = 0, and solving for the frequency. In particular, solve for ω given that

h6

1440
(w2y(4)(xn) + y(6)(xn)) = 0,

h6

1440
D4(w2 + D2)y = 0,

where y(j) = dj y

dxj , j = 4, 6 are j th derivative, D = d
dx

is a differential operator, and
w is assumed to be a constant. We estimate the frequency by imposing that

(w2 + D2)y = 0, (21)

and solving for w at x = xn. We implemented this procedure on example 4.2 and
obtained w = 10 which is in agreement with the known frequency. Hence, this
procedure is interesting and will be the subject of our future research.

6 Conclusions

We have proposed a TTRKNM which is self-starting, accurate, and efficient. It is
implemented without the use of predictors and has a moderately large region of sta-
bility. Details of the numerical results are displayed in Tables 1–5. The superiority
of the block implementation over its predictor-corrector implementation is demon-
strated computationally as given in Figs. 2–6. Our future research will be focused on
developing methods equipped with a strategy for estimating unknown frequencies.
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