
Numer Algor (2015) 69:875–891
DOI 10.1007/s11075-014-9930-0

ORIGINAL PAPER

A fast SVD for multilevel block Hankel matrices
with minimal memory storage

Ling Lu ·Wei Xu ·Sanzheng Qiao

Received: 2 January 2014 / Accepted: 6 October 2014 / Published online: 28 October 2014
© Springer Science+Business Media New York 2014

Abstract Motivated by the Cadzow filtering in seismic data processing, this paper
presents a fast SVD method for multilevel block Hankel matrices. A seismic data
presented as a multidimensional array is first transformed into a two dimensional
multilevel block Hankel (MBH) matrix. Then the Lanczos process is applied to
reduce the MBH matrix into a bidiagonal or tridiagonal matrix. Finally, the SVD of
the reduced matrix is computed using the twisted factorization method. To achieve
high efficiency, we propose a novel fast MBH matrix-vector multiplication method
for the Lanczos process. In comparison with existing fast Hankel matrix-vector mul-
tiplication methods, our method applies 1-D, instead of multidimensional, FFT and
requires minimum storage. Moreover, a partial SVD is performed on the reduced
matrix, since complete SVD is not required by the Caszow filtering. Our numerical
experiments show that our fast MBH matrix-vector multiplication method signif-
icantly improves both the computational cost and storage requirement. Our fast
MBH SVD algorithm is particularly efficient for large size multilevel block Hankel
matrices.

This work was supported by the Natural Science Foundation of China (Project No: 11101310) and
Shanghai Key Laboratory of Contemporary Applied Mathematics of Fudan University.

L. Lu · W. Xu (�)
Department of Mathematics, Tongji University,
Shanghai, 200092, People’s Republic of China
e-mail: wdxu@tongji.edu.cn

L. Lu
e-mail: 073413@tongji.edu.cn

S. Qiao
Department of Computing and Software,
McMaster University, Hamilton, Ontario, L8S 4K1, Canada
e-mail: qiao@mcmaster.ca

mailto:wdxu@tongji.edu.cn
mailto:073413@tongji.edu.cn
mailto:qiao@mcmaster.ca


876 Numer Algor (2015) 69:875–891

Keywords Multi-level Block Hankel Matrix · SVD · Cadzow filtering · Seismic
data processing

Mathematics Subject Classification (2010) 15B05 · 15A18 · 65F20 · 65F25 ·
65F50

1 Introduction

A matrix is called Hankel if its entries on each antidiagonal are equal. Hankel
matrices arise in many applications, such as digital information processing, sys-
tem theory and automatic control theory. In particular, in seismic data processing,
Cadzow filtering [5] involves Hankel matrices. Denoising and completion (regular-
ization) are possible by iteratively finding a low-rank approximation that honors
the original observations. Cadzow filtering is one kind of rank-reduction methods
which can be employed to attenuate noise and for prestack seismic data regulariza-
tion. It is equivalent to time series analysis called multichannel singular spectrum
analysis [4, 12]. The application of Cadzow filtering approach for random noise
attenuation on seismic data started from the works of Ulrych et al. [24] on eigenimage
filtering of seismic data.

For one dimensional case, the Cadzow filtering consists of the following three
steps: (1) Convert the original 1D data into the frequency domain and form a Han-
kel matrix; (2) find a low-rank approximation of the Hankel matrix; (3) recover
the signal by averaging the elements on each antidiagonal of the low-rank approx-
imation and transforming into the time domain. Note that the Hankel structure can
be destroyed during step (2) and restored by the averaging process at step (3).
These two steps are performed only once to produce a Hankel matrix, which need
not be the nearest approximation to the original Hankel matrix. There are some
other structure-preserving low-rank approximation methods which guarantee both
structure and “nearest” approximation [7, 15]. However, they require a number of
iterations involving the computation of the singular value decomposition (SVD),
introducing significant additional computational cost. Thus they are impractical for
large data matrices in seismic data processing.

In the absence of noise, the Hankel marix formed by seismic data is rank deficient
[21, 22]. However, due to noise in the observed data, the rank of the data Hankel
matrix is higher than it should be. Cadzow filtering removes the noise by reducing
the rank of the Hankel matrix and then recovers trace values from the rank-reduced
matrix. Thus, seismic data reconstruction and noise attenuation can be posed as a
Hankel matrix rank-reduction problem.

Trickett furthered Cadzow filtering by applying eigenimage filtering to 3D data
frequency slices and later extended F-x Cadzow filtering to F-xy Cadzow filtering by
forming a larger Hankel matrix of Hankel matrices (Level-2 Block Hankel matrix) in
multiple spatial dimensions [21–23]. In 2013, Gao et al. [13] developed a rank reduc-
tion denoising and reconstruction scheme that is used to reconstruct prestack data
that depend on four spatial dimensions by forming a Level-4 Block Toeplitz matrix.
This is often called 5D interpolation because reconstruction algorithms operate on



Numer Algor (2015) 69:875–891 877

volumes that depend on four spatial dimensions and time or frequency. Falkovskiy
et al. [9] introduced an additional dimension for composing the Hankel matrices.
Instead of using only spatial dimensions for composing these matrices, they pro-
posed to add a frequency dimension to create an extended matrix from a series of
frequency slices. This Frequency Extension approach improved filter quality through
better statistics by utilizing these multi-frequency slices. If using Cadzow filtering
with Frequency Extension, we need to construct a Level-5 Block Hankel matrix. In
practice, the seismic signal data are in dozens even hundreds of gigabytes, whose
generated Hankel matrix size is usually in hundreds of thousands. Thus, fast and
memory efficient matrix reduction methods are necessary.

The most stable matrix rank-reduction method is the singular value decomposition
(SVD). The subroutine ZGESDD in LAPACK, adopted by MATLAB function svd,
computes the SVD of a general matrix. But neither the truncated classical SVD nor
the randomized SVD algorithm [14, 16, 17] take advantage of the special structure
of the Multilevel Block Hankel (MBH) matrix arising from Cadzow filtering meth-
ods. A general SVD method, like ZGESDD, is too expensive for large size matrices
occured in seismic data processing. By exploiting the Hankel structure, Xu and Qiao
[27] proposed a fast SVD algorithm for (level-1) Hankel matrices. The fast SVD
algorithm for Hankel matrices in [27] consists of two stages. First, the Hankel matrix
is bidiagonalized through the Lanczos method. When the Hankel matrix is square,
it is tridiagonalized to maintain its symmetry. Second, the SVD of the bidiagonal or
tridiagonal matrix is computed using the twisted factorization method in [2, 26]. It
is well known that the computational cost of the Lanczos method is dominated by
matrix-vector multiplications. Thus, efficient matrix-vector multiplication is crucial.

Motivated by the seismic application, in this paper, we consider the Cadzow fil-
tering for multidimensional data arrays and propose an efficient MBH matrix-vector
multiplication in the Lanczos method. A multidimensional seismic data array is first
transformed into a two-dimensional MBH matrix, then the 1-D FFT [1] is applied
to perform a fast MBH matrix-vector multiplication. In contrast to other fast MBH
matrix-vector multiplication methods employing multidimensional FFTs in [6, 13],
our algorithm only requires 1-D FFT and minimal memory storage. Therefore, the
main contribution of this article is our fast MBH matrix-vector multiplication with
minimal memory storage requirement and its application to fast MBH SVD. In this
paper, we focus on complex MBH matrices arising from the seismic data denoising.
Our method is also applicable to real MBH matrices and multi-level block Teo-
plitz matrices from other applications, for example, the vibration signal measured on
ship or mechanical equipment[29] and discrete dipole approximation (DDA) from
electromagnetic scattering [20].

The rest of the paper is organized as follows. In Section 2, we present an algo-
rithm for constructing a two-dimensional MBH from a signal data array of multiple
spatial dimensions. In Section 3, we propose a fast algorithm for the MBH matrix-
vector multiplication. Then, based on the fast MBH matrix-vector multiplication, the
Lanczos method and the twisted factorization is given in Section 4. In Section 5
we present our numerical experimental results on some random MBH matrices and
the experiments on seismic signal data. Finally, we conclude this paper with some
remarks.



878 Numer Algor (2015) 69:875–891

2 Constructing multilevel block Hankel matrices

In this section, we present our algorithm for constructing a two dimensional MBH
matrix from a signal data array S of multiple spatial dimensions in frequency domain.
The two-dimensional MBH matrix allows us to develop a fast MBH matrix-vector
multiplication using 1-D FFT. For clarity, we present a recursive version of our
algorithm.

In the trivial case when the data signal array S is one dimensional, that is, an n-
by-1 complex column vector [s1 s2 ... sn]T, representing an array of n traces along a
constant-frequency slice. The Cadzow filtering for this signal model can be achieved
by constructing the Hankel matrix [17]:

H =

⎡
⎢⎢⎢⎢⎢⎣

s1 s2 · · · sn−p+1
s2 s3 · · · sn−p+2
s3 s4 · · · sn−p+3
...

... · · · ...

sp sp+1 · · · sn

⎤
⎥⎥⎥⎥⎥⎦

. (2.1)

Apparently, a Hankel matrix is determined by its first column and last row. In this
paper, we set the Hankel matrix as near to square as possible. Specifically, in (2.1),
we choose p = �n/2� + 1, where �a� denotes the largest integer that is not greater
than a. Thus H is either square when n is odd or p-by-(p − 1) when n is even. Then,
given a trace vector S = [s1 s2 ... sn]T, the Hankel matrix H is uniquely determined.
Moreover, a longer main diagonal is desirable in the denoising process, since the rank
of a matrix is limited by the length of its main diagonal.

Now, we consider the general case when S is a data signal array of k-dimensions.
Suppose that the number of traces in the ith dimension is ni , for i = 1, ..., k. Similar
to the one-dimension case, we choose pi = �ni/2� + 1 and set qi = ni − pi + 1.
To reduce the dimension, for each index j , j = 1, ..., nk , in the kth dimension, we
construct the (k − 1)-dimensional arrays

Sj = S(:, ..., :, j), for j = 1, ..., nk.

Then, we apply this procedure recursively to each Sj to obtain a lower level MBH
matrix Hj . Finally, we construct the level-k block Hankel matrix:

H =

⎡
⎢⎢⎢⎣

H1 H2 · · · Hqk

H2 H3 · · · Hqk+1
...

... · · · ...

Hpk
Hpk+1 · · · Hnk

⎤
⎥⎥⎥⎦ . (2.2)

In particular, when k = 2, each block Hi is a (level-1) Hankel matrix and H is a
block Hankel matrix with Hankel blocks (BHHB).



Numer Algor (2015) 69:875–891 879

Algorithm 1 (Constructing 2-D MBH) Given a k-dimensional signal array S, where
the size in the ith dimension is ni . This algorithm constructs the corresponding 2-D
MBH matrix

1. if k = 1
2. Construct the Hankel matrix H in (2.1), where n = n1;
3. return
4. end
5. for i = 1 to nk

6. Construct MBH Hi by applying this algorithm to the (k − 1)-dimensional
array S(:, ..., :, i);
7. Assign Hi to the corresponding antidiagonal of H as shown in (2.2);
8. end

3 Fast MBH matrix-vector multiplication

In this section, we present an efficient method for computing MBH matrix-vector
multiplications. Our method applies 1-D, instead of multidimensional FFTs, and
requires minimal memory by storing only necessary entries in the data matrix.

We describe a recursive version of our method. First, we consider the trivial case
when the dimension of the data array S is one [11]. For example, when n = 3 in
(2.1), we consider the Hankel matrix-vector multiplication

y =
[

s1 s2
s2 s3

] [
x1
x2

]
=

[
s1x1 + s2x2
s2x1 + s3x2

]
. (3.3)

Recall that the Hankel matrix in the above multiplication is determined by the data
array S = [s1 s2 s3]T. Now we construct an n-by-n circulant matrix whose first
column is S:

circ(S) =
⎡
⎣

s1 s3 s2
s2 s1 s3
s3 s2 s1

⎤
⎦ .

Accordingly, we expand the vector x = [x1 x2]T of length q = n−p +1 = 2 into an
n-vector by padding p − 1 = 1 zero on the top of x followed by reversing its entries.
Specifically,

x̂ = [0 x1 x2]T and rev(x̂) = [x2 x1 0]T.

Then the product of the circulant matrix and the vector rev(x̂) is
⎡
⎣

s1 s3 s2
s2 s1 s3
s3 s2 s1

⎤
⎦

⎡
⎣

x2
x1
0

⎤
⎦ =

⎡
⎣

s3x1 + s1x2
s1x1 + s2x2
s2x1 + s3x2

⎤
⎦ = ŷ. (3.4)

The circulant matrix-vector multiplication can be efficiently computed by applying
the 1-D FFT to the first column of the circulant matrix and the vector rev(x̂) [11],
specifically,

ŷ = ifft(fft(S). ∗ fft(rev(x̂))).

From (3.4), we can see that the Hankel matrix-vector product y in (3.3) can be
obtained by extracting the bottom p = 2 elements of the product ŷ in (3.4).



880 Numer Algor (2015) 69:875–891

Now we consider the general case when S is a k-dimensional array, where the
size of the ith dimension is ni . From the previous section, the corresponding MBH
matrix H is (p1 · · · pk)-by-(q1 · · · qk). Thus the size of the vector x in the MBH
matrix-vector multiplication

y = Hx

is q1 · · · qk . To transform this problem into a circulant matrix-vector multiplica-
tion and then apply the 1-D FFT, we vectorize the k-dimensional data array S. The
vectorization operation is recursively defined by

vec(S) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S, if k = 1,⎡
⎢⎣

vec(S[:, ..., :, 1])
...

vec(S[:, ..., :, nk])

⎤
⎥⎦ , otherwise.

Then, in the fast multiplication, the 1-D FFT is applied to the (n1 · · · nk)-vector
vec(S), which is the first column of the circulant matrix. Note that vec(S) contains
only the information from S, no additional zeros.

How is the (q1 · · · qk)-vector x extended to an (n1 · · · nk)-vector to be applied by
the 1-D FFT? In the trivial case when k = 1, the q1-vector x is extended to an n1-
vector x̂ by padding a (p1 − 1)-vector of zeros on the top of x. In the general case,
we partition x into

x =
⎡
⎢⎣

x1
...

xqk

⎤
⎥⎦ ,

where each xi , 1 ≤ i ≤ qk , is a (q1 · · · qk−1)-vector. Thus the problem size is reduced
by one, from k to k−1. So, we apply our operation recursively to each subvector xi to
obtain an extended vector x̂i of dimension n1 · · · nk−1 to obtain an (n1 · · · nk)-vector

x̂ =

⎡
⎢⎢⎢⎣

0
x̂1
...

x̂qk

⎤
⎥⎥⎥⎦ ,

where 0 is a zero vector of size (pk − 1)(n1 · · · nk−1). Then the 1-D FFT is applied
to rev(x̂). In summary, using the notations above, we have the following recursive
operation:

pad(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
0
x

]
, when k = 1,

⎡
⎢⎢⎢⎣

0
pad(x1)

...

pad(xqk
)

⎤
⎥⎥⎥⎦ , otherwise.

However, the result

ŷ = ifft(fft(vec(S)). ∗ fft(rev(pad(x)))



Numer Algor (2015) 69:875–891 881

is an (n1 · · · nk)-vector. How do we extract the MBH matrix-vector product y, which
is a (p1 · · · pk)-vector, from ŷ? In the trivial case when k = 1, we extract the bottom
p1 elements from ŷ. In the general case, we partition

ŷ =

⎡
⎢⎢⎢⎣

ŷ0
ŷ1
...

ŷpk

⎤
⎥⎥⎥⎦ ,

where ŷ0 is a (qk −1)(n1 · · · nk−1)-vector and ŷi , for 1 ≤ i ≤ pk , is an (n1 · · · nk−1)-
vector. We then apply this procedure recursively to ŷi , for i = 1, ..., pk . In summary,
we have the following recursive operation

extract(ŷ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ŷq1:n1 , when k = 1,

⎡
⎢⎣

extract(ŷ1)
...

extract(ŷpk
)

⎤
⎥⎦ , otherwise.

Next, we present the fast MBH matrix-vector multiplication algorithm.

Algorithm 2 (MBH matrix-vector multiplication) Given a multi-dimensional com-
plex data array S this algorithm multiplies the MBH matrix H in (2.2) determined by
S with a vector x with compatible size, using the 1-D FFT and minimal storage

1. ŷ = ifft(fft(vec(S)). ∗ fft(rev(pad(x))));
2. return extract(ŷ).

Alternatively, fast MBH matrix-vector multiplication can be achieved by first
transforming an MBH matrix into a Multilevel Block Circulant (MBC) matrix then
applying multi-dimensional FFT [6, 13]. Zero entries are introduced when trans-
forming an MBH matrix into an MBC matrix, resulting in more storage requirement.
Still another approach is to form a circulant block for each Hankel block at each
level without padding zeros to construct a multilevel block circulant (MBC) matrix.
Then fast MBC matrix-vector multiplication can be computed by applying multi-
dimensional FFT. Although this approach requires the same memory as our method,
it is not as efficient as our method. As we know, the FFT performs most efficiently
on vectors of lengths of power of two. In this approach, the FFT is applied to multiple
vectors at multiple levels. In particular, when the lengths of those multiple vec-
tors are prime numbers, the performance suffers, even the complexity O(N logN)

is invalid, worse than the multi-dimension FFT with zero padding method, which
changes prime numbers to even numbers. In contrast, our method applies 1DFFT to a
single long vector whose length is the product of the lengths of those multiple vectors.
As shown in Table 1, where MDFFTNZ denotes this multi-dimension FFT with-
out zero padding, MDFFT the multi-dimension FFT with zero padding, 1DFFT our
one-dimension FFT method, and MD/1D and MDNZ/1D the ratios, the MDFFTNZ



882 Numer Algor (2015) 69:875–891

Table 1 Running time (in seconds) comparison of the three fast MBH matrix-vetor multiplication
methods: 1DFFT, MDFFT and MDFFTNZ

p1 × p2 × · · · × pk P = Q 1DFFT MDFFT MDFFTNZ MD/1D MDNZ/1D

Case k=2

35 × 119 4165 0.0047 0.0047 0.0094 1.00 2.00

68 × 96 6528 0.0109 0.0156 0.0281 1.43 2.57

40 × 100 4000 0.0062 0.0109 0.0094 1.75 1.50

75 × 95 7125 0.0094 0.0172 0.0156 1.83 1.67

Case k=4

7 × 3 × 21 × 7 3087 0.014 0.0203 0.0296 1.44 2.11

7 × 19 × 7 × 7 6517 0.0343 0.0374 0.0640 1.09 1.86

10 × 15 × 5 × 6 4500 0.0218 0.0265 0.0281 1.21 1.29

16 × 12 × 5 × 8 7680 0.0452 0.0655 0.0577 1.45 1.28

Case k=5

3 × 7 × 5 × 11 × 3 3465 0.0125 0.0390 0.0406 3.12 3.25

7 × 10 × 3 × 5 × 7 7350 0.0562 0.1045 0.1061 1.86 1.89

5 × 6 × 8 × 3 × 5 3600 0.0156 0.0546 0.0593 3.50 3.80

5 × 7 × 6 × 9 × 4 7560 0.0624 0.1186 0.1014 1.90 1.63

method performs worse than the MDFFT method when the vector lengths pi are
prime numbers. Our method always outperforms both methods.

Table 2 compares three matrix-vector multiplication methods on storage and
floating-point operation (flop) counts. The first column lists the the methods in com-
parison: 1DFFT is our fast MBH matrix-vector multiplication method; MDFFT is
the fast MBH matrix-vector multiplication using multidimensional FFT [6]; MAT-
LAB is the Matlab general matrix-vector multiplication. The second column shows
the major variables in the methods in the first column, where x̂, ŷ, S̄, x̄, and ȳ
are extended vectors from S, x, and y. The third column “Sizes” shows the sizes
of the corresponding variables in the second column, where N = n1n2 · · · nk ,
M = (n1 + 1)(n2 + 1) · · · (nk + 1), P = p1p2 · · · pk and Q = q1q2 · · · qk . Our
1DFFT method is the most efficient method requiring 3N + P + Q storage and

Table 2 Complexity comparison of the three methods for MBH matrix-vector multiplication on storage
and floating-point operation (flop) counts

Method Variables Sizes Storage Flops

1DFFT S, x, y, x̂, ŷ N,Q,P,N,N 3N + P + Q 15N log2 N + 6N

MDFFT S̄, x, y, x̄, ȳ M,Q,P,M,M 3M + P + Q 15M log2 M + 6M

MATLAB H, x, y PQ,Q,P PQ + P + Q 8PQ − P − Q



Numer Algor (2015) 69:875–891 883

15N log2 N + 6N flops. Specifically, the first column of the circulant matrix in our
method contains the information entirely from the data S. Thus, the storage require-
ment of our method is minimal. Our experimental results presented in Section 5
confirms the theoretical comparison.

Table 3 depicts the calculated storage requirements of the three methods for
various sizes and levels of MBH matrices, where MD/1D represents the ratio of
MDFFT/1DFFT and MAT/1D is the ratio of MATLAB/1DFFT. The table shows that
as the level k increases our 1DFFT method utilizes memory more efficiently than the
MDFFT method.

4 Lanczos reduction and twisted factorization

In this section, we describe the application of our fast MBH matrix-vector multipli-
cation to the fast MBH SVD. The first stage of our fast SVD algorithm is to reduce
a complex MBH matrix into a bidiagonal matrix using the Lanczos method. When
the MBH matrix is square, it is reduced to a complex symmetric tridiagonal matrix.
For simplicity, we only describe the Lanczos bidiagonalization process for complex
rectangle MBH matrices. The tridiagonalization process is analogous to the bidiag-
onalization. The second stage is to compute the SVD of the bidiagonal/tridiagonal
matrix using the twisted factorization method. We also only describe the second stage
for bidiagonal matrices.

Given an m × n, m ≥ n, complex symmetric matrix A, we can find an m × n

matrix U with orthonormal columns and an n × n unitary matrix V such that

UHAV = B, (4.5)

Table 3 Storage comparison of three methods for MBH matrix-vector multiplication. The storage here
means the quantity of complex numbers

p1 × · · · × pk P = Q 1DFFT MDFFT MATLAB MD/1D MAT/1D

Case k=2

512 × 25 12,800 175,981 179,200 163,865,600 1.02 931.16

512 × 40 20,480 283,411 286,720 419,471,360 1.01 1480.08

200 × 128 25,600 356,435 358,400 655,411,200 1.01 1838.80

Case k=4

8 × 64 × 5 × 5 12,800 488,515 640,000 163,865,600 1.31 335.44

16 × 32 × 8 × 5 20,480 831,925 1,024,000 419,471,360 1.23 504.22

5 × 40 × 16 × 8 25,600 1,043,045 1,280,000 655,411,200 1.23 628.36

Case k=5

8 × 8 × 8 × 5 × 5 12,800 845,725 1,254,400 163,865,600 1.48 193.76

16 × 8 × 4 × 8 × 5 20,480 1,359,235 2,007,040 419,471,360 1.48 308.61

5 × 5 × 8 × 16 × 8 25,600 1,746,125 2,508,800 655,411,200 1.44 375.35



884 Numer Algor (2015) 69:875–891

where UH denotes the Hermitian of U and B is a real bidiagonal matrix:

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

a1 b1
a2 b2

. . .
. . .

. . . bn−1
an

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Rewriting (4.5) as
AV = UB, (4.6)

and
AHU = V BT (4.7)

and comparing the j th columns of both sides of (4.6) and (4.7), we have

Avj = ajuj + bj−1uj−1,

and
AHuj = ajvj + bjvj+1,

for j = 1, . . . , n, which leads to the inner Lanczos recursion,

rj = ajuj = Avj − bj−1uj−1, (4.8)

pj = bjvj+1 = AHuj − ajvj , (4.9)
Because of the orthonormality of the columns of U and V , we have aj = ‖rj‖2,
bj = ‖pj‖2uj = rj /aj , and vj+1 = pj /bj Thus, we have the following algorithm
for the Lanczos bidiagonalization of general complex matrices.

Algorithm 3 (Lanczos bidiagonalization) Given a starting vector r ∈ C
n and a com-

plex matrix A ∈ C
m×n, m ≥ n, this algorithm computes the diagonals of the real

square upper bidiagonal matrix B in (4.5) and U , V such that A = UBV H.[2]

1. u0 = 0; b0 = 1; p = r/‖r‖2;
2. for j = 1 : n

3. vj = p/bj−1;
4. r = Avj − bj−1uj−1;
5. aj = ‖r‖2;
6. uj = r/aj ;
7. if j < n.
8. p = AHuj − ajvj ;
9. bj = ‖p‖2;
10. if bj = 0, quit; end
11. end
12. end

The Lanczos bidiagonalization described above suffers from loss of orthogo-
nality when computing U and V due to the rounding errors. So, a selective re-
orthogonalizion technique based on estimates of the orthogonalities of the orthornor-
mal vectors is proposed in [18]. Compared to the complete orthogonalization in [11],



Numer Algor (2015) 69:875–891 885

the partial orthogonalization is more economic and can be extended to general com-
plex matrices as well. In our implementation, we adopt the Lanczos bidiagonalization
with modified partial orthogonalization described in [18].

For general MBH matrices, the Lanczos bidiagonalization Algorithm 3 can be
accelerated by carrying out the matrix vector multiplications in line 4 and line 8
using the efficient MBH matrix-vector multiplication descibed in Section 1. To min-
imize the storage requirement, the input matrix is the signal matrix S, rather than the
full MBH matrix. Moreover, it is unnecessary to construct vec(S) and apply the 1-
D FFT to vec(S) each time when computing the product. In practice, the vec(S) and
fft(vec(S)) can be pre-computed outside the for loop in line 2 of Algorithm 3 when
the algorithm is initiated. For square MBH matrices, the algorithm for the Lanczos
tridiagonalization is similar to Algorithm 3. See [18] for details.

After the real bidiagonal matrix B is computed by the Lanczos method in the first
stage, the singular values of B are the square roots of the eigenvalues of BTB, which
can be computed in O(n2) flops by the QR method for eigenvalues only. Then the
right singular vectors of B are the eigenvectors of BTB, which can be obtained by
the twisted factorization method [8] in O(n2). Then the left singular vectors can be
obtained from its right singular vectors.

The matrix rank reduction in seismic data processing requires only the singular
vectors corresponding to the singular values that are larger than a predetermined tol-
erance, instead of a complete set of singular vectors. Thus, the cost of our proposed
method, which is based on the Lanczos process, can be further reduced comparing
with the MATLAB svd function, especially when the rank after reduction is small.

5 Numerical experiments and seismic examples

In this section, we present our experimental results on the matrix-vector multipli-
cation methods, the SVD methods, and Cadzow filtering. The three matrix-vector
multiplication methods in comparison are: our fast method (1DFFT); the fast
MBH matrix-vector multiplication using multi-dimensional FFT (MDFFT); general
matrix-vector multiplication in MATLAB. The four SVD algorithms in compari-
son are: our method (1DFFT); the multidimensional FFT Lanczos process combined
with the Twisted factorization method (MDFFT); Lanczos process with general
matrix-vector multiplication combined with the Twisted factorization (LT); MAT-
LAB built-in svd function, which is implemented by ZGESVD in LAPACK [3]. The
Cadzow filtering examples include simulated and real seismic data. All experiments
were carried out on a server with an AMD Phenom X6 1090T 3.2 GHz processor and
16GB RAM running MATLAB 7.8 under Windows 7.

In our experiments, the data were generated as arrays of complex entries with
random imaginary and real parts normally distributed with zero mean and unit vari-
ance. The MBH matrices were constructed by the generated random data arrays. We
compare the whole SVD other than the partial SVD because the suitable rank of
MBH matrix in Cadzow filtering depends on every singular value. All the blocks
are square, that is, pi = qi , for i = 1, ..., k. Thus P = Q. Each running time
of matrix-vector multiplication in Table 4 is an average of ten random examples.



886 Numer Algor (2015) 69:875–891

Table 4 Running time (in seconds) comparison of the three MBH matrix-vetor multiplication methods:
1DFFT, MDFFT and MATLAB

p1 × p2 × · · · × pk P = Q 1DFFT MDFFT MATLAB MD/1D MAT/1D

Case k=2

512 × 25 12800 0.019 0.025 0.830 1.32 43.68

512 × 40 20480 0.051 0.086 3.655 1.69 71.67

200 × 128 25600 0.234 0.342 3.643 1.46 15.57

Case k=4

8 × 64 × 5 × 5 12800 0.072 0.114 0.838 1.58 11.64

16 × 32 × 8 × 5 20480 0.134 0.192 4.051 1.43 30.23

5 × 40 × 16 × 8 25600 0.459 0.877 4.097 1.91 8.93

Case k=5

8 × 8 × 8 × 5 × 5 12800 0.106 0.236 0.792 2.22 7.47

16 × 8 × 4 × 8 × 5 20480 0.246 0.390 3.693 1.58 14.98

5 × 5 × 8 × 16 × 8 25600 0.568 1.323 4.228 2.33 7.45

Each running time of the SVD in Table 5 and Table 6 is an average of two random
examples.

Table 4 shows the running times of the three matrix-vector multiplication meth-
ods: 1DFFT, MDFFT, and MATLAB where MD/1D is the ratio of MDFFT/1DFFT
and MAT/1D is the ratio of MATLAB/1DFFT. As expected, when the problem size
increases, the speedup of our proposed method becomes significant. For the same
size, as the level k increases, the ratio MAT/1D decreases, since the matrix is less
structured. However, for the same size, as k increases, the ratioMD/1D also increases,
since the efficiency of 1DFFT over MDFFT becomes more prominent. In any case,
1DFFT is more efficient than MDFFT.

Table 5 compares the two SVD methods: Lanczos with 1DFFT combined with the
Twisted method and Matlab general SVD method. It lists the running times as well
as the errors O-Error and F-Error defined by

O − Error = ‖I − UHU‖F /P 2,

Table 5 Comparison of the computational time and accuracy of MATLAB built-in svd with our proposed
fast SVD algorithm on square MBH matrices

p1 × p2 × p3 P = Q MATLAB(s)
1DFFT

MATLAB/1DFFT
Time(s) O-Error F-Error

16 × 10 × 12 1920 275.9 128.4 1.24e-14 2.221e-13 2.15

16 × 10 × 20 3200 1704.8 520.9 1.86e-14 2.808e-13 3.27

16 × 15 × 20 4800 4991.5 1488.7 3.17e-15 1.484e-13 3.35

16 × 20 × 20 6400 30872.0 3423.0 6.68e-15 1.325e-13 9.02



Numer Algor (2015) 69:875–891 887

F − Error = ‖H − UDUT‖F /P 2,

for an MBH matrix H ∈ C
P×Q, where matrix U and D are the singular vector

matrix and the diagonal singular value matrix of H , respectively, and matrix I is the
identity matrix. It shows that our fast MBH SVD algorithm is accurate. However, the
speedup MATLAB/1DFFT is not as dramatic as those in Table 4, since matrix-vector
multiplication is only a part of the SVD.

The Matlab SVD method is very different from our fast MBH SVD, which is a
combination of the Lancosz process and the Twisted method. So, we compared three
similar Lancosz-Twisted combination SVD methods. They differ only in the matrix-
vector multiplication in the Lancosz process. Table 6 lists their running times, where
LT uses general matrix-vector multiplication, MDFFT uses MDFFT in MBH matrix-
vector multiplication, and 1DFFT uses 1D FFT inMBHmatrix-vector multiplication.
LT/1D is the ratio LT/1DFFT and MD/1D is the ratio MDFFT/1DFFT. As shown in
Table 6, for the same k the ratio LT/1D stays about the same and the ratio MD/1D
decreases as the matrix size increases. For the same size, the ratio LT/1D decreases
as the level k increases, since the matrix is less structured, whereas the ratio MD/1D
increases as k increases, since the efficiency of 1D over MD is more prominent for
larger k.

Finally, two seismic examples are investigated: simulated and practical. It is vital
to determine the optimal rank of the MBH matrix in the seismic denoising. There are
several approaches to rank determination. A common approach is to set a threshold
based on the inflection point of singular value curve or singular entropy increment
curve. In 2005, Sanliturk and Cakar presented a method based on the SVD of mea-
sured frequency response functions (FRFs)[19]. In our examples, we adopt the recent
method [29] for the determination of the optimal rank according to the relationship
between the extremum points of the noise elimination signal and the rank of the
matrix. In the simulated example, the dimension of the original signal is three. We
extracted a segment of the data to maintain a constant frequency and performed the
F-xy Cadzow filtering [21] with the BHHB matrix. Figure 1 shows an inline section

Table 6 Running time (in seconds) comparison of the three SVD methods: LTSVD, MDFFT and 1DFFT

p1 × p2 × · · · × pk P = Q LT MDFFT 1DFFT LT/1D MD/1D

Case k=4

4 × 3 × 6 × 30 2160 196 182 157 1.25 1.16

5 × 8 × 12 × 10 4800 1862 1445 1336 1.39 1.08

8 × 6 × 6 × 25 7200 5829 4316 4102 1.42 1.05

12 × 16 × 12 × 4 9216 11741 8766 8425 1.39 1.04

Case k=5

4 × 3 × 6 × 6 × 5 2160 196 212 141 1.39 1.50

5 × 5 × 4 × 8 × 6 4800 1843 1672 1285 1.43 1.30

8 × 6 × 6 × 5 × 5 7200 5666 4836 4160 1.36 1.16

8 × 8 × 9 × 4 × 4 9216 12280 9733 8950 1.37 1.09



888 Numer Algor (2015) 69:875–891

Fig. 1 The inline section of a 99-trace by 49-trace stacked volume with 1 event of Ricker wavelet is
shown, having distinct dips in both spatial directions. The original signal is displayed in a. The noisy
signal added by random noise is shown in b. The F-xy Cadzow filtering on the corresponding 1250×1250
BHHB matrix with rank Rk = 5 removes most of the noise and preserves much of the signal. Figure c
shows the signal recovered from b by the F-xy Cadzow filtering. The noise removed from b is shown in d

of a 99-trace by 49-trace stacked volume with 1 event of Ricker wavelet, having
distinct dips in both spatial directions. The original signal is displayed in Fig. 1a.
Random noise was added to the signal. The noisy signal is shown in Fig. 1b. The
F-xy Cadzow filtering on the corresponding 1250 × 1250 BHHB matrix with rank
Rk = 5 removed most of the noise and preserved much of the signal. Figure 1c
shows the signal recovered from Fig. 1b by the F-xy Cadzow filtering. The noise
removed from Fig. 1b is shown in Fig. 1d. The comparison of the four pictures in
Fig. 1 demonstrates the effectiveness of the Cadzow filtering with our fast SVD algo-
rithms for BHHB matrices. The practical example comes from a geological survey.
It is a real seismic signal of 349-trace by 69-trace shown in Fig. 2. We formed a
6125 × 6125 BHHB matrix and performed the F-xy Cadzow filtering with three dif-
ferent ranks: Rk = 200, Rk = 500, Rk = 800. The results are shown in Figs. 2b, 2c



Numer Algor (2015) 69:875–891 889

1000 2000 3000 4000 5000 6000
0

2

4

6

8

10

12
x 10

13

Singular Value Number

S
in

gu
la

r 
V

al
ue

0 200 400 600 800 1000
0

2

4

6

8

10

12
x 10

13

Singular Value Number

S
in

gu
la

r 
V

al
ue

Fig. 2 A real seismic signal of 349-trace by 69-trace which comes from a geological survey is shown. We
formed a 6125× 6125 BHHB matrix and performed the F-xy Cadzow filtering with three different ranks:
Rk = 200, Rk = 500, Rk = 800. The results are listed in subfigures b, c and d. Subfigure e displays all
the singular values of the BHHB matrix and subfigure f shows the 1000 largest singular values



890 Numer Algor (2015) 69:875–891

and 2d. A plenty of noise is removed by the F-xy Cadzow filtering and the useful
seismic signals are captured. Fig. 2e displays all the singular values of the BHHB
matrix and Fig. 2f shows the 1000 largest singular values. The singular value distri-
bution suggests Rk = 200 is a good choice. The main signals at the right-top and
right-bottom are present but the left-bottom part is absent in Fig. 2 b when Rk = 200.
By increasing the rank Rk to 500 and 800, the left-bottom part is present in Figs. 2c
and 2d, however, more noise is also included. Because the signal data are from
real survey, not artiticial simulation, the left-bottom part may be signal or noise. In
practice, a geological domain expert is required to determine the rank.

6 Conclusion

In this paper, we propose a fast MBH matrix-vector multiplication method and its
application to a fast MBH SVD algorithm. Our fast MBH matrix-vector multipli-
cation method uses the 1-D FFT and requires minimum memory. It is particularly
efficient in both computation and storage when the size of the MBH matrix is large
and its level is high.

References

1. Barrowes, B.E., Teixeira, F.L., Kong, J.A.: Fast algorithm for matrix-vector multiply of asymmetric
multilevel block-toeplitz matrices. IEEE Antennas Propag. Soc. Int. Symp. 4, 630–633 (2001)

2. Browne, K., Qiao, S., Wei, Y.: A lanczos bidiagonalization algorithm for hankel matrices. Linear
Algebra Appl. 430, 1531–1543 (2009)

3. Barker, V.A., Blackford, L.S., Dongarra, J., Du Croz, J., Hammarling, S., Marinova, M., Wásniewski,
J., Yalamov, P.: LAPACK95 Users’ Guide”, SIAM. Philadelphia, Pennsylvania (2001)

4. Broomhead, D., King, G.: Extracting qualitative dynamics from experimental data. Phys. D Nonlinear
Phenom. 20(2), 217–236 (1986)

5. Cadzow, J.: Signal enhancement a composite property mapping algorithm. IEEE Trans. Acoust.,
Speech, Sig. Process. 36, 49–62 (1988)

6. Chan, R.H., Jin, X.: An Introduction to Iterative Toeplitz Solvers, 3rd edition, SIAM. Philadelphia,
Pennsylvania (2007)

7. Chu, M.T., Funderlic, R.E., Plemmons, R.J.: Structured low rank approximation. Linear Algebra Appl.
366, 157–172 (2003)

8. Dhillon, I.S.: A new O(n2) algorithm for the symmetric tridiagonal eigenvalue/eigenvector prob-
lem,PhD thesis, University of California, Berkeley, CA (1997)

9. Falkovskiy, A., Floreani, E., Schlosser, G.: FX Cadzow / SSA random noise filter: frequency
extension,2011 CSPG CSEG CWLS Convention, pp. 1–8 (2011)

10. Fernando, F.V.: On computing an eigenvector of a tridiagonal matrix. SIAM Matrix Anal. Appl. 18,
1013–1034 (1997)

11. Golub, G.H., Van Loan, C.F. Matrix Computations, 3rd edition. Johns Hopkins University Press,
Baltimore, MD (2009)

12. Ghil, M., Allen, M., Dettinger, M., Ide, K., Kondrashov, D., Mann, M., Robertson, A., Saunders, A.,
Tian, Y., Varadi, F., Yiou, P.: Advance spectral methods for climatic time series. Rev. Geophys. 40,
1–41 (2002)

13. Gao, J., Sacchi, M.D., Chen, X.: A fast reduced-rank interpolation method for prestack seismic
volumes that depend on four spatial dimensions. Geophysics 78(1), V21–V30 (2013)

14. Liberty, E., Woolfe, F., Martinsson, P.G., Rokhlin, V., Tygerts, M.: Randomized algorithms for the
low-rank approximation of matrices. Proc. Natl. Acad. Sci. USA 104(51), 20167–20172 (2007)



Numer Algor (2015) 69:875–891 891

15. Markovsky, I.: Low rank approximation: algorithms, implementation, applications. Springer (2012)
16. Oropeza, V.E., Sacchi, M.D.: A randomized SVD for Multichannel Singular Spectrum Analysis

(MSSA) noise attenuation,JSEG Denver 2010 Annual Meeting, pp. 3539–3544 (2010)
17. Oropeza, V.E., Sacchi, M.D.: Simultaneous seismic data denoising and reconstruction via multichan-

nel singular spectrum analysis. Geophysics 76(3), 25–32 (2011)
18. Qiao, S., Liu, G., Xu, W.: Block lanczos tridiagonalization of complex symmetric matrices,Optics &

Photonics 2005, International Society for Optics and Photonics, 591010-591010 (2005)
19. Sanliturk, K.Y., Cakar, O.: Noise elimination from measured frequency response functions. Mech.

Syst. Signal Process. 19(3), 615–631 (2005)
20. Tsang, L., Ding, K.H., Shih, S.E., Kong, J.A.: Scattering of electromagnetic waves from dense dis-

tributions of spheroidal particles based on Monte Carlo simulations. J. Opt. Soc. Amer. A 15, 2660–
2669 (1998)

21. Trickeett, S.: F-xy Cadzow noise suppression,CSPG CSEG CWLS Convention, pp. 303–306 (2008)
22. Trickeett, S., Burroughs, L.: Prestack rank-reduction-based noise suppression. CSEG Recorder 34,

3193–3196 (2009)
23. Trickeett, S., Burroughs, L., Milton, A., Walton, L., Dack, R.: Rank-reduction-based trace interpola-

tion, 81st Annual International Meeting, SEG,Expanded Abstracts, pp. 1989–1992 (2010)
24. Ulrych, T., Freire, S., Siston, P.: Eigenimage Processing of Seismic Sections. SEG Extended Abstr. 7,

1261 (1988)
25. van Loan, C.: Computational frameworks for the fast Fourier transform, SIAM. Pennsylvania,

Philadelphia (1992)
26. Xu, W., Qiao, S.: A twisted factorization method for symmetric SVD of a complex symmetric

tridiagonal matrix. Numer. Linear Algebra Appl. 16, 801–815 (2009)
27. Xu, W., Qiao, S.: A fast SVD algorithm for square hankel matrices. Linear Algebra Appl. 428, 550–

563 (2008)
28. Zhang, H., Thurber, C.H.: Estimating the model resolution matrix for large seismic tomography prob-

lems based on Lanczos bidiagonalization with partial reorthogonalization. Geophys. J. Int. 170, 337–
345 (2007)

29. Zhang, L., Peng, W., Yuan, C.: An improved method for noise reduction based on singular value
decomposition. Chin. J. Ship Res. 7(5), 83–88 (2012)


	A fast SVD for multilevel block Hankel matrices with minimal memory storage
	Abstract
	Introduction
	Constructing multilevel block Hankel matrices
	Fast MBH matrix-vector multiplication
	Lanczos reduction and twisted factorization
	Numerical experiments and seismic examples
	Conclusion
	References


