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Abstract In this paper, we propose a Barzilai-Borwein (BB) type method for mini-
mizing the sum of a smooth function and a convex but possibly nonsmooth function.
At each iteration, our method minimizes an approximation function of the objective
and takes the difference between the minimizer and the current iteration as the search
direction. A nonmonotone strategy is employed for determining the step length to
accelerate the convergence process. We show convergence of our method to a sta-
tionary point for nonconvex functions. Consequently, when the objective function is
convex, the proposed method converges to a global solution. We establish sublinear
convergence of our method when the objective function is convex. Moreover, when
the objective function is strongly convex the convergence rate is R-linear. Preliminary
numerical experiments show that the proposed method is promising.

Keywords Barzilai-Borwein method · Linear convergence · Nonmonotone · �2-�1
minimization

1 Introduction

In this paper we consider the following minimization problem

min
x∈Rn

φ(x) := f (x) + h(x), (1)

where f : Rn → R is a smooth function with a Lipschitz constant L > 0 for the
gradient:

‖∇f (x) − ∇f (y)‖ ≤ L‖x − y‖, ∀ x, y ∈ R
n,
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and h : R
n → R usually called the regularizer function is continuous convex but

may be nonsmooth.
Problems of the form (1) can be found in many important applications. For

example, the �2-�1 problem [15] arising in sparse reconstruction:

min
x∈Rn

1

2
‖Ax − b‖2

2 + τ‖x‖1, (2)

where A ∈ R
m×n, b ∈ R

m, and τ > 0. It is well known that the sparsest solution
of underdetermined linear system Ax = b can be obtained by (2) under suitable
conditions [10–12, 22].

Algorithms for solving problems of the form (1) have been studied extensively in
recent literature. To name a few of them, the authors of [34] proposed the interior-
point algorithm �1-�s for (2). Hale et al. [31] developed the fixed point continuation
(FPC) method to solve (2) and showed their method converges linearly under proper
conditions on the step length. Nesterov [37], and Beck and Teboulle [2] proposed
the iterative shrinkage thresholding algorithm (ISTA) and fast iterative shrinkage
thresholding algorithm (FISTA) independently. They proved that the number of iter-
ations required by ISTA and FISTA to get an ε-optimal solution to problem (1) are
respectively O(1/ε) and O(1/ε1/2). Bredies and Lorenz [9] established the linear
convergence of the ISTA for solving linear operator equations in infinite dimensional
Hilbert spaces. However, the aforementioned methods suffer from one or two of the
following problems: require a given Lipschitz constant L or adaptively estimate it at
the cost of extra gradient computations; limit the step length to be smaller than a value
associated with L during the iterative process. Gonzaga and Karas [26] proposed an
algorithm that eliminates the usage of L by an inexact line search and designed an
adaptive procedure to estimate a strong convexity constant for the function. Wright
et al. [41] developed the sparse reconstruction by separable approximation (SpaRSA)
algorithm which uses the Barzilai-Borwein (BB) stepsize [1] with safeguards com-
bined with a nonmonotone line search strategy. The combination of the BB stepsize
with safeguards and a nonmonotone line search strategy was originally introduced by
Raydan in [38] for unconstrained optimization, and by Birgin et al. in [6] for convex
constrained optimization; see also [7] for a complete convergence analysis. Recently,
Hager et al. [30] showed that SpaRSA converges sublinearly for general convex func-
tions and the rate is R-linear when φ is strongly convex. For more methods, see [3,
16, 23, 35, 40, 42] and references therein.

In this paper, we propose a new method independent of the Lipschitz constant L

for solving problems of the form (1). Particularly, at each iteration, our method mini-
mizes an approximation function of φ and takes the difference between the minimizer
and the current iteration as the search direction. The nonmonotone strategy in [27]
is employed for determining the step length to accelerate the convergence process.
We prove that all accumulation points of the sequence generated by our method are
stationary points, and therefore global solutions of (1) when the objective function is
convex. Moreover, if φ is convex, then the proposed method converges sublinearly;
if φ is strongly convex, then the rate of convergence is R-linear.

The rest of the paper is organized as follows. In Section 2, we present our method
for solving (1) formally. In Section 3, we prove global convergence result as well
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as the rate of convergence of our method. Finally, we present some preliminary
numerical results for problems of the form (1) in Section 4.

Notations. Throughout this paper 〈x, y〉 = xT y denotes the inner product of two
vectors x, y ∈ R

n. ‖ · ‖p denotes the standard �p norm. ‖ · ‖ denotes the Euclidean
norm. ∇f (x) denotes the gradient of f (x).

2 Algorithm

In this section, we present our method for solving problems of the form (1).
Our approach updates the iterate by

xk+1 = xk + λkd
k, (3)

where λk ∈ (0, 1] is the step length decided by some search scheme and dk is the
search direction. Since φ is possibly nonsmooth, we cannot take the gradient direction
as the search direction. Motivated by the SpaRSA, we calculate the search direc-
tion by making use of the minimizer of an approximation function of φ(x). More
precisely, the search direction dk is given by

dk = pαk

(
xk
)

− xk, (4)

where αk > 0 and pαk
(xk) is a minimizer of

min
z

Qαk

(
z, xk
)

:= f
(
xk
)

+
〈
z − xk, ∇f (xk)

〉
+ αk

2
‖z − xk‖2 + h(z), (5)

In the next section, we will see that dk is a decent direction.
Notice that h is convex, then Qαk

(·, xk) is strongly convex. Therefore, problem
(5) has a unique minimizer. In addition, by the definition of Q in (5), we have

min
z

Qαk

(
z, xk
)

⇔ min
z

1

2αk

∥∥∥∇f
(
xk
) ∥∥∥2 +

〈
z − xk, ∇f (xk)

〉
+ αk

2
‖z − xk‖2 + h(z)

⇔ min
z

αk

2

∥∥∥∥z −
(

xk − 1

αk

∇f (xk)

)∥∥∥∥
2

+ h(z)

⇔ min
z

1

2
‖z − uk‖2 + 1

αk

h(z), (6)

where

uk = xk − 1

αk

∇f
(
xk
)

.

We are especially interested in the case that (5) or (6) can be easily solved. For
instance, when h(x) = τ‖x‖1 for some τ > 0, the unique minimizer pαk

(xk) of (6)
can be obtained by solving the following n problems:

min
t∈R

1

2
|t − uk

i | + τ

αk

|t |, i = 1, 2, . . . , n,
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whose exact minimizer is given by

t∗ =

⎧⎪⎨
⎪⎩

uk
i − τ

αk
, if uk

i > τ
αk

,
0, if |uk

i | < τ
αk

,
uk

i + τ
αk

, if uk
i < − τ

αk
,

i = 1, 2, . . . , n.

That is,

t∗ = soft

(
uk

i ,
τ

αk

)
, i = 1, 2, . . . , n,

where for u ∈ R and a ∈ R, soft(u, a) = sign(u) max{|u| − a, 0}, which is often
referred to as the soft-threshold [21] or wavelet shrinkage (see [13], for example)
operator. When h(x) = τ‖x‖p

p, the closed form solution of (6) is known for p =
4/3, 3/2, 2 [14, 16].

The setting of αk will affect the performance of the algorithm significantly. Barzi-
lai and Borwein [1] suggested the following stepsize for gradient methods to solve
unconstrained problems:

α+ = arg min
α

‖αsk−1 − yk−1‖2 =
〈
sk−1, yk−1

〉
〈
sk−1, sk−1

〉 , (7)

where sk−1 = xk − xk−1 and yk−1 = ∇f (xk) − ∇f (xk−1). Due to its simplicity
and efficiency, the BB approach and its variants have received considerable atten-
tion, see [6–8, 17, 18, 20, 24, 33] and references therein. Recently, Hale et al. [32]
used the BB stepsize to improve the performance of the FPC approach. Figueiredo
et al. [23] formulated problem (2) as a quadratic program and employed the spectral
projected gradient method introduced in [6], which combines the BB stepsize with
the gradient projection strategy and nonmonotone scheme [27], to solve it. Motivated
by these successful applications, we use the formula (7) with safeguards to ensure
convergence, that is,

αk = min {αmax, max{αmin, α+}} , (8)

where αmax > αmin > 0.
As we know, the performance of BB-type methods benefits from the nonmonotone

line search techniques [19, 28, 38] in which the objective function is required to be
slightly smaller than the largest objective function value in some recent past iterates.
Similar as [41], we use the following acceptance criterion to determine the step length
λk:

φ
(
xk + λdk

)
≤ max

0≤j≤min{k,M−1}
φ
(
xk−j
)

− γ

2
λαk‖dk‖2, (9)

where M is a fixed integer and γ ∈ (0, 1) is a constant.
Our method for solving (1) is summarized in Algorithm 1.

Remark 1 Algorithm 1 is closely related to SpaRSA but has two differences in updat-
ing iterates: (i) Algorithm 1 solves the subproblem (6) only once while SpaRSA has
to solve it for each trial point on each line search; (ii) Algorithm 1 decreases the step
length λk to meet the acceptance criterion (9) while SpaRSA increases αk until the
solution to the subproblem (6) satisfies an acceptance criterion similar as (9).
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Algorithm 1 BB type method for solving (1)

Choose step factor ρ ∈ (0, 1) and constants αmax > αmin > 0;
Initialize iteration counter k = 1, α1 = 1; choose initial guess x1;
repeat

λ ← 1;
while

λ does not satisfies (9) do
λ ← ρλ;

end
λk ← λ;
Compute xk+1 by (3);
Compute αk+1 by (8);

until stopping criterion is satisfied.
k ← k + 1;

Let ∂h(x) be the subdifferential at x, the set of vectors s ∈ R
n satisfying

h(z) ≥ h(x) + 〈s, z − x〉, ∀ z ∈ R
n.

By the first-order optimality conditions for (1), we know that a point x∗ is a stationary
point of (1) if

0 ∈ ∇f (x∗) + ∂h(x∗).

It is not difficult to show that for any given α > 0, if ‖pα(x∗) − x∗‖ = 0, then
x∗ is a stationary point of (1). Therefore, a direct and simple termination criteria for
Algorithm 1 is

‖dk‖∞ ≤ ε, (10)

where ε the error tolerance. We can also make use of the relative change in objective
value at the last step, that is,

∣∣∣φ
(
xk+1
)

− φ
(
xk
) ∣∣∣≤ εφ

(
xk
)

. (11)

For other stopping criteria, see [41].

3 Convergence analysis

3.1 Global convergence analysis

Using the same argument as the one in Lemma 2 of [41], we have the following result.

Lemma 1 Suppose {xk} is generated by Algorithm 1 and x∗ is not a stationary point
of (1). Then for any subsequence {xkt }t=1,2,... with lim

t→∞ xkt = x∗, there is ε(αmax) >

0 such that ‖dkt ‖ ≥ ε(αmax) for all t sufficiently large.
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Let l(k) be an integer such that k − min{k, M − 1} ≤ l(k) ≤ k and

φ
(
xl(k)
)

= max
0≤j≤min{k,M−1}

φ
(
xk−j
)

. (12)

Next lemma shows that Algorithm 1 is well defined. In addition, the step length λk is
bounded away from 0 for k ≥ 1.

Lemma 2 Let {xk} be a sequence generated by Algorithm 1. If xk is not a stationary
point of (1), then there exists a constant λ′ ∈ (0, 1] such that for any λ ∈ (0, λ′],

φ
(
xk + λdk

)
≤ φ
(
xl(k)
)

− γ

2
λαk‖dk‖2. (13)

Moreover, if λk satisfies the inequality (13), then

λk ≥ min

{
1,

ρ(1 − γ )αmin

L

}
:= λ̄. (14)

Proof By Lipschitz continuity of ∇f and convexity of h, we have

φ
(
xk + λdk

)
− φ
(
xl(k)
)

≤ φ
(
xk + λdk

)
− φ
(
xk
)

≤ f
(
xk + λdk

)
+ h
(
xk + λdk

)
− f
(
xk
)

− h
(
xk
)

≤
〈
∇f (xk), λdk

〉
+ λ2L

2
‖dk‖2 + λ

(
h(xk + dk) − h(xk)

)
.

(15)

Since pαk

(
xk
) = xk + dk minimizes Qαk

(
z, xk
)
, we obtain

Qαk

(
xk + dk, xk

)
= df
(
xk
)

+
〈
dk, ∇f (xk)

〉
+ αk

2
‖dk‖2 + h

(
xk + dk

)

≤ Qαk

(
xk, xk
)

= f
(
xk
)

+ h
(
xk
)

. (16)

It follows from (16) that

h
(
xk + dk

)
− h
(
xk
)

≤ −
〈
dk, ∇f (xk)

〉
− αk

2
‖dk‖2. (17)

Combining (15) with (17) gives

φ
(
xk + λdk

)
− φ
(
xl(k)
)

≤ λ(λL − αk)

2
‖dk‖2. (18)

The inequality (13) then follows provided that

λ(λL − αk)

2
‖dk‖2 ≤ −γ λαk

2
‖dk‖2,

which by Lemma 1 is satisfied when λ ≤ λ′, with λ′ = min

{
1,

(1 − γ )αmin

L

}
.
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Now we prove the lower bound for λk . As we know that either λk = 1 or the
inequality (9) will be failed at least once. Therefore,

φ

(
xk + λk

ρ
dk

)
> φ
(
xl(k)
)

− γ

2

λk

ρ
αk‖dk‖2.

Combining this with (18) yields

−γ

2
αk‖dk‖2 <

λk

ρ
L − αk

2
‖dk‖2.

Rearranging terms and using the fact that αk ≥ αmin for all k, we get

λk

ρ
L − (1 − γ )αmin > 0.

That is

λk >
ρ(1 − γ )αmin

L
.

This completes the proof.

The following theorem implies that Algorithm 1 converges to a global solution of
(1) when the objective function is convex.

Theorem 1 Any accumulation point of the sequence {xk} generated by Algorithm 1
is a stationary point of (1).

Proof By the definition of φ(xl(k)) in (12), we have

φ
(
xl(k+1)
)

= max
0≤j<min{k+1,M}

φ
(
xk+1−j

)

= max

{
max

1≤j<min{k+1,M}
φ(xk+1−j ), φ(xk+1)

}

≤ max
{
φ(xl(k)), φ(xl(k)) − γ

2
λkαk‖dk‖2

}

= φ
(
xl(k)
)

, (19)

which means that the sequence {φ(xl(k))} is nonincreasing. By applying (19) with k

replaced by l(k) − 1, we get

φ
(
xl(k)
)

≤ φ
(
xl(l(k)−1)

)
− γ

2
λl(k)−1αl(k)−1‖dl(k)−1‖2. (20)

Since φ is bounded below, taking limits in both sides of (20) we deduce

lim
k→∞ λl(k)−1αl(k)−1‖dl(k)−1‖2 = 0.

Note that αk ≥ αmin for all k, we have

lim
k→∞ λl(k)−1d

l(k)−1 = 0. (21)
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Suppose for contradiction that x̄ is an accumulation point that is not stationary. Let
{xkt } be the subsequence such that

lim
t→∞ xkt = x̄.

By Lemma 1 we have ‖dl(kt )−1‖ ≥ ε(αmax) for some ε(αmax) > 0 and all t

sufficiently large. Then by (21) we must have

lim
t→∞ λl(kt )−1 = 0.

This contradicts Lemma 2.

3.2 Rate of convergence

By the proof of Theorem 1 we know that the sequence {φ(xl(k))} is nonincreasing.
Hence all the iterates generated by Algorithm 1 are contained in the level set

L =
{
x ∈ R

n : φ(x) ≤ φ(x1)
}

.

From now on, we assume that the level set L is bounded, φ attains a minimum on L
at point x∗ and the associated objective function value φ∗ = φ(x∗).

We can show sublinear convergence of Algorithm 1 in a similar way as Theorem
3.2 in [30].

Theorem 2 Let {xk} be a sequence generated by Algorithm 1. If f is convex, then
there exists a constant c such that

φ
(
xk
)

− φ∗ ≤ c

k

for all k, where φ∗ is the optimal objective function value for (1).

Proof By convexity of φ and the fact that 0 ≤ λk ≤ 1, we have

φ
(
xk+1
)

= φ
(
xk + λkd

k
)

≤ (1 − λk)φ
(
xk
)

+ λkφ
(
xk + dk

)
. (22)

Using the Lipschitz continuity of f and the definition of Q in (5), it follows that

φ
(
xk + dk

)
≤ Qαk

(
xk + dk, xk

)
+ L

2
‖dk‖2. (23)

Since xk + dk minimizes Qαk
(x, xk) and f is convex, we have

Qαk

(
xk + dk, zk

)
= min

x

{
f
(
xk
)

+
〈
x − xk, ∇f

(
xk
)〉

+ αk

2
‖x − xk‖2 + h(x)

}

≤ min
x

{
f (x) + h(x) + αk

2
‖x − xk‖2

}

≤ min
x

{
φ(x) + αmax

2
‖x − xk‖2

}
. (24)
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Choose x = (1 − δ)xk + δx∗ with δ ∈ [0, 1] and x∗ be a solution of (1). Again by
the convexity of φ, we have

min
x

{
φ(x) + αmax

2
‖x − xk‖2

}
≤ φ
(
(1 − δ)xk + δx∗)+ αmax

2
δ2‖xk − x∗‖2

≤ (1 − δ)φ
(
xk
)

+ δφ∗ + βkδ
2,

where βk = αmax

2
‖xk − x∗‖2. Combining this with (22), (23), and (24) yields

φ
(
xk+1
)

≤ (1 − λk)φ
(
xk
)

+ λk

[
(1 − δ)φ

(
xk
)

+ δφ∗ + βkδ
2 + L

2
‖dk‖2
]

≤ (1 − λkδ)φ
(
xk
)

+ λk(δφ
∗ + βkδ

2) + λkL

2
‖dk‖2. (25)

Since both xk and x∗ lie in the level set L, which is assumed to be bounded, we
deduce

βk = αmax

2
‖xk − x∗‖2 ≤ αmax

2
(diameter of L)2 := c1 < +∞. (26)

The acceptance test (9) implies that

λk

2
‖dk‖2 ≤ φ

(
xl(k)
)− φ
(
xk+1
)

c2
, (27)

where c2 = γαmin. Submitting (26) and (27) into (25) and using the fact that φ(xk) ≤
φ(xl(k)), we obtain for δ ∈ [0, 1],
φ
(
xk+1
)

≤ φ
(
xl(k)
)
+λk

(
δφ∗ − δφ

(
xl(k)
)

+ c1δ
2
)
+c3

(
φ
(
xl(k)
)

− φ
(
xk+1
))

,

(28)

where c3 = L

c2
. The minimum on the right-hand side of (28) is attained at

δmin = min

{
1,

φ(xl(k)) − φ∗

2c1

}
. (29)

Since L is bounded and φ(xl(k)) is nonincreasing, by Theorem 1 we know that
φ(xl(k)) converges to φ∗. Thus there exists an integer k0 such that δmin < 1 for all
k > k0. Consequently, for k > k0,

φ
(
xk+1
)

≤ φ
(
xl(k)
)

− λk

(
φ(xl(k)) − φ∗)2

4c1
+ c3

(
φ(xl(k)) − φ(xk+1)

)

≤ φ
(
xl(k)
)
−c4

(
φ(xl(k))− φ∗)2 + c3

(
φ(xl(k)) − φ(xk+1)

)
, (30)

where c4 = λ̄
4c1

with λ̄ given by (14). Let rk = φ(xk) − φ∗. Subtracting φ∗ from

both sides of (30) gives

rk+1 ≤ rl(k) − c4r
2
l(k) + c3

(
rl(k) − rk+1

)
.
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It follows that
rk+1 ≤ rl(k) − c5r

2
l(k), k > k0,

where c5 = c4

1 + c3
. Using the fact that rk+1 ≤ rl(k), we have for all k > k0,

1

rl(k)

≤ 1

rk+1
− c5

rl(k)

rk+1
≤ 1

rk+1
− c5,

that is
1

rk+1
≥ 1

rl(k)

+ c5. (31)

We can find an integer i0 such that k0 ∈ ((i0−1)M, i0M]. For all k ∈ ((i−1)M, iM],
i > i0, by the definition of l(k) in (12), we have k − M + 1 ≤ l(k) ≤ k. It follows
from (31) that

1

rk
≥ 1

rl(k)

≥ 1

rl(k−M)

+ c5 ≥ 1

rl(k−(i−i0)M)

+ (i − i0)c5, i > i0,

that is,

rk ≤ rl(k−(i−i0)M)

1 + (i − i0)c5rl(k−(i−i0)M)

≤ 1

(i − i0)c5
, i > i0.

Now consider these k such that i > 2i0, we have

rk ≤ 2

ic5
≤ 2M

c5k
.

Notice that there are a finite number of k ∈ [1, 2i0M], then we can find a finite

c6 >
2

c5
for all k ∈ [1, 2i0M]. We complete the proof by taking c = c6M .

Now we show the R-linear convergence of Algorithm 1 when φ is a strongly
convex function.

Theorem 3 Suppose that f is convex and φ satisfies

φ(z) ≥ φ(x∗) + η‖z − x∗‖2, (32)

for all z ∈ R
n, where η > 0. Let {xk} be a sequence generated by Algorithm 1, then

there exist constants θ ∈ (0, 1) and μ such that

φ
(
xk
)

− φ∗ ≤ μθk
(
φ(x1) − φ∗) (33)

for all k.

Proof We will show that there exists ν ∈ (0, 1) such that

φ
(
xk+1
)

− φ∗ ≤ ν
(
φ(xl(k)) − φ∗) . (34)

Let ω satisfies that

0 < ω < min

{
2

c2λ̄
,

1

L
,

η

αmaxL

}
,

where c2 = γαmin is defined in Theorem 2 and λ̄ is given by (14). We consider two
cases.
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Case 1 ‖dk‖2 ≥ ω
(
φ
(
xl(k)
)− φ∗). From (25), one has

φ
(
xl(k)
)− φ
(
xk+1
)

c2
≥ λ̄

2
‖dk‖2 ≥ λ̄ω

2

(
φ(xl(k)) − φ∗) , (35)

Rearranging terms of (35) yields

φ
(
xk+1
)

− φ∗ ≤
(

1 − c2λ̄ω

2

)(
φ(xl(k)) − φ∗) .

Case 2 ‖dk‖2 < ω
(
φ(xl(k)) − φ∗). By (32), we have

βk = αmax

2
‖xk − x∗‖2 ≤ αmax

2η

(
φ(xk) − φ∗) ≤ c7

(
φ(xl(k)) − φ∗) ,

where c7 = αmax

2η
. It follows from (23) that

φ
(
xk+1
)

≤ (1 − λkδ)φ
(
xl(k)
)

+ λkδφ
∗ +
(

c7δ
2 + ωL

2

)
λk

(
φ(xl(k)) − φ∗)

≤ φ
(
xl(k)
)

+ λk

(
c7δ

2 − δ + ωL

2

)(
φ(xl(k)) − φ∗) , (36)

Subtracting φ∗ from each side of (36) to obtain

φ
(
xk+1
)

− φ∗ ≤ [1 + λk

(
c7δ

2 − δ + ωL
2

)] (
φ(xl(k)) − φ∗) ,

for all δ ∈ [0, 1]. The minimum on the right-hand side is attained at

δmin =
{

1,
1

2c7

}
.

If δmin = 1, then c7 ≤ 1

2
. Since ω ≤ 1

L
, we have

ν = 1 + λk

(
c7 − 1 + ωL

2

)
≤ 1 − 1 − ωL

2
λk < 1.

If δmin < 1, since ω <
η

αmaxL
, then

ν = 1 + λk

(
1

4c7
− 1

2c7
+ ωL

2

)
= 1 − λk

(
1

4c7
− ωL

2

)
< 1.

Thus (34) holds for all k ≥ 1. Replacing k with l(k) − 1 in (34) and using the
monotonicity of φ(xl(k)), we obtain

φ
(
xl(k)
)

− φ∗ ≤ ν
(
φ(xl(l(k)−1)) − φ∗) ≤ ν

(
φ(xl(k−M)) − φ∗) .

For any k ≥ 1, there exists i ≥ 1 such that k ∈ ((i − 1)M, iM]. Applying the above
inequality recursively gives

φ
(
xk
)

− φ∗ ≤ φ
(
xl(k)
)

− φ∗ ≤ νi−1
(
φ(xl(k−(i−1)M)) − φ∗) .
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Recalling that φ(xk+1) ≤ φ(xl(k)), using l(k − (i − 1)M) ∈ (0, M], we have

φ
(
xl(k−(i−1)M)

)
≤ max

{
φ(x1), φ(xl(1)), φ(xl(2)), . . . , φ(xl(M−1))

}

≤ max
{
φ(x1), φ(xl(1))

}
= φ(x1).

Therefore,

φ
(
xk
)

− φ∗ ≤ νi−1
(
φ(x1) − φ∗) ≤ 1

ν

(
ν1/M
)k (

φ(x1) − φ∗) ,

where the last inequality is due to i≥ k

M
and the function ax is decreasing for 0<a<1.

We get the expected inequality (33) by taking μ = 1

ν
and θ = (ν1/M)k . �

4 Computational experiments

In this section, we present numerical experiments comparing several algorithms for
solving problems of the form (1). We test these algorithms on �2-�1 problems, image
deblurring problems, group-separable regularizers, and total variation (TV) regular-
ization problems. All the experiments were carried out on a laptop with an Intel dual
Core 2 GHz processor and 2 GB of RAM running Windows 7. Our method was
written in MATLAB with the following parameter values:

ρ = 0.25, M = 5, γ = 0.01, αmax = 1030, αmin = 10−30.

As SpaRSA, we also test the monotone variant of Algorithm 1 by setting

M = 0, γ = 0.0001.

The other algorithms were run with default parameters.
In the following tables, “-mono” means we use the monotone variant of the algo-

rithm, “Ax” denotes the number of times that a vector is multiplied by A or AT , “iter”
denotes the number of iterations, “cpu” denotes the CPU time in seconds, and “Obj”
is the objective function value.

4.1 �2-�1 problems

We compare the performance of Algorithm 1 with that of other recently proposed
algorithms for �2-�1 problems (2) using the randomly generated data introduced in
[23, 34, 41]. We consider the following algorithms: SpaRSA1 [41], FPC-BB2 [32],
GPSR3 [23], TwIST4 [4].

1Available at http://www.lx.it.pt/∼mtf/SpaRSA
2Available at http://www.caam.rice.edu/∼optimization/L1/fpc
3Available at http://www.lx.it.pt/∼mtf/GPSR
4Available at http://www.lx.it.pt/∼bioucas/TwIST/TwIST.htm

http://www.lx.it.pt/~{}mtf/SpaRSA
http://www.caam.rice.edu/~{}optimization/L1/fpc
http://www.lx.it.pt/~{}mtf/GPSR
http://www.lx.it.pt/~{}bioucas/TwIST/TwIST.htm
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Table 1 Average over 10 runs for �2-�1 problems without continuation, where τ = 0.1‖AT b‖∞. Value
of the objective function is 3.5665 for all methods

Algorithm Ax iter cpu MSE

FPC-BB - 37.6 4.34 3.96e-03

TwIST-mono - 46.2 1.13 3.94e-03

GPRS-Basic - 35.0 1.71 3.96e-03

GPRS-BB - 45.2 1.08 3.96e-03

SpaRSA 60.2 29.8 0.74 3.95e-03

SpaRSA-mono 66.0 28.1 0.71 3.95e-03

Algorithm 1 58.8 29.4 0.70 3.95e-03

Algorithm 1-mono 58.8 29.4 0.71 3.95e-03

The matrix A is a random k × n matrix, with k = 210 and n = 212, the elements
of which are chosen from a Gaussian independent and identically distributed with
mean zero and variance 1/(2n). The observed vector is b = Axtrue + n, where n is
a Gaussian white vector with variance 10−4, and xtrue is the original signal contains
160 randomly placed ±1 spikes, with zeros in the other components. The regulariza-
tion parameter is set to τ = 0.1‖AT b‖∞; notice that for τ ≥ ‖AT b‖∞ the unique
minimum of (2) is the zero vector [25].

To make the comparison independent of the stopping rule for each approach, we
first run FPC-BB to set a benchmark objective value, then run the other algorithms
until they each reach this benchmark. Table 1 reports the average CPU times (sec-
onds), the number of iterations, the number of matrix-vector multiplications, and the
final mean squared error (MSE) of the reconstructions with respect to xtrue over 10
runs for the algorithms tested. From these results, we can see that all methods give

Table 2 Average over 10 runs for �2-�1 problems, where τ = 0.001‖AT b‖∞. Value of the objective
function is 0.0439 for all methods

Without continuation With continuation

Algorithm Ax iter cpu MSE Ax iter cpu MSE

FPC-BB - - - - - 93.2 5.24 6.19e-04

TwIST-mono - 360.3 7.81 8.27e-04 - - - -

GPRS-Basic - 2956.5 134.63 8.36e-04 - 267.0 11.30 6.46e-04

GPRS-BB - 2299.3 54.22 8.36e-04 - 178.4 4.33 5.19e-04

SpaRSA 2503.6 983.9 26.32 8.32e-04 239.1 111.7 2.55 5.09e-04

SpaRSA-mono 3010.0 1020.2 33.75 8.31e-04 277.3 110.4 3.04 5.18e-04

Algorithm 1 1905.4 952.7 20.62 8.31e-04 223.6 107.8 2.40 5.11e-04

Algorithm 1-mono 1994.6 997.3 20.35 8.24e-04 240.8 116.4 2.55 5.17e-04
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a same objective function value and a similar value of MSE. Algorithm 1 is slightly
faster than SpaRSA and much faster than other methods.

As the practical performance of SpaRSA, GPSR, and other approaches degrades
for small values of τ , Hale, Yin, and Zhang [31] introduced the “continuation” tech-
nique and integrated it into their fixed-point iteration scheme. We found it helpful
for our algorithm to adopt the continuation strategy. We use the same continua-
tion scheme as SpaRSA. For completeness we present the continuation scheme in
Algorithm 2. We set δ = 0.2 for our test.

Algorithm 2 Algorithm 1 adaptive continuation [41]

Initialize iteration counter k = 1, and choose initial guess x1.
Set yk = y;
repeat

τk = max
{
δ‖AT yk‖∞, τ

}
, where δ < 1;

Calculate xk+1 by Algorithm 1;
yk+1 = y − Axk+1;
k = k + 1;

until τk = τ ;

We compared these approaches with and without continuation on problems gener-
ated in a similar way to the former ones with τ = 0.001‖AT b‖∞. From Table 2, we
can see that GPSR, SpaRSA, and Algorithm 1 without continuation become slower
for this small τ and that continuation yields a significant speed improvement. Algo-
rithm 1 with continuation is slightly faster than SpaRSA, and clearly faster than
GPSR, TwIST, and FPC-BB. It takes Algorithm 1 less matrix-vector multiplications
and less iterations to reach the same objective function value than SpaRSA.

4.2 Image deblurring problems

In this subsection, we consider three standard benchmark problems summarized in
Table 3, all based on the well-known Cameraman image, with 256×256 pixels. These
problems have the form (2), where b represents the (vectorized) observed image, and
A = RW , where R is the matrix representing the blur operator and W represents the
inverse orthogonal wavelet transform, with Haar wavelets. The regularization param-
eter τ set to 0.01, 0.25, and 0.5 for these three problems, respectively. We use the
condition (11) with ε = 10−5 as the termination criteria.

Table 3 Image deblurring
experiments Experiments blur kernel σ 2

1 9 × 9 uniform 0.562

2 hij = 1/
(
i2 + j2

)
2

3 hij = 1/
(
i2 + j2

)
8
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Fig. 1 Deblurring the Cameraman image for problem 2 in Table 3: a original image, b observed image,
c deblurred image. The displayed reconstructions were obtained by using Algorithm 1

Since the continuation approaches are no faster, all the methods were implemented
without continuation. Table 4 presents numerical results for problems in Table 3. For
all three experiments, Algorithm 1 is the fastest method. The original, observed, and
deblurred images for problem 2 in Table 3 are presented in Fig. 1.

4.3 Group-separable regularizers

In this subsection, we compare the performance of Algorithm 1 with that of SpaRSA
for group-separable regularizers [41] of the form

min
x∈Rn

φ(x) = 1

2
‖Ax − b‖2

2 + τ

m∑
i=1

‖x[i]‖p,

where p = {2, ∞}, x[1], x[2], . . . , x[m] are m disjoint subvectors of x. The matrix
A ∈ R

1024×4096 is generated as subsection 4.1. The vector xtrue has 4096 components

Table 4 Deblurring images without continuation

1 2 3

Algorithm Ax iter cpu Ax iter cpu Ax iter cpu

TwIST-mono - 349 16.64 - 79 4.13 - 72 3.54

GPRS-Basic - 661 71.52 - 176 19.47 - 121 13.36

GPRS-BB - 307 16.99 - 154 8.58 - 107 5.78

SpaRSA 562 215 13.18 156 68 3.84 113 51 2.93

SpaRSA-mono 764 242 18.87 205 71 6.03 98 36 2.40

Algorithm 1 396 198 9.40 108 54 2.63 82 41 2.01

Algorithm 1-mono 396 198 9.60 108 54 2.68 82 41 1.97
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Table 5 Average over 10 runs for group-separable �2 and �∞ Regularizers

�2 Regularizer �∞ Regularizer

Algorithm Ax iter cpu Obj MSE Ax iter cpu Obj MSE

SpaRSA 141.2 63.0 1.69 6.4697 1.52e-03 100.9 47.8 1.87 2.7982 7.95e-05

Algorithm 1 128.0 64.0 1.56 6.4697 1.52e-03 98.8 49.4 1.81 2.7982 7.95e-05

divided into m = 64 groups of length li = 64. When p = 2, xtrue is generated
by randomly choosing 8 groups and filling them with zero-mean Gaussian random
samples of unit variance, while all other groups are filled with zeros. When p = ∞,
xtrue is generated in a similar way to the former case, but filled the chosen 8 groups
with ones. The vector b = Axtrue + n, where n is a Gaussian white vector with mean
zero and variance 10−4. Both algorithms are implemented without continuation. We
set τ = 0.1‖AT b‖∞ when p = 2 and τ = 0.5‖AT b‖∞ when p = ∞. We stop
the algorithms if the new iterate satisfies (10). We ran 10 test problems with error
tolerance ε = 10−5 and computed the average results. Table 5 shows that Algorithm
1 solved the test problem in less CPU time and less matrix-vector multiplications
than SpaRSA. We present the reconstructions for �2 and �∞ regularizers in Figs. 2
and 3, respectively.

Fig. 2 Comparison of SpaRSA and Algorithm 1 on group-separable reconstruction using �2 regularizer
without continuation
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Fig. 3 Comparison of SpaRSA and Algorithm 1 on group-separable reconstruction using �∞ regularizer
without continuation

4.4 Total variation phantom reconstruction

In this subsection, we compare the performance of Algorithm 1 with that of SpaRSA
for the 256 × 256 Shepp-Logan phantom image using the total variation (TV)
regularization model:

min
x∈Rn

φ(x) = 1

2
‖Ax − b‖2

2 + τTV(x),

where the definition of TV is given by

TV(x) =
∑

i

√
(�h

i x)2 + (�v
i x)2,

where �h
i = xi = xji

with ji be the first order neighbor to the left of i and �v
i =

xi = xki
with ki be the first order neighbor above i.

The blur is uniform of size 9 × 9 and the signal-to-noise ratio of the blurred image
(BSNR = var(Ax)/σ 2) is set to 40dB, corresponding to a noise standard deviation of
σ = 0.4 (see [5]). We set τ = 0.001 for this experiment. We first run the monotone
version of SpaRSA to set a benchmark objective value, where the condition (11) is
used as the termination criteria. Then we run Algorithm 1 and SpaRSA until they
each reach the benchmark. For each ε, we run 10 trails and report the average results
in Table 6. We can see that Algorithm 1 is much faster than SpaRSA, especially for
a tight tolerance.
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Table 6 Average over 10 runs for TV phantom reconstruction

1e-3 1e-4 1e-5

Algorithm Ax iter cpu Obj Ax iter cpu Obj Ax iter cpu Obj

SpaRSA 22.0 9.2 1.23 5.81e3 202.4 79.4 10.71 4.52e3 447.3 165.9 27.72 3.89e3

Algorithm 1 18.4 9.2 0.94 5.81e3 143.6 71.8 6.85 4.54e3 340.2 170.1 17.65 3.89e3

5 Conclusion

We have presented a new Barzilai and Borwein type method to minimize the sum
of a smooth function and a convex regularizer. Global convergence result is proved
under mild conditions. We established the sublinear and R-linear convergence of our
method when the objective function is convex and strongly convex, respectively. In
a series of numerical experiments, it is shown that our approach often being faster
than SpaRSA, GPSR, FPC-BB, and TwIST. Ongoing work includes incorporate the
method with different line search strategy and a more thorough experiments involv-
ing wider classes of regularizers. It is also interesting to investigate other schemes
concerning the BB stepsize and nonmonotone globalization strategies (see e.g. [29,
36, 39]) for solving problems of the form (1).
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17. Cores, D., Escalante, R., González-Lima, M., Jimenez, O.: On the use of the spectral projected
gradient method for support vector machines. Comput. Appl. Math. 28(3), 327–364 (2009)

18. Dai, Y.H., Fletcher, R.: Projected Barzilai-Borwein methods for large-scale box-constrained quadratic
programming. Numer. Math. 100(1), 21–47 (2005)

19. Dai, Y.H., Liao, L.Z.: R-linear convergence of the Barzilai and Borwein gradient method. IMA J.
Numer. Anal. 22(1), 1–10 (2002)

20. Dai, Y.H., Zhang, H.: Adaptive two-point stepsize gradient algorithm. Numer. Algor. 27(4), 377–385
(2001)

21. Donoho, D.L.: De-noising by soft-thresholding. IEEE Trans. Inf. Theory 41(3), 613–627 (1995)
22. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)
23. Figueiredo, M., Nowak, R., Wright, S.: Gradient projection for sparse reconstruction: Application

to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process. 1(4), 586–597
(2007)

24. Fletcher, R.: On the Barzilai-Borwein method. In: Qi, L.Q., Teo, K.L., Yang, X.Q., Pardalos, P.M.,
Hearn, D.W., (eds.) Optimization and Control with Applications. Applied Optimization 96, 235–256
(2005)

25. Fuchs, J.J.: On sparse representations in arbitrary redundant bases. IEEE Trans. Inf. Theory 50(6),
1341–1344 (2004)

26. Gonzaga, C.C., Karas, E.W.: Fine tuning Nesterov’s steepest descent algorithm for differentiable
convex programming. Math. Program. 138(1–2), 141–166 (2013)

27. Grippo, L., Lampariello, F., Lucidi, S.: A nonmonotone line search technique for Newton’s method.
SIAM J. Numer. Anal. 23(4), 707–716 (1986)

28. Grippo, L., Sciandrone, M.: Nonmonotone globalization techniques for the Barzilai-Borwein gradient
method. Comput. Optim. Appl. 23(2), 143–169 (2002)

29. Guerrero, J., Raydan, M., Rojas, M.: A hybrid-optimization method for large-scale non-negative full
regularization in image restoration. Inverse Probl. Sci. Eng. 21(5), 741–766 (2013)

30. Hager, W.W., Phan, D.T., Zhang, H.: Gradient-based methods for sparse recovery. SIAM J. Imaging
Sci. 4(1), 146–165 (2011)

31. Hale, E.T., Yin, W., Zhang, Y.: Fixed-point continuation for �1-minimization: methodology and
convergence. SIAM J. Optim. 19(3), 1107–1130 (2008)

32. Hale, E.T., Yin, W., Zhang, Y.: Fixed-point continuation applied to compressed sensing: implementa-
tion and numerical experiments. J. Comput. Math. 28(2), 170–194 (2010)

33. Huang, Y.K., Liu, H.W., Zhou, S.: A Barzilai-Borwein type method for stochastic linear complemen-
tarity problems. Numer. Algor. (2013). doi:10.1007/s11075-013-9803-y

34. Kim, S., Koh, K., Lustig, M., Boyd, S., Gorinevsky, D.: An interior-point method for large-scale
�1-regularized least squares. IEEE J. Sel. Top. Signal Process. 1(4), 606–617 (2007)

35. Lee, J., Sun, Y., Saunders, M.: Proximal Newton-type methods for convex optimization. In: Advances
in Neural Information Processing Systems, pp. 836–844 (2012)

36. Loris, I., Bertero, M., De Mol, C., Zanella, R., Zanni, L.: Accelerating gradient projection methods
for �1-constrained signal recovery by steplength selection rules. Appl. Comput. Harm. Anal. 27(2),
247–254 (2009)

37. Nesterov, Y.: Gradient methods for minimizing composite functions. Math. Program. 140(1), 125–
161 (2013)

http://dx.doi.org/10.1007/s11075-013-9803-y


838 Numer Algor (2015) 69:819–838

38. Raydan, M.: The Barzilai and Borwein gradient method for the large scale unconstrained minimization
problem. SIAM J. Optim. 7(1), 26–33 (1997)

39. Wang, Y., Ma, S.: Projected Barzilai-Borwein method for large-scale nonnegative image restoration.
Inverse Probl. Sci. Eng. 15(6), 559–583 (2007)

40. Wen, Z., Yin, W., Goldfarb, D., Zhang, Y.: A fast algorithm for sparse reconstruction based on
shrinkage, subspace optimization, and continuation. SIAM J. Sci. Comput. 32(4), 1832–1857 (2010)

41. Wright, S., Nowak, R., Figueiredo, M.: Sparse reconstruction by separable approximation. IEEE
Trans. Signal Process. 57(7), 2479–2493 (2009)

42. Yin, W., Osher, S., Goldfarb, D., Darbon, J.: Bregman iterative algorithms for �1-minimization with
applications to compressed sensing. SIAM J. Imaging Sci. 1(1), 143–168 (2008)


	A Barzilai-Borwein type method for minimizing composite functions
	Abstract
	Introduction
	Algorithm
	Convergence analysis
	Global convergence analysis
	Rate of convergence

	Computational experiments
	2-1 problems
	Image deblurring problems
	Group-separable regularizers
	Total variation phantom reconstruction

	Conclusion
	Acknowledgments
	References


