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Abstract We state a uniform convergence theorem for finite-part integrals which are
derivatives of weighted Cauchy principal value integrals. We prove that a sequence
of Martensen splines, based on locally uniform meshes, satisfies the sufficient con-
ditions required by the theorem. We construct the quadrature rules based on such
splines and illustrate their behaviour by presenting some numerical results and
comparisons with composite midpoint, Simpson and Newton-Cotes rules.
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1 Introduction

We consider the Hadamard finite-part integral∫ b

a

= f (x)

(x − λ)p+1
dx, λ ∈ (a, b), p ∈ N, (1)

which is well defined for f ∈ Hp,μ(B), with

Hp,μ(B) := {
g| g ∈ Cp([a, b]), ω(Dpg, �, [a, b]) ≤ B�μ, 0 < μ ≤ 1, B > 0

}
,

where Dp denotes the pth derivative operator and

ω(g, �, J ) := max
x,x+h∈J, 0<h≤�

|g(x + h) − g(x)| , g ∈ C(J ).

For this type of integral the following properties hold [10].
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Property 1 When a < λ < b and p ∈ N we have∫ b

a

= f (x)

(x − λ)p+1
dx = 1

p

d

dλ

∫ b

a

= f (x)

(x − λ)p
dx = · · · = 1

p!
dp

dλp

∫ b

a

− f (x)

x − λ
dx,

where ∫ b

a

− f (x)

x − λ
dx = lim

ε→0

{∫ λ−ε

a

f (x)

x − λ
dx +

∫ b

λ+ε

f (x)

x − λ
dx

}

is the Cauchy principal value integral.

Property 2 For c ≥ 0 and p ≥ 1 we have∫ λ+h

λ−ch

= f (x)

(x − λ)p+1
dx =

{
O(h−p+1), if c = 1 and p is even,
O(h−p), otherwise.

(2)

Hence, the above integral, which is well defined for h fixed, tends to infinity as
h → 0. These integrals are often encountered in several physical and engineering
problems [11, 21].

In this paper, we are interested in the numerical evaluation of (1), obtained by
replacing f by an approximation fN from a sequence {fN } such that∫ b

a

= fN(x)

(x − λ)p+1
dx

can be evaluated analytically or easily approximated numerically for all N . In [13],
Rabinowitz proved the following uniform convergence result for weighted finite-
part integrals, which is an extension of the uniform convergence result for weighted
Cauchy principal value integrals [12].

Theorem 1 Let

I (f ; λ; p) :=
∫ 1

−1
= ωαβ(x)

f (x)

(x − λ)p+1
dx, λ ∈ (−1, 1), p ∈ N, (3)

be the weighted finite-part integral, where

ωαβ(x) = (1 − x)α(1 + x)β, α, β > −1,

and f ∈ Hp,μ(B) on J := [−1, 1]. Let {fN } be a sequence of approximations of f

such that fN ∈ Cp(J ) and, setting eN := f − fN ,

‖DjeN‖∞ = o(1) for N → ∞, j = 0, . . . , p, (4)

DjeN(−1) = 0, 0 ≤ j ≤ p − β, DjeN(1) = 0, 0 ≤ j ≤ p − α, (5)

eN ∈ Hp,σ (B1), 0 < σ ≤ μ, for some B1 > 0 and all N. (6)

Then I (fN ; λ; p) exists and, if σ + min(α, β) > 0, the sequence {I (fN ; λ; p)}
converges uniformly to I (f ; λ; p) for all λ ∈ (−1, 1).

In [4] two examples of sequences {fN } based on locally uniform partitions and
satisfying (4)–(6) are provided for any positive integer p. These are the modified
approximating splines and the modified optimal nodal splines, which are obtained by
modifying the approximating splines [8] as well as the optimal nodal splines [1–3]
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in such a way that condition (5) is true for any positive integer p. In this paper, we
consider sequences of approximating splines for which we can prove (4)–(6) without
modifying their definition on [a, b]. In particular, we shall consider the Martensen
spline operator, introduced in [9] and recently studied in [15, 16]. For the numeri-
cal evaluation of finite-part integral (1) we propose a sequence of Martensen splines
of degree n based on locally uniform partitions. We prove that (4)–(6) are true with
1 ≤ p < n. For finite-part integrals (3), with p ≤ n − 1, we construct the quadrature
rules based on Martensen splines of degree n. The majority of numerical methods for
finite-part integrals (1) are based on suitable composite rules, as, for example, mid-
point [20], Simpson [21] and Newton-Cotes [19]. Numerical results show that the
proposed spline quadratures perform better than composite quadrature rules [19–21].
Indeed, the proposed method requires a less number of integrand function’s evalua-
tions compared to the other ones and allows a considerable flexibility in the choice
of quadrature nodes.

2 Martensen splines

In this section, we give the necessary background material on Martensen splines as
presented in [15–17] and [5].

Let TR := {a = t0 < · · · < tRn = b} be a partition of the interval [a, b], we
denote by 	n(TR) the linear space of piecewise polynomial functions of degree at
most n with breakpoints at tj . Let

Sn+1(TR) := 	n(TR) ∩ Cn−1([a, b])
be the linear space of polynomial splines of degree at most n with simple knots at the
points of TR . Let

Bs,n+1(x) := (−1)n+1(ts+n+1 − ts)[ts , . . . , ts+n+1](x − ·)n+,

be the (n + 1)th order normalized B-spline [14], where [ts , . . . , ts+n+1]f is the (n +
1)th divided difference and

xr+ =
{

xr , x ≥ 0,
0, x < 0.

Let

ϕs,n(y) :=
n∏

ν=1

(y − ts+ν) ∈ 	n

be the dual polynomial for Bs,n+1. For i = 0, . . . , n−1 and r = 0, . . . , R we denote
by F

(rn)
i the Hermite-Martensen splines or HM-splines defined by [5]

F
(rn)
i (x) :=

rn−1∑
s=rn−n

(−1)i

n!
dn−i

dyn−i
ϕs,n(trn)Bs,n+1(x) ∈ Sn+1(TR), x ∈ [trn−n, trn+n],

(7)
where dn−i

dyn−i ϕs,n(trn) is the (n − i)th derivative of ϕs,n(y) evaluated at y = trn.
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Assuming that f ∈ Cn−1([a, b]), the defining formula for the Martensen spline
MR(f ) of degree n on [a, b] is given by [17],

MR(f )(x) :=
R∑

r=0

n−1∑
i=0

Dif (trn)F
(rn)
i (x) ∈ Sn+1(TR). (8)

In order to define F
(0)
i and F

(Rn)
i we need the 2n auxiliary B-spline knots t−n <

· · · < t−1 < t0 and tRn < tRn+1 < · · · < tRn+n.
We introduce the fundamental Hermite splines [16]

Gi,n,trn−n,...,trn (x) =
rn−1∑

s=rn−n

(−1)i

n!
dn−i

dyn−i
ϕs,n(trn)Bs,n+1(x), x ∈ [trn−n, trn],

Hi,n,trn,...,trn+n(x) =
rn−1∑

s=rn−n

(−1)i

n!
dn−i

dyn−i
ϕs,n(trn)Bs,n+1(x), x ∈ [trn, trn+n].

The HM-splines F
(rn)
i can be expressed in terms of Gi,n,trn−n,...,trn (x) and

Hi,n,trn,...,trn+n(x) [16],

F
(rn)
i (x) = χ(−∞,trn](x)Gi,n,trn−n,...,trn (x) + χ[trn,∞)(x)Hi,n,trn,...,trn+n(x). (9)

Using (9), for x ∈ [tkn, tkn+n] MR(f )(x) can be written in the form [15]

MR(f )(x) =
n−1∑
i=0

(Dif (tkn)Hi,n,tkn,...,tkn+n
(x) + Dif (tkn+n)Gi,n,tkn,...,tkn+n

(x)).

The Martensen spline MR(f ) satisfies the interpolation conditions

DkMR(f )(trn) = Dkf (trn), k = 0, . . . , n − 1, r = 0, . . . , R, (10)

i.e. MR(f ) interpolates certain values of f and its derivatives [16]. So, we can
subdivide the knots in primary and secondary ones. In particular,

TR,p := {trn|r = 0, . . . , R}
is the set of primary knots, whereas

TR,s := {tj |j 	= 0 mod n, j = 0, . . . , Rn}
is the set of secondary ones.

We denote with

hk := tkn+n − tkn, with k = 0, . . . , R − 1,

and
HR := max

k=0,...,R−1
hk.

The following further properties hold [16]

MR(f ) = f for any f ∈ Sn+1(TR), (11)

MR(f ) = f for any f ∈ P
n. (12)
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Let
AR := max

0≤i,j≤Rn−1
|i−j |=1

ti+1 − ti

tj+1 − tj
, AR ≥ 1, (13)

and

ÃR := max
0≤i,j≤R−1

|i−j |=1

hi

hj

, ÃR ≥ 1. (14)

We say that the sequence of partitions {TR}R∈N ({TR,p}R∈N) is locally uniform if
there exists a constant A ≥ 1 (Ã ≥ 1) such that AR ≤ A (ÃR ≤ Ã) for all R.

Let
e
(s)
R = Ds(f − MR(f )), 0 ≤ s ≤ n − 1.

The following uniform convergence result is provided in [5] for Martensen splines
and its derivatives.

Theorem 2 Let f ∈ Cn−1([a, b]), suppose that {TR,p}R∈N is such that

HR → 0 as R → ∞.

If {TR,p}R∈N is locally uniform, then∥∥∥e(0)
R

∥∥∥∞ → 0 as R → ∞.

If {TR}R∈N is locally uniform, then, for 1 ≤ s ≤ n − 1,∥∥∥e(s)
R

∥∥∥∞ → 0 as R → ∞.

3 Martensen splines for numerical evaluation of finite-part integrals

In order to evaluate (3) numerically with n-order singularity at λ and f ∈ Hn−1,μ(B)

on [−1, 1], we consider the sequence {MR(f )} of Martensen splines of degree n,
based on a sequence of locally uniform partitions {TR}, as approximants for f .

The condition (4) of Theorem 1 is true in virtue of Theorem 2. Whereas, condition
(5) follows from (10), with r = 0, R. In order to verify (6), we need the follow-
ing lemmas. Lemma 1 gives a local estimate for |DnMR(f )(t)|, with t ∈ [tl , tl+1].
Lemma 2, proved in [5], provides a local estimate for |e(s)

R (t)|, with t ∈ [tl , tl+1] and
s = 0, 1, . . . , n − 1.

Lemma 1 Let f ∈ Cn−1([tkn, tkn+n]), let t ∈ [tl , tl+1] ⊂ [tkn, tkn+n], then∣∣DnMR(f )(t)
∣∣ ≤ Kl,nh

−1
k ω(f (n−1), hk, [tkn, tkn+n]),

where

Kl,n := 2n+1,n

(n − 1)!
hn

k

(tl+1 − tl)n

n−1∑
i=0

(n − i)

(
n

i

)
Ãi

R, (15)

with ÃR defined in (14) and

n+1,n := n!
(

n

[n/2]

)
.
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Proof Let Tn−2(x) be the Taylor expansion of f at t and RT (x) = f (x) − Tn−2(x).
By using (12), we can write

DnMR(f )(x) = DnMR(Tn−2 + RT )(x) = DnMR(Tn−2)(x) + DnMR(RT )(x)

= DnTn−2(x) + DnMR(RT )(x) = DnMR(RT )(x),

which yields

|DnMR(f )(t)| ≤
n−1∑
i=0

(∣∣DiRT (tkn)
∣∣ ∣∣DnHi,n,tkn,...,tkn+n

(t)
∣∣ + ∣∣DiRT (tkn+n)

∣∣
∣∣DnGi,n,tkn,...,tkn+n

(t)
∣∣) .

In [5], for i = 0, . . . , n − 1, the following estimates are proved:

∣∣∣DiRT (tkn)

∣∣∣ ≤ hn−i−1
k

(n − i − 1)!ω(f (n−1), hk, [tkn, tkn+n]), (16)

∣∣DnGi,n,tkn,...,tkn+n
(t)

∣∣ ≤ n!
i!

n+1,n

(n − 1)!
Ãi

Rhi
k

(tl+1 − tl)n
. (17)

The estimates (16) and (17) are also true respectively for |DiRT (tkn+n)| and
|DnHi,n,tkn,...,tkn+n

(t)|. Using (16) and (17), we are allowed to conclude that

∣∣DnMR(f )(t)
∣∣ ≤ 2

n−1∑
i=0

hn−i−1
k

(n − i − 1)!ω(f (n−1), hk, [tkn, tkn+n])n!
i!

n+1,n

(n − 1)!
Ãi

Rhi
k

(tl+1 − tl)n

= 2ω(f (n−1), hk, [tkn, tkn+n]) hn−1
k

(tl+1 − tl)n

n+1,n

(n − 1)!
n−1∑
i=0

Ãi
Rn!

(n − i − 1)!i!
= Kl,nh

−1
k ω(f (n−1), hk, [tkn, tkn+n]),

with Kl,n defined in (15).

Lemma 2 Let t ∈ [tl , tl+1] ⊂ [tkn, tkn+n] and let f ∈ Cn−1([tkn, tkn+n]), then, for
0 ≤ s ≤ n − 1, we have

∣∣∣e(s)
R (t)

∣∣∣ ≤
⎧⎨
⎩

K0h
n−1
k ω(f (n−1), hk, [tkn, tkn+n]), for s = 0,

Kl,sh
n−1−s
k ω(f (n−1), hk, [tkn, tkn+n]), for 1 ≤ s ≤ n − 1,

where

K0 := 2

(n − 1)!
n−1∑
i=0

(n − i)

(
n

i

)
Ãi

R,

Kl,s := 2n+1,s

(n − 1)!
hs

k

(tl+1 − tl)s

n−1∑
i=0

(n − i)

(
n

i

)
Ãi

R,

with

n+1,s := n!
(n − s)!

(
s

[s/2]

)
.
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Now, we can prove the following theorem, which provides a bound for the
modulus of continuity of Dn−1MR(f ).

Theorem 3 Let f ∈ Cn−1(J ), if MR(f ) ∈ Sn+1(TR) satisfies

|e(n−1)
R (t)| ≤ C1ω(f (n−1), hk, [tkn, tkn+n]), t ∈ [tl , tl+1], (18)

|DnMR(f )(t)| ≤ C2h
−1
k ω(f (n−1), hk, [tkn, tkn+n]), t ∈ (tl, tl+1), (19)

with [tl , tl+1] ⊂ [tkn, tkn+n]. Then
ω(Dn−1MR(f ), �, J ) ≤ C3ω(f (n−1), �, J ). (20)

Proof We have to show that, for −1 ≤ u < v ≤ 1,∣∣∣Dn−1MR(f )(v) − Dn−1MR(f )(u)

∣∣∣ ≤ C3ω(f (n−1), v − u, J ).

Assume first that u, v ∈ [tl , tl+1]. Since MR(f ) ∈ Cn−1([tl , tl+1]) and MR(f ) ∈
Cn((tl, tl+1)), it follows that

Dn−1MR(f )(v) − Dn−1MR(f )(u) = (v − u)DnMR(f )(ξ), u < ξ < v.

By condition (19) we get∣∣∣Dn−1MR(f )(v) − Dn−1MR(f )(u)

∣∣∣ ≤ C2|v − u|h−1
k ω(f (n−1), hk, [tkn, tkn+n])

≤ C2|v − u|h−1
k ω(f (n−1), hk, J ).

Using the following property of the modulus of continuity [18]:

cω(g, d, I ) ≤ 2dω(g, c, I ), for 0 < c ≤ d,

since v − u ≤ hk , we have that∣∣∣Dn−1MR(f )(v) − Dn−1MR(f )(u)

∣∣∣ ≤ 2C2ω(f (n−1), |v − u|, J ). (21)

If tl ≤ u ≤ tl+1 < v ≤ tl+2, using (21) we obtain∣∣∣Dn−1MR(f )(v) − Dn−1MR(f )(u)

∣∣∣ ≤
∣∣∣Dn−1MR(f )(v) − Dn−1MR(f )(tl+1)

∣∣∣
+
∣∣∣Dn−1MR(f )(tl+1) − Dn−1MR(f )(u)

∣∣∣
≤ 4C2|v − u|ω(f (n−1), |v − u|, J ).

Finally, we consider tk1n ≤ ti ≤ u ≤ ti+1 ≤ tk1n+n and tk2n ≤ tj ≤ v ≤ tj+1 ≤
tk2n+n, with j > i + 1 and k1 ≤ k2. It can be easily proved that

tkn+n − tkn ≤ (tl+1 − tl)

⎛
⎝ l∑

j=kn

A
l−j
R +

kn+n−1∑
j=l+1

A
j−l
R

⎞
⎠ , (22)

where AR is given in (13). From (22) and the fact that

(ti+2 − ti+1), (tj − tj−1) ≤ v − u
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(since [ti+1, ti+2], [tj−1, tj ] ⊆ [u, v]), we get

tk1n+n − tk1n ≤ (v − u)

⎛
⎝ i+1∑

m=k1n

Ai+1−m
R +

k1n+n−1∑
m=i+2

Am−i−1
R

⎞
⎠ , (23)

tk2n+n − tk2n ≤ (v − u)

⎛
⎝

j−1∑
m=k2n

A
j−1−m
R +

k2n+n−1∑
m=j

A
m−j+1
R

⎞
⎠ . (24)

We can notice that∣∣∣Dn−1MR(f )(v) − Dn−1MR(f )(u)

∣∣∣ ≤
∣∣∣f (n−1)(v) − Dn−1MR(f )(v)

∣∣∣
+
∣∣∣f (n−1)(u) − Dn−1MR(f )(u)

∣∣∣
+
∣∣∣f (n−1)(v) − f (n−1)(u)

∣∣∣ .
Obviously, ∣∣∣f (n−1)(v) − f (n−1)(u)

∣∣∣ ≤ ω(f (n−1), v − u, J ).

From (18), (23), (24) and the fact that

ω(g, δ1 + δ2, I ) ≤ ω(g, δ1, I ) + ω(g, δ2, I ),

we get∣∣∣f (n−1)(u) − Dn−1MR(f )(u)

∣∣∣ ≤ C1ω(f (n−1), hk1 , [tk1n, tk1n+n])

≤ C1

⎛
⎝ i+1∑

m=k1n

Ai−m+1
R +

k1n+n−1∑
m=i+2

Am−i−1
R

⎞
⎠

ω(f (n−1), v − u, J )

= C4ω(f (n−1), v − u, J ),

with

C4 = C1

⎛
⎝ i+1∑

m=k1n

Ai−m+1
R +

k1n+n−1∑
m=i+2

Am−i−1
R

⎞
⎠ ,

and, similarly,∣∣∣f (n−1)(v) − Dn−1MR(f )(v)

∣∣∣ ≤ C1ω(f (n−1), hk2 , [tk2n, tk2n+n])

≤ C1

⎛
⎝

j−1∑
m=k2n

A
j−m−1
R +

k2n+n−1∑
m=j

A
m−j+1
R

⎞
⎠

ω(f (n−1), v − u, J )

= C5ω(f (n−1), v − u, J ),
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with

C5 = C1

⎛
⎝

j−1∑
m=k2n

A
j−m−1
R +

k2n+n−1∑
m=j

A
m−j+1
R

⎞
⎠ .

Then, we get

∣∣∣Dn−1MR(f )(v) − Dn−1MR(f )(u)

∣∣∣ ≤ (1 + C4 + C5)ω(f (n−1), v − u, J ).

This proves our theorem with C3 = max(4C2, 1 + C4 + C5).

Hence, by using (20), we have

ω(e
(n−1)
R , �, J ) ≤ ω(f (n−1), �, J ) + ω(Dn−1MR(f ), �, J )

≤ (1 + C3)ω(f (n−1), �, J ) ≤ (1 + C3)B�μ, (25)

then e
(0)
R ∈ Hn−1,μ((1 + C3)B) and condition (6) is satisfied.

By Theorem 2, (10) and (25), the sequence {MR(f )}, constructed on a locally
uniform sequence of partitions {TR}, satisfies conditions (4), (5) and (6), then it is a
viable candidate for {fN } in Theorem 1.

4 Quadrature rules based on MR

4.1 General case

We are interested in evaluating numerically I (f ; λ; n − 1), defined in (3), by replac-
ing f ∈ Cn−1([−1, 1]) with its spline approximation MR(f ) of degree n, defined in
(8). We approximate I (f ; λ; n − 1) by the quadrature sum

I (f ; λ; n − 1) ∼=
R∑

r=0

n−1∑
i=0

Dif (trn)wr,i(λ),

where

wr,i(λ) = 1

(n − 1)!
dn−1

dλn−1

∫ 1

−1
− ωαβ (x)

x − λ
F

(rn)
i (x)dx, r = 0, . . . , R, i = 0, . . . , n−1.

Using (7), we can write

wr,i(λ) =
rn−1∑

s=rn−n

(−1)i

n!
dn−i

dyn−i
ϕs,n(trn)

1

(n − 1)!
dn−1

dλn−1

∫ 1

−1
− ωαβ (x)

Bs,n+1(x)

x − λ
dx.
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Hence, in order to evaluate wr,i , we have to compute

I (Bs,n+1; λ; n−1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

(n − 1)!
dn−1

dλn−1

∫ ts+n+1

−1
− ωαβ (x)

Bs,n+1(x)

x − λ
dx, s = −n, . . . , −1,

1

(n − 1)!
dn−1

dλn−1

∫ ts+n+1

ts

− ωαβ (x)
Bs,n+1(x)

x − λ
dx, s = 0, . . . , Rn − n − 1,

1

(n − 1)!
dn−1

dλn−1

∫ 1

ts

− ωαβ (x)
Bs,n+1(x)

x − λ
dx, s = Rn − n, . . . , Rn − 1.

In order to do this, we can consider all n-degree polynomials ps
j (x), j = s, . . . , s+

n, such that

ps
j (x) = Bs,n+1(x), x ∈ [tj , tj+1].

Setting

ps
j (x) =

n+1∑
k=1

ākx
n+1−k,

we evaluate ps
j (x)/(x − λ) by using

ps
j (x) = (x − λ)

n∑
k=1

(
k∑

ν=1

āνλ
k−ν

)
xn−k +

n+1∑
k=1

ākλ
n+1−k. (26)

Using (26), the evaluation of I (Bs,n+1; λ; n−1) is reduced to the computation of the
following integrals:

dn−1

dλn−1

∫ tj+1

tj

− ωαβ (x)
ps

j (x)

x − λ
dx = dn−1

dλn−1

[
n∑

k=1

(
k∑

ν=1

āνλ
k−ν

)∫ tj+1

tj

ωαβ(x)xn−kdx

+
n+1∑
k=1

ākλ
n+1−k

∫ tj+1

tj

− ωαβ(x)
1

x − λ
dx

]
. (27)

In particular, we consider α = β = −0.5, 0, 0.5, for which the integrals in (27)
can be evaluated exactly, otherwise we have to use a numerical method [6].

4.2 Singularity of order 2

We evaluate numerically I (f ; λ; 1) with a 2-order singularity at x = λ. Replacing f

by

MR(f )(x) =
R∑

r=0

2∑
i=0

Dif (t3r )F
(3r)
i (x) ∈ S4(TR), (28)

we get

I (f ; λ; 1) ∼=
R∑

r=0

2∑
i=0

Dif (t3r )wr,i(λ), (29)
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with

wr,i(λ) = d

dλ

∫ 1

−1
− ωαβ (x)

x − λ
F

(3r)
i (x)dx, r = 0, . . . , R, i = 0, 1, 2.

Using (7) we have

wr,i(λ) =
3r−1∑

s=3r−3

(−1)i

3!
d3−i

dy3−i
ϕs,n(t3r )

d

dλ

∫ 1

−1
− ωαβ (x)

Bs,4(x)

x − λ
dx,

then, to compute wr,i , we have to evaluate the following integrals:

I (Bs,4; λ; 1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dλ

∫ ts+4

−1
− ωαβ (x)

Bs,4(x)

x − λ
dx, s = −3, −2, −1,

d

dλ

∫ ts+4

ts

− ωαβ (x)
Bs,4(x)

x − λ
dx, s = 0, . . . , 3R − 4,

d

dλ

∫ 1

ts

− ωαβ (x)
Bs,4(x)

x − λ
dx, s = 3R − 3, 3R − 2, 3R − 1.

Let

ps
j (x) = ā1x

3 + ā2x
2 + ā3x + ā4 = Bs,4(x), x ∈ [tj , tj+1],

with j = s, s+1, s+2, s+3, be the polynomial representation ofBs,4(x) in [tj , tj+1].
In order to evaluate the quantities ps

j (x)/(x − λ), we write ps
j (x) in the form

ps
j (x) =

[
ā1x

2 + (ā2 + ā1λ)x + (ā3 + ā2λ + ā1λ
2)
]
(x−λ)+ā4+ā3λ+ā2λ

2+ā1λ
3.

Then, the evaluation of I (Bs,4; λ; 1) is reduced to the computation of the following
integrals, for j = s, s + 1, s + 2, s + 3,

d

dλ

∫ tj+1

tj

− ωαβ (x)
ps

j (x)

x − λ
dx = b̄1

∫ tj+1

tj

ωαβ(x)xdx + b̄2

∫ tj+1

tj

ωαβ(x)dx

+b̄3

∫ tj+1

tj

− ωαβ(x)
1

x − λ
dx + b̄4

d

dλ

∫ tj+1

tj

− ωαβ(x)
1

x − λ
dx,

where

b̄1 = ā1,

b̄2 = ā2 + 2ā1λ,

b̄3 = ā3 + 2ā2λ + 3ā1λ
2,

b̄4 = ā4 + ā3λ + ā2λ
2 + ā1λ

3.
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4.3 Singularity of order 3

Similarly to the previous case, in order to evaluate numerically I (f ; λ; 2), with a
3-order singularity at x = λ, we replace f by (28). Hence, we get

I (f ; λ; 2) ∼=
R∑

r=0

2∑
i=0

Dif (t3r )wr,i(λ), (30)

with

wr,i(λ) = 1

2

d2

dλ2

∫ 1

−1
− ωαβ (x)

x − λ
F

(3r)
i (x)dx, r = 0, . . . , R, i = 0, 1, 2.

Using (7), wr,i(x) can be written in the form

wr,i(λ) =
3r−1∑

s=3r−3

(−1)i

3!
d3−i

dy3−i
ϕs,n(t3r )

1

2

d2

dλ2

∫ 1

−1
− ωαβ (x)

Bs,4(x)

x − λ
dx,

then, in order to evaluate wr,i , we have to compute

I (Bs,4; λ; 2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2

d2

dλ2

∫ ts+4

−1
− ωαβ (x)

Bs,4(x)

x − λ
dx, s = −3, −2, −1,

1

2

d2

dλ2

∫ ts+4

ts

− ωαβ (x)
Bs,4(x)

x − λ
dx, s = 0, . . . , 3R − 4,

1

2

d2

dλ2

∫ 1

ts

− ωαβ (x)
Bs,4(x)

x − λ
dx, s = 3R − 3, 3R − 2, 3R − 1.

Let ps
j (x) be the polynomial representation of Bs,4(x) in [tj , tj+1], as shown in

Section 4.2 the evaluation of Bs,4(x) is reduced to the computation of the following
integrals, for j = s, s + 1, s + 2, s + 3,

1

2

d2

dλ2

∫ tj+1

tj

− ωαβ (x)
ps

j (x)

x − λ
dx = c̄1

∫ tj+1

tj

ωαβ(x)dx + c̄2

∫ tj+1

tj

− ωαβ(x)
1

x − λ
dx

+c̄3
d

dλ

∫ tj+1

tj

− ωαβ(x)
1

x − λ
dx

+c̄4
d2

dλ2

∫ tj+1

tj

− ωαβ(x)
1

x − λ
dx,

where

c̄1 = ā1,

c̄2 = ā2 + 3ā1λ,

c̄3 = ā3 + 2ā2λ + 3ā1λ
2,

c̄4 = 1

2

(
ā4 + ā3λ + ā2λ

2 + ā1λ
3
)
.
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Table 1 Errors in the case
γ = 2 R |EM

R | |ER |

7 —– 8.19e-02

15 —– 2.61e-02

31 —– 8.79e-03

63 —– 3.03e-03

127 —– 1.06e-03

255 1.33e-03 3.73e-04

511 4.86e-04 1.31e-04

1023 1.76e-04 4.65e-05

2047 6.31e-05 1.46e-05

4095 2.26e-05 8.00e-06

5 Comparisons and numerical examples

In this section we compare our quadratures (29) and (30) with composite midpoint
[20], Simpson [21] and Newton-Cotes [19].

We denote by ER the errors obtained with our quadrature rules,

ER = I (e
(0)
R ; λ; p) = I (f ; λ; p) − I (MR(f ); λ; p), p = 1, 2.

For both values of p we approximate f by the cubic Martensen spline MR(f ).

5.1 Comparison with midpoint

We evaluate numerically the finite-part integral (3), with α = β = 0, p = 1, λ = 0
and

f (x) = x2 + x +
[
2 + x

|x|
]

|x|γ+1/2, γ = 2, 3,

by using the quadrature sum (29) and the composite midpoint rule [20]. Obviously,
f (x) ∈ Cγ+1/2([−1, 1]). The exact value of the finite-part integral is [20]

I (f ; 0; 1) = 2 + 4

1/2 + γ − 1
, γ = 2, 3.

We adopt a uniform mesh for both methods. Let EM
R be the quadrature error

obtained by the composite midpoint rule, where R is the number of integration’s
subintervals.

In Tables 1 and 2 we compare the numerical results presented in [20] with the
results obtained by our method, respectively in the case γ = 2 and γ = 3.

With γ = 2 our method performs better than the one presented in [20], whereas
with γ = 3 our method is more accurate up to R = 1023, while for higher values of
R, the errors grow.
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Table 2 Errors in the case
γ = 3 R |EM

R | |ER |

7 —– 6.31e-03

15 —– 9.40e-04

31 —– 1.53e-04

63 —– 2.60e-05

127 —– 4.51e-06

255 7.07e-05 7.89e-07

511 1.81e-05 1.23e-07

1023 4.58e-06 1.37e-07

2047 1.16e-06 1.65e-06

4095 2.92e-07 2.02e-06

In Fig. 1 the absolute errors, reported in Tables 1 and 2, are represented for the
different values of R, so we can compare graphically the behaviour of quadrature
errors. In both cases γ = 2 and γ = 3 we can see that our method get the same
accuracy of midpoint for considerably less values of R.

5.2 Comparison with Simpson

We evaluate numerically the finite-part integral (3) with α = β = 0, p = 2 and

f (x) = x4,
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Fig. 1 Graphical representation of absolute errors. Axis y is in logarithmic scale
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Table 3 Errors in the case
λ = t[R/4] + h/2 + τh, with
τ = 0, 1/4

R τ = 0 τ = 1/4

|ES
R | |ER | |ES

R | |ER |

8 —– 1.43e-05 —– 2.73e-02

16 —– 1.20e-06 —– 6.83e-03

32 —– 8.73e-08 —– 1.71e-03

64 —– 3.66e-09 —– 4.27e-04

128 —– 1.55e-06 —– 1.04e-04

256 6.40e-02 2.79e-05 3.16e-02 9.47e-05

512 3.22e-02 2.49e-04 1.60e-02 3.05e-03

1024 1.62e-02 2.63e-02 8.07e-03 2.22e-02

2048 8.11e-03 2.50e-01 4.05e-03 3.06e+00

by using the quadrature sum (30) and the composite Simpson’s rule [21].
For both methods we adopt a uniform mesh. We consider two different singulari-

ties of order 3, λ = t[R/4] +h/2+ τh and λ = t0 +h/2+ τh, with τ = 0, 1/4, where
h is the width of every subinterval. The exact value of the finite-part integral is [21]

I (f ; λ; 2) = 6λ − 8λ3 − 6λ5

(1 − λ2)2
+ 6λ2 ln

∣∣∣∣1 − λ

1 + λ

∣∣∣∣ .
In order to construct the composite Simpson’s rule, we have to introduce a quadrature
node at each subinterval then, to compare our method with Simpson, we have to
assume R = 2n, where n is the number of subintervals used for the construction of
the composite rule.

Let ES
R be the quadrature error obtained using the composite Simpson’s rule, with

R + 1 quadrature nodes.
In Table 3 we compare the results presented in [21] with the results obtained by

our method, in the case λ = t[R/4] + h/2 + τh, with τ = 0, 1/4, whereas in Table 4
we compare the results obtained by the two methods in the case λ = t0 + h/2 + τh,
with τ = 0, 1/4.

Table 4 Errors in the case
λ = t0 + h/2 + τh, with
τ = 0, 1/4

R τ = 0 τ = 1/4

|ES
R | |ER | |ES

R | |ER |

8 —– 3.29e-04 —– 2.75e-02

16 —– 8.26e-05 —– 6.88e-03

32 —– 2.07e-05 —– 1.72e-03

64 —– 5.53e-06 —– 3.93e-04

128 —– 6.31e-05 —– 1.31e-03

256 1.26e-01 1.31e-04 6.32e-02 3.91e-02

512 6.35e-02 1.59e-01 3.18e-02 1.64e+00

1024 3.18e-02 2.16e+00 1.60e-02 5.30e+01

2048 1.59e-02 4.70e+00 7.99e-03 2.30e+02
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We represented in Figs. 2 and 3 the errors in Tables 3 and 4, obtained for different
values of τ .

We can observe that, with smaller values ofR, our method performs better than the
composite Simpson’s rule, presented in [21], but for higher values of R errors grow.

5.3 Comparison with Newton-Cotes

We evaluate numerically the finite-part integral (3) with α = β = 0, p = 1, λ = 0
and

f (x) = x4 + |x|δ+γ , δ = 3, 4, γ = 1

2
,
1

3
.

Obviously, f (x) ∈ Cδ+γ ([−1, 1]). In particular, we compare our quadrature (29)
with Newton-Cotes rule of degree 3 [19]. The exact values of the integrals are [19]

I (f ; 0; 1) = 12 + 2γ

9 + 3γ
, for δ = 4,

I (f ; 0; 1) = 10 + 2γ

6 + 3γ
, for δ = 3,

with γ = 1/2, 1/3. For both methods we adopt a uniform mesh.
To construct the piecewise Lagrange interpolation polynomial of degree k, we

have to introduce k−1 quadrature nodes at each subinterval, then, in order to compare
our method with Newton-Cotes, we have to assume R = kn, where n is the number
of subintervals used for the construction of the composite rule.

Let EN
R be the quadrature error obtained using the composite Newton-Cotes rule

of degree 3, with R + 1 quadrature nodes.

Fig. 2 Graphical representation of absolute errors, in the case λ = t[R/4] + h/2 + τh. Axis y is in
logarithmic scale
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Fig. 3 Graphical representation of absolute errors, in the case λ = t0 +h/2+ τh. Axis y is in logarithmic
scale

In Tables 5 and 6 we compare the results presented in [19] with the results obtained
by our spline quadrature (29) for both values of δ, then we represent the abso-
lute errors in Figs. 4 and 5, so that we can compare graphically the behaviour of
quadrature errors.

In both cases, we can see that our method perform better than the rule proposed
in [19]. In particular, we observe that the accuracy of our spline quadrature with
R = 69 is comparable or sometimes better than the accuracy achieved by composite
Newton-Cotes with R = 285.

5.4 Final remarks

Evaluation of Hadamard finite-part integrals of the form (1) is reduced to the
computation of Cauchy principal value integrals in virtue of Property 1 in Section 1.

Property 2 in Section 1 says that when we subdivide the integration’s interval
[a, b] in R subintervals and when the singularity lies in one of these subintervals,

Table 5 Errors in the case
δ = 4 R γ = 1/3 γ = 1/2

|EN
R | |ER | |EN

R | |ER |

15 2.52e-02 2.33e-04 2.35e-02 2.13e-04

33 2.17e-03 1.89e-05 1.98e-03 1.65e-05

69 2.21e-04 1.85e-06 2.00e-04 1.58e-06

141 2.44e-05 1.97e-07 2.20e-05 1.68e-07

285 2.81e-06 2.35e-08 2.54e-06 2.02e-08
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Table 6 Errors in the case
δ = 3 R γ = 1/3 γ = 1/2

|EN
R | |ER | |EN

R | |ER |

15 5.11e-02 9.60e-04 4.43e-02 3.60e-04

33 7.15e-03 1.60e-04 5.49e-03 5.53e-05

69 1.18e-03 2.93e-05 7.99e-04 9.25e-06

141 2.11e-04 5.61e-06 1.26e-04 1.61e-06

285 3.96e-05 1.09e-06 2.07e-05 2.82e-07

the finite-part integral in (2) tends to infinity as R → ∞. Moreover, the best case is
when the singularity is located in the middle point of a subinterval [10].

From numerical results in Tables 2, 3 and 4 we can observe that our method
presents the numerical instability phenomenon derived from Property 2 for values of
R smaller with respect to the considered composite rules. This behaviour is due to
the fact that both quadratures (29) and (30) require integral evaluations on intervals
[tj , tj+1], j = 0, 1, . . . , 3R−1. Consequently, for equally spaced knots and for fixed
R, the integration interval containing the singularity is the third part of the integration
interval required by other methods.

When the singularity is located in the middle point between two spline knots, as
for example λ = 0 in Section 5.1 and τ = 0 in Section 5.2, our quadrature performs
slightly better for higher number of knots.

Nevertheless, by using a considerably less number of quadrature nodes, our spline
quadrature achieves the same or better accuracy with respect to the considered com-
posite rules. Moreover, we have a great flexibility in the choice of quadrature nodes
and we can use spline spaces Sn+1(TR) of different orders.

Fig. 4 Graphical representation of absolute errors in the case δ = 4. Axis y is in logarithmic scale
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Fig. 5 Graphical representation of absolute errors in the case δ = 3. Axis y is in logarithmic scale

Since Martensen interpolation is a natural extension of piecewise linear interpo-
lation, a further investigation should be the use of Martensen splines for finite-part
integrals with endpoint singularities as considered by C.W. Groetsch [7].
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