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Abstract In this paper, we propose a conservative linearized difference scheme for
the nonlinear fractional Schrödinger equation. The scheme efficiently avoids the time
consuming iteration procedure necessary for the nonlinear scheme and thus is time
saving relatively. It is rigorously proved that the scheme is mass conservative and
uniquely solvable. Then employing mathematical induction, we further show that
the proposed scheme is convergent at the order of O(τ 2 + h2) in the l2 norm with
time step τ and mesh size h. Moreover, an extension to coupled nonlinear fractional
Schrödinger systems is presented. Finally, numerical tests are carried out to corrobo-
rate the theoretical results and investigate the impact of the fractional order α on the
collision of two solitons.

Keywords Nonlinear fractional Schrödinger equations · Linearized difference
scheme · Conservation · Unique solvability · Convergence

1 Introduction

This paper considers the nonlinear fractional Schrödinger equation (FSE) of the form

iut − (−�)
α
2 u + β|u|2u = 0, a < x < b, 0 < t � T , (1)
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with the initial condition

u(x, 0) = u0(x), a � x � b, (2)

and the Dirichlet boundary condition

u(a, t) = u(b, t) = 0, 0 � t � T , (3)

where i2 = −1, u(x, t) is a complex-valued wave function, the parameter β is a real
constant describing the strength of the local (or short-range) interactions between
particles (positive for repulsive interaction and negative for attractive interaction),
and u0(x) is a given smooth function vanishing at the end points x = a and x = b.
−(−�)

α
2 is the fractional Laplace operator which is defined as a pseudo-differential

operator with the symbol −|ξ |α:
−(−�)

α
2 u(x, t) = −F−1(|ξ |αû(ξ, t)),

where F is the Fourier transform. Yang [47] showed that it is indeed equivalent to
the Riesz fractional derivative, i.e.,

− (−�)
α
2 u(x, t) = ∂α

∂|x|α u(x, t) := − 1

2 cos απ
2

[−∞Dα
x u(x, t) + xD

α+∞u(x, t)],
(4)

where −∞Dα
x u(x, t) and xD

α+∞u(x, t) are the left- and right-side Riemann-Liouville
fractional derivatives [8, 32], respectively. When α = 2 the fractional Laplace opera-
tor is in accordance with the classical Laplace operator and then this system reduces
to the classical cubic nonlinear Schrödinger equation. While for α = 1, this system
collapses to the relativistic Hartree equation (massless particles case) describing the
mean field dynamics of boson stars (see [11] and references therein).

As a natural generalization of the classical (non-fractional) Schrödinger equation,
the FSE has been exploited to study fractional quantum phenomena. In last decade
many mathematical and numerical studies have been performed in the literature.
Along the mathematical front, Naber [30] derived the time FSE involving a Caputo
fractional derivative and solved it for a free particle and for a potential well. Laskin
[24, 25] extended the Feynman path integral to Lévy one and derived the space FSE.
Further he [26] demonstrated the Hermiticity of the fractional Hamilton operator and
established the parity conservation law. Some physical applications are discussed by
Guo and Xu in [19]. Hu [21] studied the global solution for a class of systems of
fractional nonlinear Schrödinger equations. Secchi [33] constructed the ground state
solution in RN . Uzar [38] investigated the fractional Bose-Einstein condensation and
compared it with the classical one. In particular, for the problems (1)-(3), Guo et al.
[18] studied the existence and uniqueness of the global smooth solution to the period
boundary value problem, and arrived at the mass conservation

‖u‖2
L2 = ‖u0‖2L2 , (5)

where ‖ · ‖L2 denotes the L2 norm.
Along the numerical front, different numerical methods have been developed for

time and/or space FSEs. In the time-fractional case, Wei et al. considered an implicit
fully discrete local discontinuous Galerkin method for the time FSE [44], and then
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applied this method to time-fractional coupled Schrödinger systems [45]. Mohebbi
[29] proposed a meshless method. In the space-fractional case, Amore et al. [2] devel-
oped the collocation method, Atangana [5] considered a difference scheme for the
space FSE with the Caputo variable-order fractional derivative (see [4, 6, 7] for the
definition and other applications of this fractional derivative). Wang et al. [39, 40]
proposed two difference schemes for the coupled fractional Schrödinger equation
(CFSE) with the Riesz space fractional derivative. Wang and Huang [41] constructed
an energy conservative difference scheme for the nonlinear FSE. Herzallah [20]
approximated the time-space FSE by Adomian decomposition method. Ford et al.
[17] constructed a difference scheme for the time-space FSE in two dimensions. Bao
and Dong [11] proposed a backward Euler and time-splitting sine pseudospectral
method, respectively, for computing the ground states and dynamics of the nonlinear
relativistic Hartree equation.

For classical Schödinger equations, it is desirable for a numerical scheme to pre-
serve some invariant properties of the original equation because the conservative
schemes can perform better than the nonconservative ones [49]. In terms of finite
difference, extensive conservative schemes have been constructed and studied in the
literature. For the theoretical analysis and numerical comparison of the conservation
property for different numerical schemes, we refer to [1, 10, 15, 16, 42, 46, 49] for
Schrödinger equations and [23, 27, 35, 36, 43] for coupled Schrödinger equations,
or the latest review papers [3, 9, 12] and reference therein. Naturally, it is of interest
to investigate conservative difference schemes for FSEs. For example, the difference
scheme in [40] is mass conservative for the CFSE and the scheme in [41] is mass and
energy conservative. However, both schemes are nonlinear due to the original non-
linearity in the FSEs. This means that at each time step, both schemes require the
solution of a nonlinear system and thus it might be very time consuming. In particular,
as pointed out in [10], the nonlinear system need be solved numerically to extremely
high accuracy, otherwise, the mass and energy conservation could be destroyed.
Hence, it is interesting to investigate linearly-implicit conservative schemes. This
topic has been considered in [39], where a mass conservative linearized difference
scheme is given.

In this paper, we consider a new difference scheme for the FSE (1), which can be
regarded a linearization of our previous scheme in [41]. At each time step of the new
scheme, only a linear system needs be solved and thus, the computational cost will
be significantly reduced. Meanwhile, the mass conservation in the discrete sense can
be preserved very well. In addition, for deriving the convergence of the difference
solution, it is imperative to show the maximum value of the numerical solution is
bounded by some generic constant. In this pursuit, the cut-off technique was adopted
in [41]. Here, we propose a mathematical induction method. Another aim of this
paper is to numerically investigate the impact of the fractional order α on the collision
of two solitons, employing our new scheme.

The remainder of this paper is arranged as follows. In Section 2, the linearized
difference scheme is introduced. The conservation property, solvability and conver-
gence are rigorously proved in Section 3. In Section 4, we extend the results to the
CFSE. Numerical experiments are performed in Section 5 to confirm our theoretical
results and simulate the dynamics. Finally, some conclusions are drawn in Section 6.
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Throughout the paper we use C to denote a generic constant whose actual value may
change from line to line.

2 Linearized difference scheme

2.1 Notations

For two positive integers N and M , choose the time step τ := T
N

and mesh size
h := b−a

M
. We define a partition of [a, b] × [0, T ] by � := �τ × �h with the grid

�τ = {tn = nτ |n = 0, 1, 2, . . . , N} and �h = {xj = a + jh|j = 0, 1, 2, . . . ,M}.
Given a grid function wn = {wn | tn ∈ �τ }, denote

δtw
n+ 1

2 = wn+1 − wn

τ
, wn+ 1

2 = wn+1 + wn

2
.

Let Vh = {w | w = (w0, w1, . . . , wM), w0 = wM = 0} be the space of grid
functions. For any two grid functions w, v ∈ Vh, define the discrete inner product
and the associated l2 norm as

(w, v) = h

M−1∑

j=1

wj v̄j , ‖w‖2 = (w, w),

where v̄ denote the conjugate of v. We also define

‖w‖∞ = max
0�j�M

|wj |

as the discrete maximum norm (or l∞ norm).

2.2 Derivation of the linearized difference scheme

The Riesz fractional derivative presents some challenges for numerical simula-
tion. For designating efficient and accurate approximating to it, a wide variety of
methods including the shifted Grünwald approximation [28], the L1/L2 approxima-
tion method [47], the matrix transform method [22, 48], the weighted and shifted
Grünwald difference method [37] and the finite element method [13, 50] have been
developed. Recently, Ortigueira [31] defined the fractional centered difference and
Çelik and Duman [14] analyzed the approximation error. This approximation has
been successfully applied to solve many problems, e.g., fractional diffusion equations
[14], fractional advection-dispersion equations [34] and the FSE [40, 41].

In this paper the fractional centered difference is adopted to approximate the Riesz
fractional derivative. For the case 0 < γ � 2, it is defined as [14]

∂γ

∂|x|γ u(x, t) = − 1

hγ

(x−a)/h∑

l=−(b−x)/h

(−1)l�(γ + 1)

�(γ /2 − l + 1)�(γ /2 + l + 1)
u(x − lh, t) + O(h2). (6)
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Denoting un
j := u(xj , tn) at the point xj and at time tn, and noticing (4) as well as

the homogeneous boundary condition (3), we obtain

− (−�)
γ
2 un

j = − 1

hγ

j∑

l=−M+j

c
(γ )

l un
j−l + O(h2)

= − 1

hγ

M−1∑

l=1

c
(γ )

j−lu
n
l + O(h2), (7)

where the coefficients c
(γ )

l := (−1)l�(γ+1)
�(γ /2−l+1)�(γ /2+l+1) .

Let Un
j be the numerical approximation to u(xj , tn) and

�α
hUn

j := h−α
M−1∑

l=1

c
(α)
j−lU

n
l , 1 � j � M − 1, 0 � n � N. (8)

Then we introduce the linearized difference scheme for the FSE (1)

iδtU
n+ 1

2
j − �α

hU
n+ 1

2
j + β

2

(
3|Un

j |2 − |Un−1
j |2)Un+ 1

2
j = 0, (9)

1 � j � M − 1, 0 � n � N − 1,

U0
j = u0(xj ), 0 � j � M, (10)

Un
0 = Un

M = 0, 0 � n � N. (11)

This scheme is not selfstarting and the first step values U1
j need to be provided by

other scheme, such as the one proposed in [40],

iδtU
1
2
j − �α

hU
1
2
j + β|U

1
2
j |2U

1
2
j = 0, 1 � j � M − 1. (12)

For scheme (9)-(11), only a linear system is to be solved at each time step. Further-
more, it is worth noting that, when α = 2, �α

h identify with the classical discrete
Laplace operator and then the scheme (9)-(11) reduces to the one proposed in [15]
for classical nonlinear Schrödinger equations.

3 Theoretical analysis

3.1 Conservation

This subsection is devoted to showing the mass conservation preserved by the scheme
(9)-(11).

Lemma 3.1 [41] For any grid function Un ∈ Vh, 0 � n � N , we have

Im
(
�α

hUn+ 1
2 , Un+ 1

2

)
= 0, (13)

where “Im(s)” means taking the imaginary part of a complex number s.
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Theorem 3.1 The scheme (9)-(11) is conservative in the sense

Qn ≡ Q0, 0 � n � N, (14)

where

Qn := ‖Un‖2. (15)

is the mass in the discrete sense.

Proof The proof is standard and straightfoward. Computing the discrete inner

product of (9) with Un+ 1
2 and taking the imaginary part, yield

‖Un+1‖2 = ‖Un‖2, 0 � n � N − 1, (16)

where (13) was used. Hence, the proof is complete.

Remark 3.1 From Theorem 3.1, it follows that the numerical solution of (9)-(11) is
long-time bounded, i.e., there exists some constant C > 0, such that

‖Un‖ � C, 0 � n � N. (17)

This immediately implies the unconditional stability of scheme (9)-(11).

Remark 3.2 Here the conserved discrete mass Qn involve only one time level, which
is different from that presented in [39] where Qn := 1

2 (‖Un+1‖2 + ‖Un‖2) and two
time levels are included.

3.2 Solvability

We now prove that the difference scheme (9)-(11) is uniquely solvable by means of
the Brouwder fixed point theorem and the energy method.

Lemma 3.2 (Brouwder Fixed Point Theorem) Let (H, 〈·, ·〉) be a finite dimensional
inner product space, ‖ · ‖ be the associated norm, and f : H → H be continuous.
Assume, moreover, that

∃α > 0, ∀z ∈ H, ‖z‖ = α, Re〈g(z), z〉 � 0. (18)

Then, there exists a z∗ ∈ H such that g(z∗) = 0 and ‖z∗‖ � α.

Theorem 3.2 The solution of finite difference scheme (9)-(11) uniquely exists.

Proof We discuss the uniqueness and existence of the difference solution in an
inductive way. Noticing that U0 ∈ Vh has been determined uniquely from (10)-(11).
The assertion for n = 1 has been proved in [40]. In scheme (9)-(11), for given Un−1,
Un ∈ Vh with n � N − 1, we need to prove that there uniquely exists Un+1 ∈ Vh

satisfying difference scheme (9)-(11).
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We first prove the uniqueness. Suppose there exist two solutions U(1), U(2) ∈ Vh

satisfying scheme (9)-(11), i.e.,

i
U

(1)
j − Un

j

τ
− 1

2
�α

h

(
U

(1)
j + Un

j

)
+ β

4

(
3|Un

j |2 − |Un−1
j |2)

(
U

(1)
j + Un

j

)
= 0,

(19)

i
U

(2)
j − Un

j

τ
− 1

2
�α

h

(
U

(2)
j + Un

j

)
+ β

4

(
3|Un

j |2 − |Un−1
j |2)

(
U

(2)
j + Un

j

)
= 0.

(20)

Denoting ϕ = U(1) − U(2) and subtracting (20) from (19), yield

i
ϕj

τ
− 1

2
�α

hϕj + β

4

(
3|Un

j |2 − |Un−1
j |2)ϕj = 0, 1 � j � M − 1. (21)

Computing the discrete inner product of (21) with ϕ, taking the imaginary part and
using Lemma 3.1, we obtain ‖ϕ‖2 = 0, which implies ϕ = 0. Hence U(1) = U(2),
i.e., the solution of (9)-(11) is unique.

Next, we prove the existence. For a fixed n, substituting Un+1
j = 2U

n+ 1
2

j − Un
j

into (9) yields

U
n+ 1

2
j = Un

j − i
τ

2

[
�α

hU
n+ 1

2
j − β

2

(
3|Un

j |2 − |Un−1
j |2

)
U

n+ 1
2

j

]
, 1 � j � M − 1.

(22)
Consider the mapping F : Vh → Vh defined as

F(w)j = wj − Un
j + i

τ

2

[
�α

hwj − β

2

(
3|Un

j |2 − |Un−1
j |2

)
wj

]
, 1 � j � M − 1,

(23)
which is obviously continuous. Noticing (13), computing the discrete inner product
of (23) with w and taking the real part, we obtain

Re
(
F(w), w

)

= ‖w‖2 − Re(Un, w) − τ

2
Im

((�α
hw, w

) − β

2
h

M−1∑

j=1

(
3|Un

j |2 − |Un−1
j |2)|wj |2

)

= ‖w‖2 − Re(Un, w)

� ‖w‖2 − ‖w‖ · ‖Un‖
= ‖w‖(‖w‖ − ‖Un‖), (24)

where “Re(s)” means taking the real part of a complex number s. It follows from
(24) that, if we let ‖w‖ = ‖Un‖, there is Re

(
F(w)

)
� 0. Then using Lemma 3.2 we

know that there exists a w∗ ∈ Vh such that F(w∗) = 0 and ‖w∗‖ � ‖Un‖. Thus, the
existence is proved.
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3.3 Convergence

In this subsection, we analyze the convergence of the scheme (9)-(11). The key ingre-
dient in the analysis is to show the maximum value of the difference solution, i.e.
‖Un‖∞, is bounded by some constant. The authors in [41] adopted the cut-off tech-
nique (see [10]) to show the convergence of the nonlinear CN scheme. Here, we
propose a mathematical induction method. The inverse inequality is needful in our
analysis and we first introduce it in the following lemma.

Lemma 3.3 [46] For any grid function Un ∈ Vh, 0 � n � N , the inequality

‖Un‖2∞ � 1

h
‖Un‖2 (25)

holds.

Let R
n+ 1

2
j be the local truncation error of scheme (9). Then

iδtu
n+ 1

2
j − �α

hu
n+ 1

2
j + β

2
(3|un

j |2 − |un−1
j |2)un+ 1

2
j = R

n+ 1
2

j ,

1 � j � M − 1, 1 � n � N − 1. (26)

From (7) and Taylor’s expansion, we have

|Rn+ 1
2

j | � CR(τ 2 + h2), 1 � j � M − 1, 0 � n � N − 1, (27)

which gives

‖Rn+ 1
2 ‖2 � (b − a)

(
CR(τ 2 + h2)

)2
, 0 � n � N − 1. (28)

Define the error function en ∈ Vh for 0 � n � N as

en
j = un

j − Un
j , 1 � j � M − 1.

Then we have the following result.

Theorem 3.3 Suppose that the original problem (1)-(3) has a smooth solution.
Assume τ � Ch, then there exist τ0 > 0 and h0 > 0 sufficiently small such that,
when 0 < τ � τ0 and 0 < h � h0, we have

‖en‖ �
√
2(b − a)(nτ)CR exp

(
2(2 + CM0 )nτ

)
(τ 2 + h2), ‖Un‖∞ � 1 + M0, 0 � n � N,

(29)
where M0 = max0�t�T ‖u(·, t)‖L∞ , CM0 = 12β2M2

0 (1 + M0)
2.

Proof We will prove this theorem by the method of mathematical induction. For
n = 0, combining (2) with (10) straightforwardly implies the validity of (29). From
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the error analysis shown in [40], when τ and h sufficiently small, we get

‖e1j‖ �
√

b − aCRτ(τ 2 + h2)

�
√

b − aCR

√
τ(τ 2 + h2)

�
√
2(b − a)CR

√
τ exp

(
2(2 + CM0)τ

) (
τ 2 + h2

)
. (30)

Under the assumption τ � Ch, noticing (25), we have

‖e1‖∞ � h− 1
2 ‖e1‖ � C1h

3
2 , (31)

where C1 := √
2(b − a)T CR exp

(
2(2 + CM0)T

)
(1 + C2). Hence

‖U1‖∞ � ‖u1‖∞ + ‖e1‖∞ � M0 + C1h
3
2 . (32)

Let h0 = C
− 2

3
1 . When 0 < h � h0, we obtain

‖U1‖∞ � M0 + 1. (33)

It follows from (30) and (33) that (29) holds for n = 1. Now we assume that (29) is
valid for all 0 � n � m − 1 � N − 1, we then need to show that it is still valid for
n = m.

Subtracting (26) from (9) yields

iδt e
n+ 1

2
j − �α

he
n+ 1

2
j + β

2
(3|Un

j |2 − |Un−1
j |2)en+ 1

2
j = Gn

j + R
n+ 1

2
j ,

1 � j � M − 1, 1 � n � m − 1, (34)

where

Gn
j = β

2

[
(3|Un

j |2 − |Un−1
j |2) − (3|un

j |2 − |un−1
j |2)]un+ 1

2
j

= β

2

[
3(|Un

j |2 − |un
j |2) − (|Un−1

j |2 − |un−1
j |2)]un+ 1

2
j . (35)

Since (29) is valid for n � m − 1, we have

|Gn
j | � |β|M0(1+ M0)

(
3|en

j | + |en−1
j |), 1 � j � M − 1, 1 � n � m − 1, (36)

which deduces

‖Gn‖2 � CM0(‖en‖2 + ‖en−1‖2), 1 � n � m − 1. (37)

Computing the discrete inner product of (34) with en+ 1
2 and taking the imagine part,

using the triangular and Cauchy inequalities, noticing (13), (27) and (37), we have
for 1 � n � m − 1,

‖en+1‖2 − ‖en‖2 = τIm(Gn + Rn+ 1
2 , en+1 + en)

� τ
(‖en+1‖2 + ‖en‖2 + ‖Gn‖2 + ‖Rn+ 1

2 ‖2)

� τ
(
‖en+1‖2 + ‖en‖2 + CM0

(‖en‖2 + ‖en−1‖2) + (b − a)
(
CR(τ 2 + h2)

)2)
.

When τ � 1
2 , we obtain

‖en+1‖2−‖en‖2 � 2(2+CM0)τ‖en‖2+2CM0τ‖en−1‖2+2τ(b−a)
(
CR(τ 2+h2)

)2
.
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Using the above inequality, noticing (29), we get

‖em‖2 �
(
1 + 2(2 + CM0 )τ

)‖em−1‖2 + 2CM0τ‖em−2‖2 + 2τ(b − a)
(
CR(τ 2 + h2)

)2

� 2(b − a)
(
CR(τ 2 + h2)

)2[(1 + 2(2 + CM0 )τ
)
(m − 1)τ exp

(
4(2 + CM0 )(m − 1)τ

)

+2CM0τ(m − 2)τ exp
(
4(2 + CM0 )(m − 2)τ

) + τ
]

� 2(b − a)
(
CR(τ 2 + h2)

)2[(1 + 4(2 + CM0 )τ
)
(m − 1)τ exp

(
4(2 + CM0 )(m − 1)τ

) + τ
]

� 2(b − a)
(
CR(τ 2 + h2)

)2[
(m − 1)τ exp

(
4(2 + CM0 )mτ

) + τ
]

� 2(b − a)
(
CR(τ 2 + h2)

)2[
mτ exp

(
4(2 + CM0 )mτ

)]
,

which immediately implies

‖em‖ �
√
2(b − a)(mτ)CR exp

(
2(2 + CM0)mτ

)
(τ 2 + h2). (38)

Again under the assumption τ � Ch, combining the above inequality with (25) gives

‖Um‖∞ � ‖um‖∞ + ‖em‖∞ � M0 + h− 1
2 ‖em‖ � M0 + C1h

3
2 , (39)

and consequently, when 0 < h � h0, we have

‖Um‖∞ � M0 + 1. (40)

This together with (38) implies (29) for n = m and thus completes the proof by the
method of mathematical induction.

4 Extension

The ideas for designing linearized difference scheme for the FSE (1)-(3) in the
previous sections can be easily extended to the CFSE.

We consider the following CFSE

iut − (−�)
α
2 u + ρ

(
|u|2 + β|v|2

)
u = 0, a < x < b, 0 < t � T ,

ivt − (−�)
α
2 v + ρ

(
|v|2 + β|u|2

)
v = 0, a < x < b, 0 < t � T ,

u(x, 0) = u0(x), v(x, t) = v0(x), a � x � b,

u(a, t) = u(b, t) = 0, v(a, t) = v(b, t) = 0, 0 � t � T , (41)

where the parameters ρ and β are some real constants. This equation has been studied
mathematically in [21] and numerically in [39, 40]. When ρ = 0, this system is
decoupled and becomes the FSE of free particles. When β = 0, it reduces to the
single FSE. Moreover, the CFSE (41) conserves the mass, i.e.,

‖u‖2
L2 = ‖u0‖2L2 , ‖v‖2

L2 = ‖v0‖2L2 . (42)



Numer Algor (2015) 69:625–641 635

Table 1 The errors e(h, τ ) and the order for α = 2 with τ = 0.1h

τ h e(h, τ ) order

0.02 0.2 2.2322e-01 -

0.01 0.1 5.4744e-02 2.0277

0.005 0.05 1.3611e-02 2.0079

0.0025 0.025 3.3981e-03 2.0020

0.00125 0.0125 8.4922e-04 2.0005

The conservative linearized difference scheme for the CFSE (41) reads

iδtU
n+ 1

2
j − �α

hU
n+ 1

2
j + ρ

2

(
3|Un

j |2 − |Un−1
j |2 + β(3|V n

j |2 − |V n−1
j |2))Un+ 1

2
j = 0,

1 � j � M − 1, 1 � n � N − 1, (43)

iδtV
n+ 1

2
j − �α

hV
n+ 1

2
j + ρ

2

(
3|V n

j |2 − |V n−1
j |2 + β(3|Un

j |2 − |Un−1
j |2))V n+ 1

2
j = 0,

1 � j � M − 1, 1 � n � N − 1, (44)

U0
j = u0(xj ), V 0

j = v0(xj ), 0 � j � M, (45)

Un
0 = Un

M = 0, V n
0 = V n

M = 0, 0 � n � N. (46)

Following the analysis analogous to that performed for scheme (9)-(11) in the
above section, it can be easily shown that the scheme (43)-(46) is mass conservative,
uniquely solvable and convergent at the order of O(τ 2 + h2) in the l2 norm. Here we
omit the details due to space limitations.

5 Numerical experiments

In this section, some numerical experiments are performed. In the first example, we
consider the FSE and pay particular attention to verifying the numerical accuracy and
mass conservation. The CFSE is presented in the second example by which we aim
to simulate the collision of two soliton waves and investigate the effect of fractional
order α.

Table 2 The errors e(h, τ ) and the order for 1 < α < 2 with τ = 0.1h

α h = 0.2 h = 0.1 order

1.4 1.9558e-01 4.9293e-02 1.9883

1.6 2.3322e-01 5.4692e-02 2.0923

1.8 2.2895e-01 5.3138e-02 2.1072

1.99 2.2023e-01 5.1589e-02 2.0939
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Table 3 The value of Qn at different time with τ = h = 0.05

α = 1.4 α = 1.7 α = 2

T = 0 2.000000000000002 2.000000000000002 2.000000000000002

T = 2 2.000000000000008 2.000000000000005 2.000000000000002

T = 4 2.000000000000010 2.000000000000001 2.000000000000006

T = 6 2.000000000000011 2.000000000000001 2.000000000000000

T = 8 2.000000000000008 2.000000000000002 1.999999999999990

T = 10 2.000000000000007 2.000000000000005 1.999999999999990

Example 1 We consider the problem [40]

iut − (−�)
α
2 u + β|u|2u = 0, (47)

with the initial value
u(x, 0) = sech(x) · exp(2ix). (48)

Here we take β = 2. When α = 2, the problem reduces to the classical cubic
nonlinear Schrödinger equation and the exact solution is given by

u(x, t) = sech(x − 4t) · exp(i(2x − 3t)).

For practical computations, as in [40, 41], the whole space problems are usually
truncated into a large bounded interval [a, b] and set u(a, t) = u(b, t) = 0. In this
example, we choose a = −20 and b = 20.

We first testify the numerical accuracy of the scheme (9)-(11). In order to quantify
the numerical accuracy, we compute the l2 norm errors e(h, τ ) = ‖u − uh‖ between
the numerical solution uh and the exact solution u at T = 1. Then the convergence
rates are calculated as log2(e(h, τ )/e(h/2, τ/2)). When 1 < α < 2, we derive the
numerical “exact” solution u by the scheme proposed in [40] with a very fine mesh
and a small time step, e.g., h = 0.025 and τ = 0.0001. Table 1 shows the errors
for α = 2 and Table 2 displays the similar results for 1 < α < 2, which together
demonstrate that the proposed scheme is second order accurate in both space and
time, and hence the theoretical results in Theorem 3.3 are confirmed.

Fig. 1 Evolution of |U | (left) and collision of two solitons (right) for α = 1.3
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Fig. 2 Evolution of |U | (left) and collision of two solitons (right) for α = 1.5

Then we test the discrete mass conservation law. Table 3 gives the values of mass
Qn at different time for α = 1.4, 1.7, 2, respectively, with τ = h = 0.05. It is
observed that the scheme (9)-(11) preserves the mass conservation very well and is
suitable for long-term simulation. More precisely, the scheme conserves the discrete
mass over time with the machine precision, while the nonlinear schemes developed
in [40, 41] only with 8 significant digits due to the iteration (see Table 2 in [40]
and Table 3 in [41]). In order to improve the conservation accuracy of the non-
linear schemes, a smaller iteration tolerance must be imposed and accordingly, the
computational cost will increase rapidly.

Example 2 Consider the coupled system [40]

iut − (−�)
α
2 u + ρ(|u|2 + β|v|2)u = 0,

ivt − (−�)
α
2 v + ρ(|v|2 + β|u|2)v = 0, (49)

subject to the initial conditions

u(x, 0) = sech(x + 10) · exp(iυ1x),

v(x, 0) = sech(x − 10) · exp(−iυ2x), (50)

Fig. 3 Evolution of |U | (left) and collision of two solitons (right) for α = 1.7
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Fig. 4 Evolution of |U | (left) and collision of two solitons (right) for α = 1.9

where υj (j = 1, 2) are velocities. As in Example 5.1, we solve (49)-(50) on
[−20, 20] with homogeneous Dirichlet boundary conditions. Here we choose υ1 =
υ2 = 3, τ = h = 0.1.

Now we investigate the impact on the collision of two solitons brought by frac-
tional order α. In order to illustrate the fact clearly, we specify the elastic collisions.
Choosing ρ = β = 1, when α = 2, the system is the Manakovs equations which
is completely integrable and the collision is elastic, i.e., the waves retain their shape
and velocity after interaction (see Fig. 5). We denote tc the time when the two soli-
tons completely collide. Figures 1-5 show the evolution of the modulus of the wave
function (left) and of the collision of two solitons (right) for α = 1.3, 1.5, 1.7, 1.9, 2,
respectively.

From Figs. 1-5, we can draw the following conclusions: (i) The order α will greatly
affect the height and width of the soliton. The smaller α becomes, the more severely
the shape of the soliton changes. This feature is consistent with the observation in
[40, 41]. (ii) The time tc varies with the fractional order α. More precisely, tc will
increase subsequently when α becomes small. These phenomena are greatly different
from that in the non-fractional case and, essentially, features the nonlocal character
of the fractional Laplace operator. In addition, these special properties can be used

Fig. 5 of |U | (left) and collision of two solitons (right) for α = 2
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Table 4 The value of Qn
1 at different time with τ = h = 0.1

α = 1.4 α = 1.7 α = 2

T = 0 1.999999995451730 1.999999995451730 1.999999995451730

T = 2 1.999999995451729 1.999999995451728 1.999999995451731

T = 4 1.999999995451733 1.999999995451732 1.999999995451733

T = 6 1.999999995451735 1.999999995451734 1.999999995451732

T = 8 1.999999995451735 1.999999995451730 1.999999995451731

T = 10 1.999999995451735 1.999999995451733 1.999999995451733

in physics to modify the shape of wave and collision time without change of the
nonlinearity and dispersion effects.

Table 4 lists the values of mass Qn
1 := ‖Un‖2 at different time for α = 1.4, 1.7, 2,

respectively. We choose ρ = 1 and β = 2 here. The values of Qn
2 := ‖V n‖2 are

equal to Qn
1 and not shown here for brevity. It is observed that the scheme (43)-(46)

preserves the mass conservation very well.

6 Conclusions

A linearized difference scheme has been given for solving the nonlinear fractional
Schrödinger equation. For the proposed scheme, at each time step, only a linear sys-
tem is to be solved. Thus it is significantly cheaper than the nonlinear one in the view
of computation time, and meanwhile, preserves the mass conservation in the dis-
crete sense very well. In addition, we proved rigorously that the scheme is uniquely
solvable and second order convergent. We further extended the methods to solve the
coupled fractional Schrödinger equation. Finally, numerical tests were performed and
the accuracy and discrete conservation law were confirmed. Based on the numerical
simulation for the collision of two solitons, we observed that the fractional order α

dramatically affect the wave shape and collision time.

Acknowledgments The authors wish to thank the anonymous referees for their valuable comments and
suggestions.
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