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Abstract Although image intensities are non-negative quantities, imposing posi-
tivity is not always considered in restoration models due to a lack of simple and
robust methods of imposing the constraint. This paper proposes a suitable exponential
type transform and applies it to the commonly-used total variation model to achieve
implicitly constrained solution (positivity at its lower bound and a prescribed inten-
sity value at the upper bound). Further to establish convergence, a convex model is
proposed through a relaxation of the transformed functional. Numerical algorithms
are presented to solve the resulting non-linear partial differential equations. Test
results show that the proposed method is competitive when compared with existing
methods in simple cases and more superior in other cases.
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1 Introduction

Image processing techniques, such as image reconstruction which includes remov-
ing image noise from a given image (denoising) [29], reconstructing an image from a
given blurred image (deblurring) [18], reconstructing the missing or damaged portion
of an image (inpainting) [9], emphasizing the boundaries of an image by different fil-
ters or segmenting an image into subregions (segmentation) [17], have been widely
used in many areas. Despite significant developments in photographic techniques and
technology, blur is still a major cause for image quality degradation in clinical set-
tings. This is due to many factors such as motion of the camera or more commonly in
the case of retinal images the target scene, defocusing of the lens system, imperfec-
tions in the electronic, photographic, transmission medium, or obstructions. In this
paper, we are concerned with variational models for restoration of such blurred and
noisy images.

An observed blurred image can be written as a convolution of the true image with a
blur function, known as the Point Spread Function (PSF) or kernel K [25]. There are
three main deconvolution problems: 1) blind deconvolution, which includes the cases
when both the kernel and the image are unknown [25, 26]; 2) semi-blind restoration,
in which the kernel is assumed to belong to a class of parametric functions; or 3)
non-blind deconvolution where only the image is unknown [18]. All three types are
important not only in many scientific applications such as astronomical imaging,
medical imaging, and remote sensing, but also for consumer photography.

Deconvolution in the case of known blur, has been investigated widely in the last
few decades giving rise to a variety of solutions [2, 3, 15, 22, 24, 27, 30, 31, 33]. In
non-blind deconvolution, the point spread function is assumed known even though
this information is not available in most of the real applications. In many cases, we
know that our restored image must have strictly non-negative intensities, but the solu-
tion by traditional methods may yield results which are not necessarily positive. This
has implications for most images with significant amounts of dark space, i.e. images
with many pixel intensity values close to or equal to zero, as well as for blind decon-
volution where the representation of certain blur functions has a significant amount
of zero or near-zero values.

In this paper, we present a model for non-blind deconvolution which not only
ensures a strictly positive result but also limits the upper boundary of the image
intensity values, keeping them within a prescribed range. Related work in this area
can be found as early as [7] and more work has been carried out in recent years
which attempts to find strictly positive solutions for several applications, particularly
astronomical imaging. Vogel and Bardsley [4] gave a method for large-scale mini-
mization problems with non-negativity constraints using a cost functional including
the statistics of the noise in the image data. A reduced Newton method was intro-
duced such that Newton steps are only taken in the inactive variables, meaning those
which are non-zero. A sparse matrix preconditioner was also introduced to improve
convergence of Conjugate Gradient which is used to compute approximate reduced
Newton steps. Benvenuto et al. [6] attempted to increase the efficiency of the pro-
jected Langweber method and iterative image space reconstruction algorithm, both of
which demonstrate the property of semi-convergence. The results of the algorithms



Numer Algor (2015) 69:415–441 417

improve at the earlier iterations and then begin to worsen. The algorithms are also
quite slow. The aim of Benvenuto et al. was primarily to improve the speed and con-
vergence of these algorithms. The works of [12, 13] proposed other ideas based on
nonnegative projections for deblurring. More recently, Chan et al. [15] gave a method
for constrained image deblurring which is related to [4] but uses efficient alternate
direction methods to drive the restored image closer to a projection of itself onto
the ideal range. Since such projections (typically scaling or truncation) may cause a
decrease in quality if simply applied at the end, the authors of [15] improve results
by successively forcing the intensity values of the image to lie within a range which
tends towards the ideal.

The rest of the paper is organised as follows. Section 2 reviews the total variation
(TV) based variational models for denoising and deblurring. Section 3 presents our
proposed transform and, consequently, its resulting model and algorithms. Section
4 discusses some refinement issues followed by Section 5 of numerical results and
Section 6 of conclusions.

2 The TV based deblurring models

Noise and blur can be commonly found in digital images due to factors such as
imperfections of the capturing equipment and scattering through nonhomogeneous
medium. Following the work of [29], we consider the linear deblurring problem with
additive noise

z = k ∗ u + η (1)
where z is the (known) observed image and η is the unknown noise function. There
are two related models that one may consider.

Given knowledge of the blurring kernel k, the TV regularised model
[4, 16, 29, 34] reconstructs u from solving

min
u

∫
�

(k ∗ u − z)2d� + α1‖u‖β
T V , ‖u‖β

T V =
∫

�

|∇u|βd�, (2)

where α1 > 0 and ‖u‖β
T V = ∫

�
|∇u|βd� = ∫

�

√
u2x + u2y + β d�, where β is a

small non-negative constant, is a smooth approximation of the total variation. The
model has been widely studied. Recently, algorithms for optimal selection of the
parameter α1 have also been proposed in [20, 21, 37].

Then to restore the kernel k from a known image u, a related model to (2) may be
proposed

min
u

∫
�

(u ∗ k − z)2d� + α2‖k‖β
T V , s. t. k ≥ 0,

∫
�

k(s, t)dsdt = 1, (3)

where α2 > 0 and we have used the equality u ∗ k = k ∗ u. Our main concern in this
paper is equation (2).

Here we remark that for (2), from our experience, the positivity method from [34]
appears to be reliable. However, for model (3), the method of projecting solutions to
satisfy the constraints k ≥ 0,

∫
�

k(s, t)dsdt = 1 seems less robust. Therefore, it is
of importance to seek alternative and effective methods.
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3 A transform based method for implicitly constrained reconstruction

In this section, we present a new transform method for imposing positivity for
solving models (2)-(3). Our method will transform our constrained model to a non-
constrained one. Therefore the positivity constraint is automatically satisfied. Below
we use model (2) as the example.

Our motivation comes from a simple idea. If we wish for u ≥ 0, we set u =
exp(ψ) and reformulate our model in the new variable ψ . Then for any ψ , we can
ensure u ≥ 0. However, this seemingly great idea does not work because the inverse
transform ψ = ln u does not allow u = 0. A remedial solution is to define the
modified transform u = exp(ψ) − ε so ψ = log(u + ε); however to ensure u ≥ 0,
we require ψ ≥ log(ε) which implies that ψ must be constrained i.e. the underlying
transform is not suitable. We would therefore aim to choose ε to be a very small
positive number so that any final projection, if necessary, would have minimal effect
on the result.

In order to impose a constraint on both the upper and lower bounds of u, we have
found that a suitable exponential type transform is the following

u = H̃ε(ψ) = w + 2b

1 + e− ψ
ε

− b

which resembles a smooth approximation to the Heaviside function given by

H(ψ) =
{
0, if ψ < 0
1, if ψ ≥ 0,

where ε, b, w > 0, and 0 ≈ −b ≤ H̃ε(ψ) ≤ w + b ≈ w defines the intensity range
for any ψ . Practically one may take, for (3), b = 0.1, w = 255 to accommodate
the commonly used range u ∈ [0, 255] and, for (27), b = 0.01, w = 1 to allow
k ∈ [0, 1]. Note the inverse transform ψ = − ε

2 log
w−u
u+b

allows u = 0.
To allow generality, our proposed transform will be of the form

T (ψ) = a1 + 2a4

1 + a2e
−2ψ
a3

− a4 (4)

where a = (a1, a2, a3, a4) and all aj ’s are positive. Note 0 ≈ −a4 ≤ u = T (ψ) ≤
a1 + a4 ≈ a1 for any ψ . As illustrated in Fig.1, the generality allows us to adjust the
maximal and minimal values of the range using a1 and a4, the spread of usable range
of ψ using a3 and the point of u at which ψ will be equal to zero using a2. We can,
if we wish, use this to restrict all values of ψ to positive but this is not necessary.

Once the transform is specified, we now consider how to use it to reconstruct ψ

first and hence the image u. The model (2) as studied in [34] can be transformed from

min
u

f (u) = 1

2

∥∥∥
∫

k(x − x′, y − y′)u(x′, y′)d� − z(x, y)

∥∥∥2
2
+ αL(u)

(with u ≥ 0) to the new problem for ψ

min
ψ

f (ψ) = 1

2

∥∥∥
∫

k(x − x′, y − y′)T (ψ(x′, y′))d�− z(x, y)

∥∥∥2
2
+αL(T (ψ)) (5)
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Fig. 1 Graph of Heaviside Transform u = T (ψ)

where L denotes the TV regulariser for (2) and the H1 for (9). The new and trans-
formed model (5) has no constraint on ψ and yet can ensure (3) to have a positive
solution u. However, since both terms in (5) are non-linear in ψ , it remains to address
the numerical solution methods.

In what follows, we shall propose to treat term 1 in (5) by linearising T (ψ) (due to
the challenge associated with a non-local operator k) and term 2 by lagged diffusion
ideas (as for solving the denoising [4]).

Linearisation of T (ψ) The Taylor expansion of T (ψ) about ψ = 0 is given by

T (ψ) = A + Bψ + O
(
ψ2

)
, A = a1 + 2a4

1 + a2
− a4, B = 2a2(a1 + 2a4)

(1 + a2)2a3
.

Thus we can decompose T (ψ) by separating its linear term in the form

u = T (ψ) = A + Bψ + ¯̄v(ψ̃), ¯̄v(ψ̃) = v̄(ψ̃) − A, v̄(ψ̃) = T (ψ̃) − Bψ̃.

Iterative minimisation Using the above decomposition, our solution strategy is as
follows:

u(0) ← z and ψ(0) ← T −1(u(0)) for Iterate on � Solve for ψ(�+1), given ψ(�),
from

ψ(�+1) ← min ‖k ∗ ψ(�+1)B − z̄(ψ(�))‖22 + α‖Bψ(�+1)) + v̄(ψ(�))‖β
T V (∗)

where z̄(ψ(�)) = z − k ∗ v̄(ψ(�)). End for
We now discuss how to solve the above equation (*) i.e.

min
ψ

{
f (ψ) = 1

2
||Bk ∗ ψ − z̄||2

L2(�)
+ α

∫
�

|∇ (Bψ + v̄) |βd�

}
. (6)
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Consider each term in turn. First let f1 = 1
2 ||Bk ∗ ψ − z̄||2

L2(�)
so minψ f1 is given

when ∂f1/∂ψ = 0. Here

∂f1

∂ψ
= ∂

∂ψ

1

2
||Bk ∗ ψ − z̄||2

L2(�)
= 1

2

∂

∂ψ
(Bk ∗ ψ − z̄)2

=
(

∂

∂ψ
(Bk ∗ ψ)

)
(Bk ∗ ψ − z̄) = (Bk)T (Bk ∗ ψ − z̄).

Second let f2 = ∫
�

∇(Bψ + v̄)d� and minψ f2 is given when
∂

∂ε
(f2(ψ +

εφ))|ε→0 = 0 for an arbitrary function φ. We have

∂

∂ε
f2(ψ + εφ)

∣∣∣∣
ε→0

= ∂

∂ε

∫
�

|∇(B(ψ + εφ) + v̄)|βd�

∣∣∣∣
ε→0

=
∫

�

∂

∂ε
|∇(B(ψ + εφ) + v̄)|βd�

∣∣∣∣
ε→0

=
∫

�

∇(B(ψ + εφ) + v̄)

|∇(B(ψ + εφ) + v̄)|β
· ∇Bφd�

∣∣∣∣∣
ε→0

=
∫

�

∇(Bψ + v̄)

|∇(Bψ + v̄)|β
· ∇Bφd�

= −
∫

�

∇ ·
(

∇(Bψ + v̄)

|∇(Bψ + v̄)|β

)
Bφd�

+
∫

�

∇(Bψ + v̄)

|∇(Bψ + v̄)|β
· Bφ�nd�.

We have therefore that minψ {f = f1 + f2} is solved by

(Bk)T (Bk ∗ ψ − z̄) + α∇ ·
(

∇(Bψ + v̄)

|∇(Bψ + v̄)|β

)
B = 0 (7)

where z̄ = z̄(ψ) = z − k ∗ v̄(ψ) and v̄ = v̄(ψ) = T (ψ) − Bψ .

Overall Algorithm. Assume u has a Dirichlet boundary condition. Then the discre-
tised the Point Spread Function (PSF) k leads to a Block Toeplitz matrix with Toeplitz
Blocks (BTTB) [22, 34]. In order to define the transform, we calculate the parame-
ters a1, . . . , a4 according to the Appendix. We calculate the initial estimate of ψ(0)

given the initial estimate of u(0) as follows:

u = T (ψ) = a1 + 2a4

1 + a2e
− 2ψ

a3

− a4, ψ = T −1(u) = −a3

2
ln

(
a1 − u + a4

a2(u + a4)

)
.

We then solve the Euler Lagrange equation (7) and finally transform the image back,
obtaining our restored image u with positive entries. This is shown in Algorithm 1.
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4 Refinements and other solution strategies

4.1 Alternative Linearisation

In order to improve the speed of obtaining a solution, we carry out the Total Varia-
tion norm linearisation alongside the updating of the linearisation of the transform,
thereby solving

(Bk)T ∗
(
k ∗ ψ(�+1) − z̄(ψ�)

)
− α∇ · ∇ (

Bψ(�+1) − v̄(ψ�)
)

∣∣∇ (
Bψ(�) − v̄(ψ�)

)∣∣
β

= 0. (8)

In this way, we hope to get speed-up due to the saving of iterations on ψ̂ . Experimen-
tal results are shown in Fig. 8 and error values and CPU times for this method and the
previous transform method are given in Table 6. It can be noted that, the reduction in
CPU time is significant.

4.2 Alternative Regularisation

While the total variation semi-norm which we have used in our model gives good
results for images which have sharp changes in intensity and hence jumps in the
pixel intensity value, improved results may be found by considering alternative reg-
ularisation to treat smooth images. In this section, we consider a simple form of
alternative regularisation using the L2 norm of the gradient of the image. More robust
regularizations are based on high order regularisers; see [8, 10, 19, 28].

In the traditional case, using a least squares fitting term and L2 as a regularisa-
tion term, we will obtain a linear partial differential equation to solve. We give this
minimizing functional as

f (u) = 1

2
||k ∗ u − z||2

L2(�)
+ α

2

∫
|∇u|2d�. (9)
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The well-known Euler-Lagrange equation for the image u is therefore given by

kT ∗ (k ∗ u − z) − α�u = 0. (10)

Now referring to the above section, we substitute u = Bψ + v̄
(
ψ̃

)
to (9)

f (u) = 1

2
||k ∗

(
Bψ + v̄

(
ψ̃

))
− z||2

L2(�)
− α

∫
|∇

(
Bψ + v̄

(
ψ̃

))
|2d� (11)

= 1

2
||Bk ∗ ψ − z̄(ψ̃)||2

L2(�)
− α

∫
|∇

(
Bψ + v̄

(
ψ̃

))
|2d� (12)

where z̄(ψ) = z − k ∗ v̄
(
ψ̃

)
and v̄

(
ψ̃

)
= T

(
ψ̃

)
− Bψ̃ . The linearised Euler-

Lagrange equation is

kT ∗
(
Bk ∗ ψ − z̄

(
ψ̃

))
− α�

(
Bψ + v̄

(
ψ̃

))
= 0. (13)

4.3 Initialisation of u and k

Since there exist many efficient algorithms for solving models (2) and (3) without the
positivity constraints, one idea of acquiring good initialisations for u and k is through
applying such algorithms first.

In fact, the simplistic L2 method given by minimising (9) leads to solving the lin-
ear partial differential equation (10) which can be done efficiently. We may therefore
use the solution of it as the initial estimate u and then our transform model will offer
a positive solution.

As we shall see from the next section, for model (3) with the unknown kernel k,
the Vogel’s method [34] is no longer effective but we may use its result as an initial
guess for our transform model; see Table 7 and Fig. 9.

4.4 An Acceleration Algorithm for the Model

While our model performs well, it can often be rather slow to execute, particularly in
cases of Gaussian blur. We address this issue using an alternating direction method
(ADM) [15, 24, 35, 36]. We aim to separate our model into one of deblurring and
one of denoising, each of which can be executed reasonable quickly. Starting with
the unconstrained non-negative functional given by equation (5) we use the ADM to
create the augmented Lagrangian functional

f (u, ψ, λ)= 1

2
||k∗u−z||2

L2(�)
+αL(Ta(ψ))+γ

2
||u−Ta(ψ)||2

L2(�)
+<λ, u−Ta(ψ)>

(14)
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where L represents either total variation (where we expect jumps in intensity) or L2
(where we expect smooth edges) i.e.

L(u) =
∫

�

|∇u|βd�, or L(u) =
∫

�

|∇u|2d�. (15)

Our aim is now to minimise f with respect to u, ψ and λ. Then we can give the
Euler Lagrange equation for u:

kT ∗ (k ∗ u − z) + γ (u − Ta(ψ)) + λ = 0 (16)

and, rearranging, we have

(
kT ∗ k + γ δ

)
∗ u = kT ∗ z + γ Ta(ψ) − λ (17)

where δ denotes the delta function and we can solve this using Fourier transforms.
For additional support, we might add a term for u, given by χL1(u) where χ > 0
and L1 is a regularisation term. This model can be achieved by setting χ = 0.

For the second equation, we minimise with respect to ψ as follows. We must
deal with the nonlinearity of the transform. We do this by considering the Taylor
expansion given by

Ta(ψ) = A + Bψ + O(ψ2)

and approximate the transform with Ta(ψ) = Bψ + R(ψ) where R, the residual, is
given by R = Ta(ψ)−Bψ . In practice, we will use this to form a fixed-point lagging
technique by substituting Ta(ψ, ψ̃) = Bψ + R(ψ̃), lagging ψ̃ and updating until
||ψ − ψ̃ || is sufficiently small.

− Bλ − γB
(
u − (Bψ + R̃)

)
+ αL(ψ̃)ψ = 0 (18)

where, for total variation,

L(ψ̃)ψ = 4Ẽ1(a1 + 2a4)(Ẽ1 − 1)|∇ψ |β
(1 + Ẽ1)3a

2
3

− ∇ ·
(

2(a1 + 2a4)Ẽ1

(1 + Ẽ1)2a3|∇ψ̃ |β
∇ψ

)
.

4.4.1 Overall Algorithm

In order to solve our model, we begin with the initial estimate (typically the received
image) and calculate the initial estimate of ψ using the chosen parameters. We
then proceed to solve for u and ψ , updating λ. Our algorithm is given below in
Algorithm 2.
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4.5 A Reformulated Convex Model

We now wish to prove convergence of Algorithm 2. However, due to the lack of con-
vexity of the model (14), this is not trivial. We therefore propose below a relaxation
of this model so that the new model is convex by the addition of a suitable term. We
can then show convergence from the established approaches (see [5, 23, 34]). Tests in
Section 5 will demonstrate that such a relaxation does not have a considerable impact
on the solution or the quality of the restoration.

We aim to find an appropriate convex relaxation of this model by considering the
fitting and regularisation terms separately since the sum of two convex functions is
also convex. We attempt to obtain convexity of the fitting terms with the addition of
a fitting term involving the function ψ of the form

μ

∫
�

(ψ − ζ )2 d�

where ζ is a function not depending on ψ and μ is a non-negative real constant which
must be sufficiently large to make the model (14) convex. In fact we see that, for this
model, μ may be quite small so that assuming close proximity of the arguments this
term should have only a small impact on the results. ζ should be a function which is
approximately equal to ψ but not depend on u so that convexity with respect to u is
unaffected. We take ζ = T −1

a (z∗) where

z∗ = argminu

{∫
�

(k ∗ u − z)2 d� + α

∫
�

|∇u|2 d�

}
.

Actually any other similar model that can be solved efficiently will also suffice.
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The regularisation term requires a similar consideration for convexity, leading to

f (u, ψ; λ) = 1

2
||k ∗ u − z||2

L2(�)
+ γ

2
||Ta(ψ) − u||2

L2(�)
+ < λ, Ta(ψ) − u >

+ μ||ψ − ζ ||2
L2(�)

+ α

∫
�

∣∣∣∇
(
Ta(ψ) + θ ||ψ − ζ ||2

L2(�)

)∣∣∣
β

d�. (19)

It turns out that μ and θ must satisfy

μ ≥ 8 (a1 + 2a4)

27a23
(2γ (a4 + Lu) + Lλ) , θ ≥ −2(a1 + 2a4)(3

√
3 − 5)(

3 − √
3
)3

a23

. (20)

To give an example of the values for the parameters, if we assume that our image
is contained in the range [0, 1], Lu = Lλ = 0, and a = {1, 1, 0.44, 0.01} for u =
Ta(ψ), then μ ≥ 0.04γ and θ ≥ −1.

In order to minimise the functional, we first calculate ζ and proceed with alternate
minimisation. We present our overall algorithm below in Algorithm 3. For brevity,
we do not present the Euler-Lagrange equation for ψ but it can be calculated in a
similar manner to those above.

We would now like to show that the functional defined above is convex.

Theorem 4.1 Let � ⊂ R
n be a non-empty convex subset of Rn and f : � →

R ∪ {+∞} be the function defined by (19–20). Then f is convex with respect to the
argument ψ for ψ defined on �.
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Proof It is sufficient to show that the functional (19) is a sum of two convex
functions.
(i) The first part is given by

F(u, ψ) =
∫

�

γ (Ta(ψ) − u)2 + λ(Ta(ψ) − u) + μ(ψ − ζ )2 d�. (21)

where μ must satisfy the above constraint and the second is given by the regularisa-
tion term.

To show that (21) is convex, we require the second order derivative given by

∂2F(u, ψ)

∂ψ2
= 2μ − 2J (ψ) [−2γ (Ta(ψ) + a4)a2E − (2γ (Ta(ψ) − u) + λ) (a2E − 1)](22)

to be non-negative, where J (ψ) = 2(Ta(ψ)+a4)a2E

(1+a2E)2a23
and E = E(ψ) := exp(−2ψ/a3).

It is not difficult to show that the term to the right of J (ψ) is contained in the
bound (−∞, 2γ (a4 + Lu) + Lλ) where Lu and Lλ are the lower bounds of u and
λ respectively. For the function J , we can find that there is only one maximum by
calculating the first derivative and finding the limits of the function as follows. We
calculate the zero-point of the derivative

∂J

∂ψ
= 12(a1 + 2a4)a22E

2

(1 + a2E)4a33

− 4(a1 + 2a4)a2E

(1 + a2E)3a33

= 0 ⇔ ψ = a3

2
ln(2a2)

at which the function J is non-negative and strictly positive assuming that at least
one of a1 and a4 are non-zero, since a1, . . . , a4 are non-negative constants.

Taking limits now and noting that limψ→−∞ E = ∞ and limψ→∞ E = 0, we
find that the function J tends to 0 at ±∞ with a non-negative turning point given at
ψ = a3 ln(2a2)/2 which must be the maximum.

lim
ψ→−∞

2
(

a1+2a4
1+a2E

)
a2E

(1 + a2E)2 a23

= lim
ψ→−∞

2 (a1 + 2a4) a2(
1
E

+ 3a2 + 3a22E + a32E
2
)

a23

= 0 (23)

lim
ψ→∞

2
(

a1+2a4
1+a2E

)
a2E

(1 + a2E)2 a23

= 0. (24)

Since the function tends to zero at both limits and has a single extremity, which is
greater than or equal to zero, we can conclude that this is the maximum value and
that the minimum is equal to zero, i.e.

J (ψ) ∈
(
0, J

(a3

2
ln(2a2)

)
= 8 (a1 + 2a4)

27a23

]
.

Substituting these bounds and inequalities, including μ from (20), into (22), it is
clear that the convexity condition ∂2F(u, ψ)/∂ψ2 ≥ 0 is satisfied.

(ii) For the (second part) total variation term, we begin by showing that if the function
ω is convex then its total variation is also convex. It will then remain to show that the
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function (26) is convex given the restriction on the value θ . Recall the definition of a
total variation via duality [14]

G(ψ)=G(ω(ψ))=sup

{
−

∫
�

ω(ψ)divφ dx :φ ∈ C∞
c

(
�;RN

)
, |φ(x)|≤1 ∀x ∈�

}

and, when ω = ω(ψ) is differentiable, − ∫
�

ω(ψ)divφ dx = ∫
�

φ · ∇ω(ψ) dx.

LettingLφ : ψ �→ − ∫
�

ω(ψ)divφ dx, we would like to show that if ω is convex then
G(ψ) is also convex. That is ∀ ψ1, ψ2 and t ∈ [0, 1], we have G(tψ1+(1− t)ψ2) ≤
tG(ψ1) + (1 − t)G(ψ2). Assuming that ω(ψ) is convex with respect to ψ then we
have the relation

ω(tψ1 + (1 − t)ψ2) ≤ tω(ψ1) + (1 − t)ω(ψ2)

and

Lφ(tψ1+(1−t)ψ2) ≤ tLφ(ψ1)+(1−t)Lφ(ψ2) ≤ tG(ψ1)+(1−t)G(ψ2) (25)

Since G is the supremum of the functions Lφ , i.e.

sup
φ

Lφ(tψ1 + (1 − t)ψ2) = G(tψ1 + (1 − t)ψ2),

we have by (25) that G(tψ1 + (1 − t)ψ2) ≤ tG(ψ1) + (1 − t)G(ψ2). That is, if the
transform ω(ψ) is convex for ψ then the total variation is convex for ψ . It remains
to show that the function

ω(ψ) = Ta(ψ) + θ ||ψ − ζ ||2
L2(�)

, (26)

where ζ is as described above, is convex. Proceeding as in (i), we calculate the second
derivative

∂2ω

∂ψ2
= 2θ − 2J1(ψ), J1(ψ) := 2(a1 + 2a4)a2E(1 − a2E)

(1 + a2E)3a23

.

We would like to find the upper bound of this function. We consider the limits

lim
ψ→−∞ J1(ψ) = lim

ψ→−∞

(
2(a1 + 2a4)a2E(1 − a2E)

(1 + a2E)3a23

)
= 0,

lim
ψ→∞ J1(ψ) = lim

ψ→∞

(
2(a1 + 2a4)a2E(1 − a2E)

(1 + a2E)3a23

)
= 0,

which are equal to zero. We now find the extrema

∂J1

∂ψ
= −8(a1 + 2a4)a2E

a22E
2 − 4a2E + 1

a33(1 + a2E)4
= 0 ⇔ ψ = −a3

2

2 ± √
3

a2

at which J1 is given by

J1

(
−a3

2

2 ± √
3

a2

)
= −

2(a1 + 2a4)(2 ± √
3)

(
1 ± √

3
)

(
3 ± √

3
)3

a23

.
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It is easy to observe that a positive value is obtained at ψ = −a3(2− √
3)/2a2 and a

negative value is obtained at ψ = −a3(2+√
3)/2a2. We can therefore conclude that

the values of J1 lie in the range

⎡
⎢⎣−2(a1 + 2a4)(3

√
3 + 5)(

3 + √
3
)3

a23

,
2(a1 + 2a4)(3

√
3 − 5)(

3 − √
3
)3

a23

⎤
⎥⎦ ,

so that ∂2ω(ψ)/∂ψ2 = 2θ − 2J1(ψ) ≥ 0, if θ is from (20), as required.

5 Experimental results

Our experimental tests are hoped to show the effectiveness of image restoration by
our Algorithm 1 in comparison with Vogel’s positivity method [4, 34], the projection
method [15] and other methods that do not impose positivity constraints. We also
compare with unconstrained (and partly constrained) models which have the con-
straint applied at the end by truncation or scaling. Specifically, in tables and figures,
we denote the compared methods by these abbreviations:

• ROF: the well-known model (2) without positivity constraint.
• ROFT hr : the well-known model (2) with positivity and upper limit constraints

applied at the end by truncation.
• ROFSca : the well-known model (2) with positivity and upper limit constraints

applied at the end by scaling.
• Vogel: the non-negatively constrained restoration model by [4].
• VogelT hr : the non-negatively constrained restoration model by [4] with upper

limit constraint applied at the end by truncation.
• VogelSca: the non-negatively constrained restoration model by [4] with upper

limit constraint applied at the end by scaling.
• Proj: the constrained projection model by [15].
• New1: Algorithm 1 for model (5).
• New1L2: Algorithm 1 to solve the minimization of (9).
• New2: Algorithm 2 for model (14) i.e. an accelerated version of New1.
• MixL2TV: Algorithm 1 to solve (13) followed by Algorithm 1 to solve (7) using

the solution of (13) as the initial estimate.
• MixVogTV: Algorithm 1 to solve (7) using the solution given by Vogel as the

initial estimate.
• New3: Algorithm 1 for the reformulated model (19) i.e. the convex version of

New2.

We use “Received” to mean the received image z.
Seven sets of experimental results using 3 test images: the box-triangle image

(Im1), the satellite image (Im2) and the retina image (Im3) are selected; see Fig. 2.
For the transform u = T (ψ), we choose a1 = 1, 1.08, 255 and a4 = 10−2, 10−2, 0.5
respectively for the 3 test images (note a2, a3 are set as in Appendix).
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Fig. 2 Test case images

For the blurring model (1), we have considered small and large levels of motion
blur (Bl1 and Bl2 respectively) and small and large levels of Gaussian blur (Bl3 and
Bl4 respectively); see Fig. 3.

There are several common measures for testing the quality of the restored image,
including the following. We let utrue denote the true image, u the restored image, z
the received image and letm and n be the number of pixels horizontally and vertically
respectively. Then we have:

• Mean Squared Error (MSE) is given by MSE =
1

mn

∑
x,y (utrue(x, y) − u(x, y))2 and Root Mean Squared Error (RMSE) is

given by RMSE = √
MSE.

• Signal-to-Noise Ratio (SNR) in dB is given by SNR =
10 log10

( ∑
x,y |utrue(x,y)|2∑

x,y |utrue(x,y)−u(x,y)|2
)

• Peak Signal-to-Noise Ratio (PSNR) is given by PSNR =
20 log10

(
maxx,y |utrue(x,y)|

RMSE

)
.

Fig. 3 PSFs used for test cases. Images (a)-(c) show Bl1 - small motion blur, images (d)-(e) show Bl2
- large motion blur, images (f)-(h) show Bl3 - small Gaussian blur, and images (i)-(j) show Bl4 - large
Gaussian blur
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Note that the RMSE is given by the L2 norm of the difference between the true
image and the restored image divided by the total number of pixels, i.e. RMSE =
(1/mn)||utrue − u||L2(�). Given astronomical images and images with significant

Fig. 4 Result Set 1: Restoring Im1 corrupted by Bl3 with no noise. From top to bottom, we have: (1) the
true image, kernel, and corrupted data; (2) the result using the ROF method; (3) the result using Vogel’s
method; (4) the result using the Transform method. From left to right, we have (on rows 2-4): (1) the
restored image; (2) the negative values of the restored image in white; (3) the points where the intensity
values are greater than the expected upper limit in white. Note that the Transform method and Vogel’s
method can both ensure positivity but the transform method can control the upper bound of the intensity
range
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Table 1 Result Set 1 - Error
values for Im1 corrupted by
Gaussian blur with no Noise.
We can see that the error values
are improved when using the
Transform models and CPU
time is improved by using
New2–New3. As designed, the
results of New2–New3 are very
similar, showing that the
additional term does not have a
considerable effect on results

Method cpu rmse Er1 Er2 snr psnr isnr

Received n/a 0.0771 39.35 16.27 15.79 22.26 n/a

ROF 32.2 0.0589 27.39 19.41 18.33 24.60 2.33

ROFT hr 32.2 0.0528 26.40 19.73 19.15 25.54 3.28

ROFSca 32.2 0.1573 55.28 13.31 8.35 16.07 -6.20

Vogel 37.8 0.0320 17.24 23.43 23.61 29.89 7.63

VogelT hr 37.8 0.0303 17.24 23.43 24.02 30.36 8.10

VogelSca 37.8 0.0765 25.04 20.19 14.75 22.33 0.07

Proj 33.5 0.0378 18.78 22.69 22.12 28.46 6.20

New1 59.7 0.0149 6.86 31.43 30.28 36.55 14.29

New2 26.3 0.0236 11.31 27.10 26.25 32.53 10.26

New3 15.8 0.0241 4.45 35.20 26.02 32.35 10.09

amounts of black space, it is typically more common to use the L1 norm. We expect
that these may provide more accurately descriptive measures of our data and the
impact of the model in terms of non-negativity. We therefore propose the measures

• L1 Error given by

Er1 = ||utrue − u||L1(�) = 1

mn

∑
x,y

|utrue(x, y) − u(x, y)|.

Fig. 5 Result Set 2 - restoring images Im2 and Im3 corrupted by small motion blur Bl1 or small Gaussian
blur Bl3. In some cases the results from the Transform model appear sharper than other models and more
small detail is visible
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• A version of PSNR using the L1 norm of the difference between the true image
and the restored image is given by

Er2 = 20 log10

(
maxx,y |utrue(x, y)|

Er1

)
.

Model (1) with Gaussian blur. Result set 1 uses Im1 corrupted by Gaussian blur
to demonstrate the effectiveness of the model in keeping the intensity values of the
image constrained. We see in Fig. 4 and Table 1 that [4] keeps the image positive but
allows some points to take intensity values which are outside of the expected range,
while [15] and the new models successfully keep the intensity values positive and
within the expected range at all points.

Model (1) with Motion blur. Result set 2 consists of Im2 and Im3 corrupted by small
motion or small Gaussian blur. We see in Fig. 5 and Tables 2–3 that for images
corrupted by small levels of blur the results are competitive between the models.
Error values are improved but visual quality is similar.

Table 2 Result Set 2 - Error
values for images Im2 and Im3
corrupted by Bl1. It can be
noticed that error values are
improved using the Transform
models. While CPU time is
higher than that of competing
models, New2–New3 can
reduce CPU time while
retaining similar or improved
PSNR. As designed, the results
of New2–New3 are very similar,
showing that the additional term
does not have a considerable
effect on results

Method CPU Time rmse Er1 Er2 snr psnr isnr

Error values for Im2 corrupted by Bl1

Received n/a 0.0478 11.18 27.19 14.47 26.41 n/a

ROF 40.6 0.0211 6.31 32.17 21.93 33.51 7.10

ROFThr 40.6 0.0183 5.05 34.09 23.15 34.74 8.33

ROFSca 40.6 0.0932 25.81 19.93 9.76 20.62 -5.79

Vogel 31.9 0.0107 3.08 38.39 27.79 39.39 12.98

VogelThr 31.9 0.0107 3.08 38.39 27.79 39.39 12.98

VogelSca 31.9 0.0478 3.12 38.27 27.85 39.38 12.98

Proj 16.2 0.0054 1.37 45.40 33.76 45.33 18.92

New1 38.7 0.0036 0.96 48.54 37.31 48.88 22.47

New2 12.8 0.0051 1.36 45.51 34.24 45.81 19.40

New3 12.6 0.0033 1.16 46.89 38.27 49.75 23.34

Error values for Im3 corrupted by Bl1

Received n/a 0.0362 19.19 22.50 21.39 28.82 n/a

ROF 34.7 0.0178 9.09 29.00 27.62 34.97 6.16

ROFThr 34.7 0.0164 8.52 29.55 28.33 35.69 6.88

ROFSca 34.7 0.0557 27.47 19.39 17.70 25.08 -3.74

Vogel 25.2 0.0084 3.95 36.24 34.14 41.51 12.70

VogelThr 25.2 0.0084 3.95 36.24 34.14 41.52 12.70

VogelSca 25.2 0.0113 4.54 35.02 31.39 38.90 10.09

Proj 17.5 0.0056 1.86 42.79 37.62 44.97 16.16

New1 66.0 0.0020 0.94 48.67 46.57 54.03 25.21

New2 12.9 0.0044 1.30 45.86 39.69 47.04 18.23

New3 15.0 0.0027 0.80 50.07 44.03 51.34 22.52
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Table 3 Result Set 2 - Error
values for images Im2 and Im3
corrupted by Bl3. It can be
noticed that error values are
improved using the Transform
model. While CPU time is
higher than that of competing
models, New2–New3 can reduce
CPU time without a significant
reduction in PSNR. As designed,
the results of New2–New3 are
very similar, showing that the
additional term does not have a
considerable effect on results

Method CPU Time rmse Er1 Er2 snr psnr isnr

Error values for Im2 corrupted by Bl3

Received n/a 0.0562 12.72 26.08 12.96 25.01 n/a

ROF 36.4 0.0263 7.01 31.25 19.99 31.59 6.59

ROFThr 36.4 0.0249 6.51 31.89 20.46 32.07 7.06

ROFSca 36.4 0.1221 33.49 17.67 7.52 18.27 -6.74

Vogel 32.2 0.0233 6.38 32.07 21.01 32.65 7.64

VogelThr 32.2 0.0233 6.38 32.07 21.01 32.65 7.64

VogelSca 32.2 0.0236 6.31 32.16 21.07 32.55 7.54

Proj 17.4 0.0203 5.52 33.33 22.27 33.87 8.86

New1 45.8 0.0142 4.18 35.73 25.39 36.97 11.96

New2 13.0 0.0172 5.05 34.10 23.70 35.28 10.27

New3 16.2 0.0156 4.70 34.73 24.58 36.13 11.12

Error values for Im3 corrupted by Bl3

Received n/a 0.0422 24.01 20.56 20.04 27.49 n/a

ROF 35.2 0.0236 14.79 24.76 25.17 32.54 5.05

ROFThr 35.2 0.0226 14.35 25.03 25.56 32.93 5.44

ROFSca 35.2 0.0855 42.65 15.57 14.18 21.36 -6.12

Vogel 23.8 0.0169 9.77 28.37 28.06 35.44 7.95

VogelThr 23.8 0.0169 9.77 28.37 28.08 35.45 7.96

VogelSca 23.8 0.0240 10.98 27.36 24.68 32.39 4.90

Proj 25.1 0.0177 11.44 26.99 27.68 35.05 7.56

New1 87.4 0.0127 7.84 30.27 30.53 37.89 10.40

New2 13.1 0.0171 11.04 27.31 27.99 35.35 7.87

New3 16.3 0.0147 9.10 28.99 29.35 36.66 9.17

Model (1) with Heavy blurs. Result set 3 consists of Im2 corrupted by larger levels of
blur (Bl2 and Bl4). We see in Fig. 6 and Table 4 that that results are improved visually
and in the error values for the new model in the case of Bl2. For Bl4, the Transform
Model appears to be a closer approximation but the error values are similar.

Model (1) with Blur and a varying level of noise. Result set 4 consists of Im2 cor-
rupted by Bl3 and varying amounts of noise (1% and 50%). We see in Fig. 7 and
Table 5 that visually the Transform model offers some improvement in quality while
the error values are similar.

Model (1) by Algorithm 1 with alternative linerisation (8). Result set 5 shows in
Fig. 8 and Table 6 the results using the linearised Transform model. We can see that
for the same quality of the restored image, the CPU time is improved.

Algorithm 1 combined with Vogel’s model. Result set 6 shows in Fig. 9 and Table 7
examples using the received image as the initial estimate and the results of Vogel’s
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Fig. 6 Result Set 3 - Restoring Im2 corrupted by Bl2 (top line) and by Bl4 (bottom line). We can see a
significant improvement in the result from the Transform method in the case of corruption by Bl2, and the
results are competitive in the case of Bl4

model as the initial estimate. We can see that this technique is useful for restoring
the PSF given the image. In the case of the motion blur example, the CPU time is
significantly improved and in the case of Gaussian blur, the error value is improved.
In all cases, the visual quality is adequate.

Model (2) with Blurs. Now we consider the solution of model (3) for k. Result set 7
consists of motion and Gaussian blur PSFs which are regarded as being blurred by

Table 4 Result Set 3 - Error
values for Im2 corrupted by Bl2
and Bl4. There is a noticeable
improvement in the case of and
while the results for Bl4 are
competitive, the transform is
slightly improved over
competing models

Method CPU Time rmse Er1 Er2 snr psnr isnr

Error values for Im2 corrupted by Bl2

Received n/a 0.22 63.17 12.80 -2.13 13.66 n/a

ROF 2.01 0.13 33.77 18.24 6.08 18.31 4.65

Vogel 16.02 0.11 26.55 20.33 7.30 19.71 6.05

New1 47.64 0.06 14.87 25.36 14.03 25.41 11.75

New1L2 30.18 0.07 18.68 23.38 11.77 23.33 9.67

MixL2TV 13.65 0.10 24.32 21.09 9.03 20.87 7.21

Error values for Im2 corrupted by Bl4

Received n/a 0.0909 21.40 21.56 8.04 20.83 n/a

ROF 54.8 0.0596 14.98 24.66 12.72 24.49 3.66

Vogel 37.9 0.0565 13.00 25.88 13.11 24.96 4.13

New1 31.3 0.0489 11.72 26.78 14.45 26.22 5.39
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Fig. 7 Result Set 4 - Restoring Im2 corrupted by Bl3 and 1% noise (top row) and 50% noise (bottom
row). We can see that visually the Transform method appears to give improved results for weaker and
stronger levels of noise.

Im2. The task here is to recover the PSF given the true image. As the initial estimate,
rather than taking the received data z as the initial estimate (since it is not expected
to be a good approximation of the true kernel) we make an estimate of the kernel
based on observation of the received data. We see in Fig. 10 that in both cases, each
of the models are able to obtain good approximations of the kernel, however ROF is
unable to retain non-negativity in both cases and Vogel, while successfully ensuring
positivity of the approximated kernel, struggles to get correct smaller values as well
as larger values whereas the transform model is able keep the values close to zero as
well as ensuring positivity of the result.

Finally, to simultaneously restore both u and k in the so-called blind deconvolution
problem, the TV based model by [18] is the following

min
u

∫
�

(u ∗ k − z)2d� + α1‖u‖β
T V + α2‖k‖β

T V , s. t. k ≥ 0,
∫

�

k(s, t)dsdt = 1,

(27)
where α1, α2 > 0. Related studies can be found in [1, 11, 32, 36, 38]. In other experi-
ments, we have tried double transforms which appear to improve the robustness. This
model will be investigated further in the future.

6 Conclusion and Future Work

We have presented models to reconstruct images and PSFs and demonstrated that
they can ensure positivity through introducing a transform and also keep the intensi-
ties of the restored data within the appropriate range. We have also demonstrated that
the model offers competitive results in the case of small levels of blur and noise but
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Table 5 Result Set 4 - Error
values for Im2 corrupted by Bl2
and varying amounts of noise.
We can see that the Transform
model can offer improved
results, particularly for larger
levels of noise

Method CPU Time rmse Er1 Er2 snr psnr isnr

Error values for Im2 corrupted by Bl3 and 1% noise.

Received n/a 0.0479 11.34 27.07 14.49 26.40 n/a

ROF 42.1 0.0304 7.85 30.26 18.82 30.35 3.95

Vogel 12.1 0.0237 6.41 32.03 20.80 32.52 6.12

New2 4.9 0.0196 5.73 33.01 22.61 34.15 4.85

Error values for Im2 corrupted by Bl3 and 50% noise.

Received n/a 0.0639 60.71 13.14 -13.24 12.59 n/a

ROF 15.00 0.0783 19.58 22.97 11.50 22.77 10.19

Vogel 5.64 0.0980 22.91 21.61 9.72 20.86 8.27

New1 55.76 0.0718 17.12 24.14 12.20 23.52 10.94

much improved results in the case of corruption by larger levels of blur and noise.
This model is particularly effective in giving a close approximation of the kernel (in
the case where the image is known) which is of great importance in the case of blind
deblurring. The transform idea is applicable potential to a class of other variational
models. Since non-negativity is a significant criterion for blind deblurring models,
we hope to consider such applications in the near future.

7 Appendix – Selection of Parameters in T (ψ)

The parameter a1 is easily chosen, assuming knowledge of the bits-per-sample (bps)
value of the true image and the blurred image. This will typically be between
1 and 255 for images of bps 1 to 8 respectively, but can be quite low for the
kernel. For example, a fairly compact-radius out-of-focus blur may have a ker-
nel value upper limit of 10−2. While a larger value of a1 should still give a good
approximation, it is essential that a1 be at least as large as the maximum image

Fig. 8 Result Set 5: Restored images and PSFs using the Linearised Transform method. The received
data from which Im2 and Im3 were restored was corrupted by Bl1, and the received data from which Bl1
and Bl3 were restored was corrupted by Im2. We can see that the linearisation does not affect the visual
quality significantly
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Table 6 Result Set 5: Error values and CPU time for restoring images Im2 and Im3 as well as PSFs BL1
and BL3 using the Transform method and the Linearised Transform method. We can see that the quality
of the restored image is not significantly different for each case but the CPU time is improved using the
Linearised Transform method

Transform Model (New1) Linearised New1

Image psnr CPU Time psnr CPU Time

Im2 30.32 60.07 30.54 34.10

Im3 35.62 83.05 35.51 35.09

Bl1 38.63 72.25 38.24 51.00

Bl3 39.56 82.77 37.59 47.84

intensity value or kernel value and advisable that it be close to this. The parame-
ter a4 should be chosen in proportion to a1. Typically, a4 = a1/255 is a sensible
value.

We attempt to select the remaining parameters a2 and a3 in order to con-
trol the upper and lower bounds of ψ as well as the value of ψ when u is
equal to zero. In order to control the bounds, we define a length � = σ4 − σ3
where σ3 and σ4 represent two intensity values of ψ . We would then like for

τ4 − τ3 = T (σ4) − T (σ3) = �. From ψ(τ) = T −1(τ ) = − a3
2 ln

(
a1−τ+a4
a2(τ+a4)

)
,

we have

� = σ4 − σ3 = ψ(τ4) − ψ(τ3) (28)

= a3

2
ln

(
(a1 − τ3 + a4)(τ4 + a4)

(τ3 + a4)(a1 − τ4 + a4)

)
. (29)

So, assuming we fix �, τ3, τ4, a1 and a4, we have

a3 = 2�

ln
(

(a1−τ3+a4)(τ4+a4)
(τ3+a4)(a1−τ4+a4)

)

Fig. 9 Result Set 6: Restored images and PSFs using the Linearised Transform method with the result of
Vogel’s method as the initial estimate
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Table 7 Result Set 6: Error values and CPU times for restoring images Im2 and Im3 and PSFs Bl1 and
Bl3 using the Linearised Transform method with the received data z as the initial estimate (New1) and the
result from Vogel’s method as the initial estimate (MixVogTV). The CPU time is rarely lower when using
the closer initial estimate but the image quality is improved in all cases

New1 MixVogTV

Image psnr CPU Time psnr CPU Time

Im2 30.54 34.10 30.61 39.79

Im3 35.51 35.09 35.71 46.83

Bl1 38.24 51.00 38.80 27.59

Bl3 37.59 47.84 42.53 51.14

For our model, we fix the width � = τ4 − τ3 (see Fig. 11) and let τ4 = a1 − τ3.
Then, from 29, we have

a3 = 2(τ4 − τ3)

ln
(

(a1−τ3+a4)(τ4+a4)
(τ3+a4)(a1−τ4+a4)

) = a1 − 2τ3

ln
(

(a1−τ3+a4)
(τ3+a4)

) .

The only remaining parameter which a3 is dependent on and which has not already
been decided is τ3. We find that τ3 = a1/4 is adequate for the transform.

We may use the parameter a2 to control the value of ψ at u = T (ψ) = 0. We
consider two cases: the first given by T (ψ) = a1/2 and the second given by T (ψ) =
τ1 at ψ = 0 where τ1 is the lower bound of ψ . The first option will make the graph
pass through zero at the midpoint of the intensity values and the second will make
all values of ψ naturally positive since the lower bound of ψ will be equal to zero.
Letting u = T (ψ)

u = a1 + 2a4

1 + a2e
−2ψ
a3

− a4.

Rearranging, we have

a2 = a1 + a4 − u

e
−2ψ
a3 (u + a4)

and so for the first case, we have

a2 = a1 + a4 − a1/2

a1/2 + a4
= a1/2 + a4

a1/2 + a4
= 1,

and for the second case, we have

a2 = a1 + a4 − τ1

τ1 + a4
.

In application, either of these will be sufficient to recover the image with similar
results. In the case of the kernel, better results are obtained with a2 = 1. It is there
advised therefore that a2 = 1 is the appropriate value for this parameter.
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Fig. 10 Result Set 7 - Restoring Bl1 (1st and 2nd rows) and Bl2 (3rd and 4th rows) corrupted by Im1
restored using TV restoration (ROF), Vogel’s model (Vogel) and the transform model (New1). In the cross-
section images, the blue line is the restored image, the red dashed line is the lower bound of the true blur
function and the green dashed line is the upper bound of the true blur function. Of the three approximations,
as demonstrated in the cross-section images on the 2nd and 4th rows, the TV model gives many negative
values in the approximation both kernels, and Vogel’s model has no negative values but struggles to get a
close approximation while the transform model does a good job

In summary, once a1 and a4 are defined, the other quantities in the transform
T (ψ) = a1+2a4

1+a2e
−2ψ
a3

− a4 can be determined automatically assuming that τ3 = a1/4

and a2 = 1 are acceptable.
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Fig. 11 Graph of Heaviside Transform u = T (ψ)
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