
Numer Algor (2015) 69:253–270
DOI 10.1007/s11075-014-9893-1

ORIGINAL PAPER

Rigorous high-precision computation of the Hurwitz
zeta function and its derivatives

Fredrik Johansson

Received: 25 September 2013 / Accepted: 3 July 2014 / Published online: 19 July 2014
© Springer Science+Business Media New York 2014

Abstract We study the use of the Euler-Maclaurin formula to numerically evalu-
ate the Hurwitz zeta function ζ(s, a) for s, a ∈ C, along with an arbitrary number
of derivatives with respect to s, to arbitrary precision with rigorous error bounds.
Techniques that lead to a fast implementation are discussed. We present new record
computations of Stieltjes constants, Keiper-Li coefficients and the first nontrivial
zero of the Riemann zeta function, obtained using an open source implementation of
the algorithms described in this paper.

Keywords Hurwitz zeta function · Riemann zeta function · Arbitrary-precision
arithmetic · Rigorous numerical evaluation · Fast polynomial arithmetic ·
Power series

Mathematics Subject Classifications (2010) 65D20 · 68W30 · 33F05 · 11-04 ·
11M06 · 11M35

1 Introduction

The Hurwitz zeta function ζ(s, a) is defined for complex numbers s and a by analytic
continuation of the sum

ζ(s, a) =
∞∑

k=0

1

(k + a)s
.

The usual Riemann zeta function is given by ζ(s) = ζ(s, 1).
In this work, we consider numerical computation of ζ(s, a) by the Euler-

Maclaurin formula with rigorous error control. Error bounds for ζ(s) are classical

F. Johansson (�)
RISC, Johannes Kepler University, 4040 Linz, Austria
e-mail: fredrik.johansson@risc.jku.at

mailto:fredrik.johansson@risc.jku.at

254 Numer Algor (2015) 69:253–270

(see for example [7, 14] and numerous references therein), but previous works have
restricted to the case a = 1 or have not considered derivatives. Our main contribution
is to give an efficiently computable error bound for ζ(s, a) valid for any complex s

and a and for an arbitrary number of derivatives with respect to s (equivalently, we
allow s to be a formal power series).

We also discuss implementation aspects, such as parallelization and use of fast
polynomial arithmetic. An open source implementation of ζ(s, a) based on the algo-
rithms described in this paper is available. In the last part of the paper, we present
results from some new record computations done with this implementation.

Our interest is in evaluating ζ(s, a) to high precision (hundreds or thousands of
digits) for a single s of moderate height, say with imaginary part less than 106.
Investigations of zeros of large height typically use methods based on the Riemann-
Siegel formula and fast multi-evaluation techniques such as the Odlyzko-Schönhage
algorithm [32] or the recent algorithm of Hiary [22].

This work is motivated by several applications. For example, recent work of
Matiyasevich and Beliakov required values of thousands of nontrivial zeros ρn of
ζ(s) to a precision of several thousand digits [30, 31]. Investigations of quantities
such as the Stieltjes constants γn(a) and the Keiper-Li coefficients λn also call for
high-precision values [25, 28]. The difficulty is not necessarily that the final result
needs to be known to very high accuracy, but that intermediate calculations may
involve catastrophic cancellation.

More broadly, the Riemann and Hurwitz zeta functions are useful for numerical
evaluation of various other special functions such as polygamma functions, polylog-
arithms, Dirichlet L-functions, generalized hypergeometric functions at singularities
[5], and certain number-theoretical constants [16]. High-precision numerical values
are of particular interest for guessing algebraic relations among special values of such
functions (which subsequently may be proved rigorously by other means) or ruling
out the existence of algebraic relations with small norm [2].

2 Evaluation using the Euler-Maclaurin formula

Assume that f is analytic on a domain containing [N, U] where N, U ∈ Z, and let M

be a positive integer. Let Bn denote the n-th Bernoulli number and let B̃n(t) = Bn(t−
�t�) denote the n-th periodic Bernoulli polynomial. The Euler-Maclaurin summation
formula (described in numerous works, such as [33]) states that

U∑

k=N

f (k) = I + T + R (1)

where
I =

∫ U

N

f (t) dt, (2)

T = 1

2
(f (N) + f (U)) +

M∑

k=1

B2k

(2k)!
(
f (2k−1)(U) − f (2k−1)(N)

)
,

(3)

Numer Algor (2015) 69:253–270 255

R = −
∫ U

N

B̃2M(t)

(2M)! f (2M)(t) dt. (4)

If f decreases sufficiently rapidly, (1–4) remain valid after letting U → ∞. To
evaluate the Hurwitz zeta function, we set

f (k) = 1

(a + k)s
= exp(−s log(a + k))

with the conventional logarithm branch cut on (−∞, 0). The derivatives of f (k) are
given by

f (r)(k) = (−1)r (s)r

(a + k)s+r

where (s)r = s(s + 1) · · · (s + r − 1) denotes a rising factorial. The Euler-Maclaurin
summation formula now gives, at least for �(s) > 1 and a �= 0, −1, −2, . . .,

ζ(s, a) =
N−1∑

k=0

f (k) +
∞∑

k=N

f (k) = S + I + T + R (5)

where

S =
N−1∑

k=0

1

(a + k)s
, (6)

I =
∫ ∞

N

1

(a + t)s
dt = (a + N)1−s

s − 1
, (7)

T = 1

(a + N)s

(
1

2
+

M∑

k=1

B2k

(2k)!
(s)2k−1

(a + N)2k−1

)
, (8)

R = −
∫ ∞

N

B̃2M(t)

(2M)!
(s)2M

(a + t)s+2M
dt. (9)

If we choose N and M such that �(a+N) > 0 and �(s +2M −1) > 0, the integrals
in I and R are well-defined, giving us the analytic continuation of ζ(s, a) to s ∈ C

except for the pole at s = 1.
In order to evaluate derivatives with respect to s of ζ(s, a), we substitute

s → s + x ∈ C[[x]] and evaluate (5–9) with the corresponding arithmetic operations
done on formal power series (which may be truncated at some arbitrary finite order
in an implementation). For example, the summand in (6) becomes

1

(a + k)s+x
=

∞∑

i=0

(−1)i log(a + k)i

(a + k)si! xi ∈ C[[x]]. (10)

Note that we can evaluate ζ(S, a) for any formal power series S = s+s1x+s2x
2+. . .

by first evaluating ζ(s + x, a) and then formally right-composing by S − s. We can

256 Numer Algor (2015) 69:253–270

also easily evaluate derivatives of ζ(s, a)−1/(s−1) at s = 1. The pole of ζ(s, a) only
appears in the term I on the right hand side of (5), so we can remove the singularity
as

lim
s→1

[
I − 1

(s + x) − 1
= (a + N)1−(s+x)

(s + x) − 1
− 1

(s + x) − 1

]

=
∞∑

i=0

(−1)i+1 log(a + N)i+1

(i + 1)! xi ∈ C[[x]]. (11)

For F = ∑
k fkx

k ∈ C[[x]], define |F | = ∑
k |fk|xk ∈ R[[x]]. If it holds for

all k that |fk| ≤ |gk|, we write |F | ≤ |G|. Clearly |F + G| ≤ |F | + |G| and
|FG| ≤ |F ||G|. With this notation, we wish to bound |R(s + x)| where R(s) = R is
the remainder integral given in (9).

To express the error bound in a compact form, we introduce the sequence of
integrals defined for integers k ≥ 0 and real parameters A > 0, B > 1, C ≥ 0 by

Jk(A, B, C) ≡
∫ ∞

A

t−B(C + log t)kdt = Lk

(B − 1)k+1AB−1
(12)

where Lk = k! ∑k
m=0 Dm/m! and D = (B − 1)(C + log A). The list of val-

ues J0, J1, . . . , Jn can be computed easily using O(n) arithmetic operations via the
recurrence L0 = 1, Lk = kLk−1 + Dk . To prove the right-hand equality in (12),
one can expand the integrand using the binomial theorem. As pointed out by an
anonymous referee, (12) can also be evaluated via the incomplete gamma function
�(α, x) = ∫ ∞

x
e−t tα−1dt as

Jk(A, B, C) =
∫ ∞

log A

e−(B−1)u(C + u)kdu = eC(B−1)

∫

C+log A

e−(B−1)vvkdv

= eC(B−1)

(B − 1)k+1

∫ ∞

D

e−yykdy = eD�(k + 1, D)

(B − 1)k+1AB−1
.

Theorem 1 Given complex numbers s = σ + τ i, a = α + βi and positive integers
N, M such that α+N > 1 and σ+2M > 1, the error term (9) in the Euler-Maclaurin
summation formula applied to ζ(s + x, a) ∈ C[[x]] satisfies

|R(s + x)| ≤ 4 |(s + x)2M |
(2π)2M

∣∣∣∣∣

∞∑

k=0

Rkx
k

∣∣∣∣∣ ∈ R[[x]] (13)

where Rk ≤ (K/k!) Jk(N + α, σ + 2M, C), with

C = 1

2
log

(
1 + β2

(α + N)2

)
+ atan

(|β|
α + N

)
(14)

and

K = exp

(
max

(
0, τ atan

(
β

α + N

)))
. (15)

Numer Algor (2015) 69:253–270 257

Proof We have

|R(s + x)| =
∣∣∣∣∣

∫ ∞

N

B̃2M(t)

(2M)!
(s + x)2M

(a + t)s+x+2M
dt

∣∣∣∣∣

≤
∫ ∞

N

∣∣∣∣∣
B̃2M(t)

(2M)!
(s + x)2M

(a + t)s+x+2M

∣∣∣∣∣ dt

≤ 4 |(s + x)2M |
(2π)2M

∫ ∞

N

∣∣∣∣
1

(a + t)s+x+2M

∣∣∣∣ dt

where the last step invokes the fact that

|B̃2M(t)| <
4(2M)!
(2π)2M

.

Thus it remains to bound the coefficients Rk satisfying
∫ ∞

N

∣∣∣∣
1

(a + t)s+x+2M

∣∣∣∣ dt =
∑

k

Rkx
k, Rk =

∫ ∞

N

1

k!
∣∣∣∣

log(a + t)k

(a + t)s+2M

∣∣∣∣ dt.

By the assumption that α + t ≥ α + N ≥ 1, we have

| log(α + βi + t)| =
∣∣∣∣log(α + t) + log

(
1 + βi

α + t

)∣∣∣∣

≤ log(α + t) +
∣∣∣∣log

(
1 + βi

α + t

)∣∣∣∣

= log(α + t) +
∣∣∣∣
1

2
log

(
1 + β2

(α + t)2

)
+ i atan

(
β

α + t

)∣∣∣∣

≤ log(α + t) + C

where C is defined as in (14). By the assumption that σ + 2M > 1, we have

1

|(α + βi + t)σ+τ i+2M | = exp(τ arg(α + βi + t))

|α + βi + t |σ+2M
≤ K

(α + t)σ+2M

where K is defined as in (15). Bounding the integrand in Rk in terms of the integrand
in the definition of Jk now gives the result.

The bound given in Theorem should generally approximate the exact remainder
(9) quite well, even for derivatives of large order, if |a| is not too large. The quantity
K is especially crude, however, as it does not decrease when |a + t |−τ i decreases
exponentially as a function of τ . We have made this simplification in order to obtain
a bound that is easy to evaluate for all s, a. In fact, assuming that a is small, we can
simplify the bounds a bit further using

C ≤ β2

2(α + N)2
+ |β|

(α + N)
.

In practice, the Hurwitz zeta function is usually only considered for 0 < a ≤ 1,
unless s is an integer greater than 1 in which case it reduces to a polygamma function

258 Numer Algor (2015) 69:253–270

of a. It is easy to derive error bounds for polygamma functions that are accurate for
large |a|, and we do not consider this special case further here.

3 Algorithmic matters

The evaluation of ζ(s + x, a) can be broken into three stages:

1. Choosing parameters M and N and bounding the remainder R.
2. Evaluating the power sum S.
3. Evaluating the tail T (and the trivial term I).

In this section, we describe some algorithmic techniques that are useful at each
stage. We sketch the computational complexities, but do not attempt to prove strict
complexity bounds.

We assume that arithmetic on real and complex numbers is done using ball arith-
metic [37], which essentially is floating-point arithmetic with the added automatic
propagation of error bounds. This is probably the most reasonable approach: a priori
floating-point error analysis would be overwhelming to do in full generality (an anal-
ysis of the floating-point error when evaluating ζ(s) for real s, with a partial analysis
of the complex case, is given in [34]).

Using algorithms based on the Fast Fourier Transform (FFT), arithmetic opera-
tions on b-bit approximations of real or complex numbers can be done in time Õ(b),
where the Õ-notation suppresses logarithmic factors. This estimate also holds for
division and evaluation of elementary functions.

Likewise, polynomials of degree n can be multiplied in Õ(n) coefficient oper-
ations. Here some care is required: when doing arithmetic with polynomials that
have approximate coefficients, the accuracy of the result can be much lower than the
working precision, depending on the shape of the polynomials and the multiplication
algorithm. If the coefficients vary in magnitude as 2±Õ(n), we may need Õ(n) bits
of precision to get an accurate result, making the effective complexity Õ(n2). This
issue is discussed further in.

Many operations can be reduced to fast multiplication. In particular, we will need
the binary splitting algorithm: if a sequence cn of integers (or polynomials) satisfies
a suitable linear recurrence relation and its bit size (or degree) grows as Õ(n), then
we can use a balanced product tree to evaluate cn using Õ(n) bit (or coefficient)
operations, versus Õ(n2) for repeated application of the recurrence relation [3, 19].

3.1 Evaluating the error bound

For a precision of P bits, we should choose N ∼ M ∼ P . A simple strategy is to do
a binary search for an N that makes the error bound small enough when M = cN

where c ≈ 1. This is sufficient for our present purposes, but more sophisticated
approaches are possible. In particular, for evaluation at large heights in the critical
strip, N should be larger than M .

Given complex balls for s and a, and integers N and M , we can evaluate the error
bound (13) using ball arithmetic. The output is a power series with ball coefficients.

Numer Algor (2015) 69:253–270 259

The absolute value of each coefficient in this series should be added to the radius for
the corresponding coefficient in S + I + T ≈ ζ(s + x, a) at the end of the whole
computation. If the assumptions that �(a) + N > 1 and �(s) + 2M > 1 are not
satisfied for all points in the balls s and a, we set the error bounds for all coefficients
to +∞.

If we are computing D derivatives and D is large, the rising factorial |(s + x)2M |
can be computed using binary splitting and the outer power series product in (13) can
be done using fast polynomial multiplication, so that only Õ(D + M) real number
operations are required. Or, if D is small and M is large, |(s+x)2M | can be computed
via the gamma function in time independent of M .

3.2 Evaluating the power sum

As a power series, the power sum S becomes
∑N−1

k=0 (
∑

i ci(k)xi) where the coeffi-
cients ci(k) are given by (10). For i ≥ 1, the coefficients can be computed using the
recurrence

ci+1(k) = − log(a + k)

i + 1
ci(k).

If we are computing D derivatives with a working precision of P bits, the complexity
of evaluating the power sum is Õ(NPD), or Õ(N2D) if N ∼ P . The computation
is easy to parallelize by assigning a range of k values to each thread (for large D, a
more memory-efficient method is to assign a range of i to each thread).

When evaluating the ordinary Riemann zeta function, i.e. when a = 1, and we
just want to compute a small number of derivatives, we can speed up the power sum
a bit. Writing the sum as

∑N
k=1 f (k), the terms f (k) = k−(s+x) are completely

multiplicative, i.e. f (k1k2) = f (k1)f (k2). This means that we only need to evaluate
f (k) from scratch when k is prime; when k is composite, a single multiplication is
sufficient.

This method has two drawbacks: we have to store previously computed terms,
which requires O(NPD) space, and the power series multiplication f (k1)f (k2)

becomes more expensive than evaluating f (k1k2) from scratch for large D. For both
reasons, this method is only useful when D is quite small (say D ≤ 4).

We can avoid some redundant work by collecting multiples of small primes. For
example, if we extract all powers of two,

∑10
k=1 f (k) can be written as

[f (1) + f (3) + f (5) + f (7) + f (9)]
+f (2) [f (1) + f (3) + f (5)]
+f (4) [f (1)]
+f (8) [f (1)].

This is a polynomial in f (2) and can be evaluated from bottom to top using
Horner’s rule while progressively adding the terms in the brackets. Asymptoti-
cally, this reduces the number of multiplications and the size of the tables by half.
Algorithm 1 implements this trick, and requires about π(N) ≈ N/ log N evaluations
of f (k) and N/2 multiplications, at the expense of having to store about N/6 func-
tion values plus a table of divisors of about N/2 integers. Constructing the table of

260 Numer Algor (2015) 69:253–270

Algorithm 1 Sieved summation of a completely multiplicative function

divisors using the sieve of Eratosthenes requires O(N log log N) integer operations,
but this cost is negligible when multiplications and f (k) evaluations are expensive.
One could also extract other powers besides 2 (for example powers of 3 and 5), but
this gives diminishing returns.

Another trick that can save time at high precision is to avoid computing the
logarithms of integers from scratch. If q and p are nearby integers (such as two
consecutive primes) and we already know log(p), we can use the identity

log(q) = log(p) + 2 atanh

(
q − p

q + p

)

and evaluate the inverse hyperbolic tangent by applying binary splitting to its Tay-
lor series. This is not an asymptotic improvement over the best known algorithm
for computing the logarithm (which uses the arithmetic-geometric mean), but likely
faster in practice.

If D ∼ N , we can improve the asymptotic complexity of computing S to Õ(PD),
which is softly optimal in the bit size of the output (the author thanks David Harvey
for making this observation). The vector of coefficients ((−1)kk![xk]S)D−1

k=0 is given

Numer Algor (2015) 69:253–270 261

by V T Y where

V =

⎡

⎢⎢⎢⎣

1 log a · · · logD−1 a

1 log(a + 1) · · · logD−1(a + 1)
...

...
. . .

...

1 log(a + N − 1) · · · logD−1(a + N − 1)

⎤

⎥⎥⎥⎦ , Y =

⎡

⎢⎢⎢⎣

a−s

(a + 1)−s

...

(a + N − 1)−s

⎤

⎥⎥⎥⎦ .

It is well known that multiplying a vector from the left by the Vandermonde matrix V

can be done in Õ(N) coefficent operations in what amounts to fast multipoint evalu-
ation. Multiplying a vector from the left by V T when D ∼ N then has essentially the
same complexity according to the transposition principle (this problem is discussed,
for example, in [15]).

3.3 Evaluating the tail

Except for the multiplication by Bernoulli numbers, the terms of the tail sum T satisfy
a simple (hypergeometric) recurrence relation. If we are computing D derivatives
with a working precision of P bits, the complexity of evaluating the tail by repeated
application of the recurrence relation is Õ(MPD), or Õ(P 2D) if M ∼ P . We can
do better if D is large, using binary splitting (Algorithm 2).

Algorithm 2 Evaluation of the tail T using binary splitting

If D ∼ M , the complexity with binary splitting is only Õ(PD), or softly optimal
in the bit size of the output. A drawback is that the intermediate products increase the
memory consumption.

262 Numer Algor (2015) 69:253–270

The Bernoulli numbers can of course be cached for repeated evaluation of the
zeta function, but computing them the first time can be a bottleneck at high preci-
sion, at least if done naively. The first 2M Bernoulli numbers can be computed in
quasi-optimal time Õ(M2), for example by using Newton iteration and fast polyno-
mial multiplication to invert the power series (ex −1)/x. For most practical purposes,
simpler algorithms with a bit complexity of Õ(M3) are adequate, however. Vari-
ous algorithms are discussed in [21]. An interesting alternative, used in unpublished
work of Bloemen [4], is to compute Bn via ζ(n) by direct approximation of the sum∑∞

k=0 k−n, recycling the powers to process several n simultaneously.

4 Implementation and benchmarks

We have implemented the Hurwitz zeta function for s ∈ C[[x]] and a ∈ C with
rigorous error bounds as part of the Arb library [24] 1. This library is written in C
and is freely available under version 2 or later of the GNU General Public License. It
uses the MPFR [17] library for evaluation of some elementary functions, GMP [12]
or MPIR [13] for integer arithmetic, and FLINT [20] for polynomial arithmetic.

Our implementation incorporates most of the techniques discussed in the pre-
vious section, including optional parallelization of the power sum (we have not
implemented the fast algorithm based on transposed multiplication by a transposed
Vandermonde matrix). Bernoulli numbers are computed using the algorithm of Bloe-
men. Fast and numerically stable multiplication in R[x] and C[x] is implemented by
rescaling polynomials and breaking them into segments with similarly-sized coef-
ficients and computing the subproducts exactly in Z[x] (a simplified version of
van der Hoeven’s block multiplication algorithm)Polynomial multiplication in Z[x]
is done via FLINT which for large polynomials uses a Schönhage-Strassen FFT
implementation by William Hart.

In the remainder of this section, we present the results of some computations done
with our implementation. The computed data can be downloaded from the author’s
website 2.

4.1 Computing zeros to high precision

For n ≥ 1, let ρn denote the n-th smallest zero of ζ(s) with positive imaginary part.
We assume that ρn is simple and has real part 1/2. Using Newton’s method, we can
evaluate ρn to high precision nearly as fast as we can evaluate ζ(s) for s near ρn.

It is convenient to work with real numbers. The ordinate tn = �(ρn) is a simple
zero of the real-valued function Z(t) = eiθ(t)ζ(1/2 + it) where

θ(t) =
log �

(
2it+1

4

)
− log �

(−2it+1
4

)

2i
− log π

2
t.

1http://fredrikj.net/arb
2http://fredrikj.net/math/hurwitz zeta.html

http://fredrikj.net/arb
http://fredrikj.net/math/hurwitz_zeta.html

Numer Algor (2015) 69:253–270 263

We assume that we are given an isolating ball B0 = [m0 − ε0, m0 + ε0] such that
tn ∈ B0 and tm �∈ B0, m �= n, and wish to compute tn to high precision (finding such
a ball for a given n is an interesting problem, but we do not consider it here).

Newton’s method maps an approximation zn of a root of a real analytic function
f (z) to a new approximation zn+1 via zn+1 = zn − f (zn)/f

′(zn). Using Taylor’s
theorem, the error can be shown to satisfy

|εn+1| =
∣∣f ′′(ξn)

∣∣
2 |f ′(zn)| |εn|2

for some ξn between zn and the root.
As a setup step, we evaluate Z(s), Z′(s), Z′′(s) (simultaneously using power

series arithmetic) at s = B0, and compute

C = max |Z′′(B0)|
2 min |Z′(B0)| .

This only needs to be done at low precision.
Starting from an input ball Bk = [mk − εk, mk + εk], one step with Newton’s

method gives an output ball Bk+1 = [mk+1 − εk+1, mk+1 + εk+1]. The updated
midpoint is given by

mk+1 = mk − Z(mk)

Z′(mk)
(16)

where we evaluate Z(mk) and Z′(mk) simultaneously using power series arithmetic.
The updated radius is given by εk+1 = ε′

k+1 +Cε2
k where ε′

k+1 is the numerical error
(or a bound thereof) resulting from evaluating (16) using finite-precision arithmetic.
The new ball is valid as long as Bk+1 ⊆ Bk (if this does not hold, the algorithm fails
and we need to start with a better B0 or increase the working precision).

For best performance, the evaluation precision should be chosen so that ε′
k+1 ≈

Cε2
k . In other words, for a target accuracy of p bits, the evaluations should be done

at . . . , p/4, p/2, p bits, plus some guard bits.
As a benchmark problem, we compute an approximation ρ̃1 of the first nontrivial

zero ρ1 ≈ 1/2 + 14.1347251417i and then evaluate ζ(ρ̃1) to the same precision. We
compare our implementation of the zeta function and the root-refinement algorithm
described above (starting from a double-precision isolating ball) with the zetazero
and zeta functions provided in mpmath version 0.17 in Sage 5.10 [35] and the
ZetaZero and Zeta functions provided in Mathematica 9.0. The results of this
benchmark are shown in Table 1. At 10000 digits, our code for computing the zero
is about two orders of magnitude faster than the other systems, and the subsequent
single zeta evaluation is about one order of magnitude faster.

We have computed ρ1 to 303000 digits, or slightly more than one million bits,
which appears to be a record (a 20000-digit value is given in [31]). The computation
used up to 62 GiB of memory for the sieved power sum and the storage of Bernoulli
numbers up to B325328 (to attain even higher precision, the memory usage could be
reduced by evaluating the power sum without sieving, perhaps using several CPUs in
parallel, and not caching Bernoulli numbers).

264 Numer Algor (2015) 69:253–270

Table 1 Time in seconds to compute an approximation ρ̃1 of the first nontrivial zero ρ1 accurate to the
specified number of decimal digits, and then to evaluate ζ(ρ̃1) at the same precision

Digits mpmath Mathematica Arb

ρ̃1 ζ(ρ̃1) ρ̃1 ζ(ρ̃1) ρ̃1 ζ(ρ̃1)

100 0.080 0.0031 0.044 0.012 0.012 0.0011

1000 7.1 0.24 11 1.6 0.18 0.05

10000 7035 252 5127 779 29 15

100000 – – – – 6930 3476

303000 – – – – 73225 31772

Computations were done on a 64-bit Intel Xeon E5-2650 2.00 GHz CPU

4.2 Computing the Keiper-Li coefficients

Riemann’s function ξ(s) = 1
2 s(s − 1)π−s/2�(s/2)ζ(s) satisfies the symmetric

functional equation ξ(s) = ξ(1 − s). The coefficients {λn}∞n=1 defined by

log ξ

(
1

1 − x

)
= log ξ

(
x

x − 1

)
= − log 2 +

∞∑

n=1

λnx
n

were introduced by Keiper [25], who noted that the truth of the Riemann hypothesis
would imply that λn > 0 for all n > 0. In fact, Keiper observed that if one makes an
assumption about the distribution of the zeros of ζ(s) that is even stronger than the
Riemann hypothesis, the coefficients λn should behave as

λn ≈ (1/2) (log n − log(2π) + γ − 1) . (17)

Keiper presented numerical evidence for this conjecture by computing λn up to n =
7000, showing that the approximation error appears to fluctuate increasingly close
to zero. Some years later, Li proved [29] that the Riemann hypothesis actually is
equivalent to the positivity of λn for all n > 0 (this reformulation of the Riemann
hypothesis is known as Li’s criterion). Recently, Arias de Reyna has proved that a
certain precise statement of (17) also is equivalent to the Riemann hypothesis [11].

A computation of the Keiper-Li coefficients up to n = 100000 shows agreement
with Keiper’s conjecture (and the Riemann hypothesis), as illustrated in Fig. 1. We
obtain λ100000 = 4.62580782406902231409416038 . . . (plus about 2900 more accu-
rate digits), whereas (17) gives λ100000 ≈ 4.626132. Empirically, we need a working
precision of about n bits to determine λn accurately. A breakdown of the computa-
tion time to determine the signs of λn up to n = 1000, 10000 and 100000 is shown
in Table 2.

Our computation of the Keiper-Li coefficients uses the formula

log ξ(s) = log(−ζ(s)) + log �
(

1 + s

2

)
+ log(1 − s) − s log π

2

Numer Algor (2015) 69:253–270 265

Fig. 1 Plot of n (λn − (log n − log(2π) + γ − 1)/2)

which we evaluate at s = x ∈ R[[x]]. This arrangement of the terms avoids singu-
larities and branch cuts at the expansion point. We carry out the following steps (plus
some more trivial operations):

1. Computing the series expansion of ζ(s) at s = 0.
2. Computing the logarithm of a power series, i.e. log f (x) = ∫

f ′(x)/f (x)dx.
3. Computing the series expansion of log �(s) at s = 1, i.e. computing the sequence

of values γ, ζ(2), ζ(3), ζ(4),
4. Finally, right-composing by x/(x − 1) to obtain the Keiper-Li coefficients.

Table 2 Elapsed time in seconds to evaluate the Keiper-Li coefficients λ0 . . . λn with a working precision
of 1.1n + 50 bits, giving roughly 0.1n accurate bits

n = 1000 n = 10000 n = 100000

1: Error bound 0.017 1.0 97

1: Power sum 0.048 47 65402

(1: Power sum, CPU time) (0.65) (693) (1042210)

1: Bernoulli numbers 0.0020 0.19 59

1: Tail 0.058 11 1972

2: Series logarithm 0.047 8.5 1126

3: log �(1 + x) series 0.019 3.0 1610

4: Composition 0.022 4.1 593

Total wall time 0.23 84 71051

Peak RAM usage (MiB) 8 730 48700

The computations were done on a multicore system with 64-bit Intel Xeon E7-8837 2.67 GHz CPUs (16
threads were used for the power sum, and all other parts were computed serially on a single core)

266 Numer Algor (2015) 69:253–270

Step 2 requires O(M(n)) arithmetic operations on real numbers, where M(n)

denotes the complexity of polynomial multiplication. We use a hybrid algorithm to
compute the integer zeta values in step 3; the details are beyond the scope of the
present paper.

There is a very fast way to perform step 4. For f = ∑∞
k=0 akx

k ∈ C[[x]], the
binomial (or Euler) transform T : C[[x]] → C[[x]] is defined by

T [f (x)] = 1

1 − x
f

(
x

x − 1

)
=

∞∑

n=0

(
n∑

k=0

(−1)k
(

n

k

)
ak

)
xn.

We have

f

(
x

x − 1

)
= a0 + xT

[
a0 − f

x

]
.

If B : C[[x]] → C[[x]] denotes the Borel transform

B

[∞∑

k=0

akx
k

]
=

∞∑

k=0

ak

k! x
k,

then (see [18]) T [f (x)] = B−1[exB[f (−x)]]. This identity gives an algorithm for
evaluating the composition which requires only M(n)+O(n) coefficient operations.
Moreover, this algorithm is numerically stable (in the sense that it does not signif-
icantly increase errors from the input when using ball arithmetic), provided that a
numerically stable polynomial multiplication algorithm is used.

The composition could also be carried out using various generic algorithms for
composition of power series. We tested three other algorithms, and found them to
perform much worse:

– Horner’s rule is slow (requiring about nM(n) operations) and is numerically
unsatisfactory in the sense that it gives extremely poor error bounds with ball
arithmetic.

– The Brent-Kung algorithm based on matrix multiplication [9] turns out to give
adequate error bounds, but uses about O(n1/2M(n) + n2) operations which still
is expensive for large n.

– We also tried binary splitting: to evaluate f (p/q) where f is a power series and
p and q are polynomials, we recursively split the evaluation in half and keep
numerator and denominator polynomials separated. In the end, we perform a
single power series division. This only costs O(M(n) log n) operations, but turns
out to be numerically unstable. It would be of independent interest to investigate
whether this algorithm can be modified to avoid the stability problem.

4.3 Computing the Stieltjes constants

The generalized Stieltjes constants γn(a) are defined by

ζ(s, a) = 1

s − 1
+

∞∑

n=0

(−1)n

n! γn(a) (s − 1)n.

Numer Algor (2015) 69:253–270 267

The “usual” Stieltjes constants are γn(1) = γn, and γ0 = γ ≈ 0.577216 is Euler’s
constant. The Stieltjes constants were first studied over a century ago. Some his-
torical notes and numerical values of γn for n ≤ 20 are given in [6]. Keiper [25]
provides a method for computing the Stieltjes constants based on numerical integra-
tion and recurrence relations, and lists various γn up to n = 150. Keiper’s algorithm
is implemented in Mathematica [23].

More recently, Kreminski [28] has given an algorithm for the Stieltjes constants,
also based on numerical integration but different from Keiper’s. He reports having
computed γn to a few thousand digits for all n ≤ 10000, and provides further isolated
values up to γ50000 (accurate to 1000 digits) as well as tables of γn(a) with various
a �= 1.

The best proven bounds for the Stieltjes constants appear to be very pessimistic
(see for example [1]). In a recent paper, Knessl and Coffey [27] give an asymptotic
approximation formula that seems to be very accurate even for small n, having the
form

γn ≈ Bn−1/2eAn cos(an + b) (18)
where A, B, a, b are functions that depend weakly on n. Notably, this formula cap-
tures both the asymptotic growth and the oscillation pattern of γn. Based on numerical
computations done with Mathematica, Knessl and Coffey observe that (18) correctly
predicts the sign of γn up to at least n = 35000 with the single exception of n = 137.

Our implementation immediately gives the generalized Stieltjes constants by com-
puting the series expansion of ζ(s, a) − 1/(s − 1) at s = 1 using (11). The costs are
similar to those for computing the Keiper-Li coefficients: due to ill-conditioning, it
appears that we need about n + p bits of precision to determine γn with p bits of
accuracy. This makes our method somewhat unattractive for computing just a few
digits of γn when n is large, but reasonably good if we want a large number of digits.
Our method is also useful if we want to compute a table of all the values γ0, . . . , γn

simultaneously.
For example, we can compute γn for all n ≤ 1000 to 1000-digit accuracy in

just over 10 seconds on a single CPU. Computing the single coefficient γ1000 to
1000-digit accuracy with Mathematica 9.0 takes 80 seconds, with an estimated 20
hours required for all n ≤ 1000. Thus our implementation is nearly four orders of
magnitude faster. We can compute a table of accurate values of γn for all n ≤ 10000
in a few minutes on an ordinary workstation with around one GiB of memory.

We have computed all γn up to n = 100000 using a working precision of 125050
bits, resulting in an accuracy from about 37640 decimal digits for γ0 to about 10860
accurate digits for γ100000. The computation took 26 hours on a multicore system with
16 threads utilized for the power sum, with a peak memory consumption of about 80
GiB during the binary splitting evaluation of the tail.

As shown in Fig. 2, the Knessl-Coffey approximation (18) is very accurate in
practice, approaching six correct digits on average when n ≈ 105. Our computation
gives γ100000 = 1.991927306312541095658 . . . × 1083432, while (18) gives γn ≈
1.9919333 × 1083432.

The relative error of (18) can be large when the oscillatory factor cos(an + b)

is small. For example, this factor is about 0.000027 when n = 84589, and in this
case (18) only gives one correct digit (our computation confirms that n = 137 is the

268 Numer Algor (2015) 69:253–270

Fig. 2 Top: plot of the relative error |γn − γ̃n|/|γn| of the Knessl-Coffey approximation γ̃n =
Bn−1/2eAn cos(an+b) for the Stieltjes constants. Bottom: plot of the normalized error | cos(an+b)||γn −
γ̃n|/|γn|

only instance for n ≤ 100000 where (18) gives the wrong sign). Nonetheless, the
worst-case error of 18 appears to decay smoothly when adjusted for the oscillation,
as illustrated in the bottom of Fig. 2.

In Knessl and Coffey [26], Knessl and Coffey extend their asymptotic approxima-
tion formula to a �= 1. Their approximation gives, for example, the estimate

γ50000(1 + i) ≈ (1.0324943 − 1.4419586i) × 1039732

while we compute (rounded to 15 decimal digits)

γ50000(1 + i) = (1.03250208743188 − 1.44196255284053i) × 1039732.

We emphasize that our implementation computes γn(a) with proved error bounds,
while the other cited works and implementations (to our knowledge) depend on
heuristic error estimates.

We have not yet implemented a function for computing isolated Stieltjes constants
of large index; this would have roughly the same running time as the evaluation of
the tail (since only a single derivative of the power sum would have to be computed).
The memory consumption is highest when evaluating the tail, and would therefore
remain the same.

5 Discussion

One direction for further work would be to improve the error bounds for large |a| and
to investigate strategies for selecting N and M optimally, particularly when the num-
ber of derivatives is large. It would also be interesting to investigate parallelization of

Numer Algor (2015) 69:253–270 269

the tail sum, or look for ways to evaluate a single derivative of high order of the tail
in a memory-efficient way. Further constant-factor improvements are possible in an
implementation, for example by reducing the precision of terms that have small mag-
nitude (rather than naively performing all operations at the same precision). It would
also be interesting to implement the asymptotically fast algorithm for the power sum
when computing many derivatives.

Finally, it would be interesting to compare the efficiency of the Euler-Maclaurin
formula with other approaches to evaluating the Hurwitz zeta function such as the
algorithms of Borwein [8], Vepštas [38] and Coffey [10].

Acknowledgments The author was supported by the Austrian Science Fund (FWF) grant Y464-N18.
The author thanks Paul Zimmermann, Ricky Farr, and the anonymous reviewer for pointing out errors and
suggesting improvements. A version of this article also appears as a section in the author’s PhD thesis.

References

1. Adell, J.A.: Estimates of generalized Stieltjes constants with a quasi-geometric rate of decay. Proc. R.
Soc. A 468, 1356–1370 (2012)

2. Bailey, D.H., Borwein, J.M.: Experimental mathematics: recent developments and future outlook. In:
Engquist, B., Schmid, W., Michor, P.W. (eds.) Mathematics – Unlimited 2001 and Beyond, pp. 51–66.
Springer (2000)

3. Bernstein, D.J.: Fast multiplication and its applications. Algorithmic Number Theory 44, 325–384
(2008)

4. Bloemen, R.: Even Faster ζ(2n) Calculation! (2009). http://remcobloemen.nl/2009/11/even-faster-zeta-
calculation.html

5. Bogolubsky, A.I., Skorokhodov, S.L.: Fast evaluation of the hypergeometric function pFp−1(a; b; z)

at the singular point z = 1 by means of the Hurwitz zeta function ζ(α, s). Program. Comput. Softw.
32(3), 145–153 (2006)

6. Bohman, J., Fröberg, C.-E.: The Stieltjes function – definition and properties. Math. Comput. 51(183),
281–289 (1988)

7. Borwein, J.M., Bradley, D.M., Crandall, R.E.: Computational strategies for the Riemann zeta function.
J. Comput. Appl. Math. 121, 247–296 (2000)

8. Borwein, P.: An efficient algorithm for the Riemann zeta function. Canadian Mathematical Society
Conference Proceedings 27, 29–34 (2000)

9. Brent, R.P., Kung, H.T.: Fast algorithms for manipulating formal power series. J. ACM 25(4), 581–
595 (1978)

10. Coffey, M.W.: An efficient algorithm for the Hurwitz zeta and related functions. J. Comput. Appl.
Math. 225(2), 338–346 (2009)

11. Arias de Reyna, J.: Asymptotics of Keiper-Li co efficients. Functiones et Approximatio Commentarii
Mathematici 45(1), 7–21 (2011)

12. The GMP development team.: GMP: The GNU Multiple Precision Arithmetic Library. http://www.
gmplib.org

13. The MPIR development team.: MPIR: Multiple Precision Integers and Rationals. http://www.mpir.org
14. Edwards, H.M.: Riemann’s Zeta Function. Academic Press (1974)
15. Finck, T., Heinig, G., Rost, K.: An inversion formula and fast algorithms for Cauchy-Vandermonde

matrices. Linear Algebra Appl. 183, 179–191 (1993)
16. Flajolet, P., Vardi, I.: Zeta Function Expansions of Classical Constants. Unpublished manuscript

(1996). http://algo.inria.fr/flajolet/Publications/landau.ps
17. Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: MPFR: A multiple-precision binary

floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13:1–13:15 (2007).
http://mpfr.org

18. Gould, H.: Series transformations for finding recurrences for sequences. Fibonacci Quarterly 28, 166–
171 (1990)

http://remcobloemen.nl/2009/11/even-faster-zeta-calculation.html
http://remcobloemen.nl/2009/11/even-faster-zeta-calculation.html
http://www.gmplib.org
http://www.gmplib.org
http://www.mpir.org
http://algo.inria.fr/flajolet/Publications/landau.ps
http://mpfr.org

270 Numer Algor (2015) 69:253–270

19. Haible, B., Papanikolaou, T.: Fast multiprecision evaluation of series of rational numbers. In:
Buhler, J.P. (ed.) Algorithmic Number Theory: Third International Symposium, vol. 1423, pp.
338–350. Springer (1998)

20. Hart, W.B.: Fast library for number theory: an introduction. In: Proceedings of the Third Interna-
tional Congress Conference on Mathematical Software, ICMS’10, pp. 88–91. Springer-Verlag, Berlin
(2010). http://flintlib.org

21. Harvey, D., Brent, R.P.: Fast computation of Bernoulli, tangent and secant numbers. Springer
Proceedings in Mathematics & Statistics 50, 127–142 (2013). arXiv:1108.0286

22. Hiary, G.: Fast methods to compute the Riemann zeta function. Ann. Math. 174, 891–946 (2011)
23. Wofram Research Inc.: Some Notes on Internal Implementation (section of the online

documentation for Mathematica 9.0) (2013). http://reference.wolfram.com/mathematica/tutorial/
SomeNotesOnInternalImplementation.html

24. Johansson, F.: Arb: a C library for ball arithmetic. ACM Communications in Computer Algebra 47,
166–169 (2013)

25. Keiper, J.B.: Power series expansions of Riemann’s ξ function. Math. Comput. 58(198), 765–773
(1992)

26. Knessl, C., Coffey, M.: An asymptotic form for the Stieltjes constants γk(a) and for a sum Sγ (n)

appearing under the Li criterion. Math. Comput. 80(276), 2197–2217 (2011)
27. Knessl, C., Coffey, M.: An effective asymptotic formula for the Stieltjes constants. Math. Comput.

80(273), 379–386 (2011)
28. Kreminski, R.: Newton-Cotes integration for approximating Stieltjes (generalized Euler) constants.

Math. Comput. 72(243), 1379–1397 (2003)
29. Li, X.-J.: The positivity of a sequence of numbers and the Riemann hypothesis. Journal of Number

Theory 65(2), 325–333 (1997)
30. Matiyasevich, Y.: An Artless Method for Calculating Approximate Values of Zeros of Riemann’s Zeta

Function (2012). http://logic.pdmi.ras.ru/∼yumat/personaljournal/artlessmethod/
31. Matiyasevich, Y., Beliakov, G.: Zeroes of Riemann’s Zeta Function on the Critical Line with 20000

Decimal Digits Accuracy (2011). http://dro.deakin.edu.au/view/DU:30051725?print friendly=true
32. Odlyzko, A.M., Schönhage, A.: Fast algorithms for multiple evaluations of the Riemann zeta function.

Trans. Am. Math. Soc. 309(2), 797–809 (1988)
33. Olver, F.W.J.: Asymptotics and Special Functions. A K Peters, Wellesley (1997)
34. Pétermann, Y.-F.S., Rémy, J.-L.: Arbitrary precision error analysis for computing ζ(s) with the Cohen-

Olivier algorithm: complete description of the real case and preliminary report on the general case.
Rapport de recherche RR-5852, INRIA (2006)

35. Stein,W.A., et al.: Sage Mathematics Software. The Sage Development Team (2013). http://www.
sagemath.org

36. van der Hoeven, J.: Making Fast Multiplication of Polynomial Numerically Stable. Technical report
2008-02. Université Paris-Sud, Orsay (2008)

37. van der Hoeven J.: Ball Arithmetic. Technical report, HAL (2009). http://hal.archives-ouvertes.fr/
hal-00432152/fr/

38. Vepštas L.: An efficient algorithm for accelerating the convergence of oscillatory series useful for
computing the polylogarithm and Hurwitz zeta functions. Numerical Algorithms 47(3), 211–252
(2008)

http://flintlib.org
http://arxiv.org/abs/1108.0286
http://reference.wolfram.com/mathematica/tutorial/SomeNotesOnInternalImplementation.html
http://reference.wolfram.com/mathematica/tutorial/SomeNotesOnInternalImplementation.html
http://logic.pdmi.ras.ru/~yumat/personaljournal/artlessmethod/
http://dro.deakin.edu.au/view/DU:30051725?print_friendly=true
http://www.sagemath.org
http://www.sagemath.org
http://hal.archives-ouvertes.fr/hal-00432152/fr/
http://hal.archives-ouvertes.fr/hal-00432152/fr/

	Computation of the Hurwitz zeta function
	Abstract
	Introduction
	Evaluation using the Euler-Maclaurin formula
	Algorithmic matters
	Evaluating the error bound
	Evaluating the power sum
	Evaluating the tail

	Implementation and benchmarks
	Computing zeros to high precision
	Computing the Keiper-Li coefficients
	Computing the Stieltjes constants

	Discussion
	Acknowledgments
	References

