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Abstract In this paper, we introduce a new approach to multiple step verified inte-
gration of non-linear ordinary differential equations. The approach is based on the
technique of a Taylor model integration, however, a novel method is introduced to
suppress the wrapping effect over several integration steps. This method is sim-
pler and more robust compared to the known methods. It allows more general
inputs, while it does not require rigorous matrix inversion. Moreover, our integra-
tion algorithm allows the use of various types of underlying function enclosures.
We present rigorous arithmetic operations with function enclosures based on the
truncated Chebyshev series. Computational experiments are used to show the wrap-
ping effect suppression of our method and to compare integration algorithm that
uses Chebyshev function enclosures with the existing algorithms that use function
enclosures based on the truncated Taylor series (Taylor models).

Keywords Initial value problem · Rigorous integration · Taylor model · Chebyshev
basis

1 Introduction

Non-rigorous numerical algorithms for the initial value problem of ordinary differ-
ential equations attempt to compute an approximate solution of the problem for a
single initial state. These methods are reliable for most applications, but it is pos-
sible to find examples for which they compute very inaccurate results. Rigorous
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algorithms can compute a validated enclosure of the solution for a set of initial states
and the enclosure is guaranteed to contain an exact solution for all initial states from
the set [8]. Such enclosures are needed in some applications, for example in systems
verification[13, 25], or in theorem provers [6, 27].

Current algorithms for the rigorous version of the initial value problem use either
linear transformation of Cartesian product of intervals [16, 24], zonotope represen-
tation [15] or so-called Taylor models [21] for representing an enclosure of concrete
solutions at each time step. In this paper, we extend the work on Taylor model based
integration. We replace function enclosure based on truncated Taylor series (Taylor
models) with function enclosure based on truncated Chebyshev series [4]. Moreover,
we introduce a new method for suppression of the wrapping effect that is simpler
than the known methods of shrink wrapping [3] and preconditioning [19], since it
does not require rigorous matrix inversion.

We present rigorous operations with multi-variable function enclosures in the form
of coefficients of the truncated Chebyshev series and the remainder term stored as an
interval. In existing work [2, 5], only operations with functions in one variable are
described. In [2], the function approximation is stored in the form of function values
in the Chebyshev nodes. Authors use Fourier transform to compute coefficients of
Chebyshev polynomials that they require in some operations, however, the methods
are not rigorous (i.e., no enclosure of the exact function value is guaranteed). On the
other hand the authors in [5] use rigorous methods, but not all operations required for
solving the initial value problem are provided.

The authors of the original Taylor model method also investigated the truncated
Chebyshev series, however, in [18] they list two fundamental limitations to the use
of the truncated Chebyshev series:

– The Chebyshev series may lead to an increase in the magnitude of the coeffi-
cients, since low order approximations of high-order monomials like xn usually
involve larger low order terms cancelling each other.

– The truncated Chebyshev series of a product f1 × f2, in general, cannot be
obtained from the truncated Chebyshev series of the factors f1 and f2, because
the result depends on the unknown high-order terms. As a consequence, the
methods cannot be used to compute the truncated Chebyshev series of the
multiplication, and the approximation will be sub-optimal.

In the corollary of Theorem 2, we argue that the first limitation of the use of
the truncated Chebyshev series does not affect the algorithm described in this paper.
Concerning the second limitation, in Section 5.3 we present an algorithm that com-
putes the multiplication of two function enclosures in truncated Chebyshev series
representation. The coefficients of Chebyshev polynomials computed in the algo-
rithm are, in the general case, different from the coefficients in the optimal enclosure
of f1 ×f2. Still, the computed result is a valid enclosure of f1 ×f2 and in Section 2.2
we show, that even though sub-optimal, the computed enclosure truncation error is
lower compared to Taylor enclosure multiplication.

For the purpose of multiple step integration, we introduce a new method for
handling the wrapping effect. The method is in its principles similar to the affine
arithmetic approach [9] of handling uncertainties. We use a set of new variables to
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represent the unknown uncertainty in each computation step. The computation of the
solution enclosure in the following step handles these variables symbolically. The
main difference to the affine arithmetic approach is that, after introducing affine com-
bination of variables, we don’t limit ourselves to affine operations and we treat new
variables the same way as all statespace variables. New variables can appear in high
order non-linear terms, thus this error handling mechanism has a potential to enclose
non-convex error transformations and the wrapping effect does not affect the solu-
tion over multi-step integration. The proposed method is simpler and more robust
compared to the existing methods.

Our implementation [11] supports function enclosures based on both Taylor and
Chebyshev truncated series and allows their comparison. To our knowledge, this is
the only publicly available rigorous implementation of the multi-variable function
enclosure in the truncated Chebyshev series.

The content of the paper is as follows: In Section 2 we define our formalism for
the rigorous function enclosure and the set of operations that are required in the ver-
ified integrator, in Section 3 we describe a single step of the integration method,
in Section 4 we present a new method for suppression of the wrapping effect and
we compare it to the existing methods, in Section 5 we construct function enclo-
sure operations required in the integrator with both Taylor and Chebyshev function
enclosures, in Section 6 we discuss our implementation, in Section 7 we evalu-
ate the method using computation experiments, and in Section 8 we conclude the
paper.

2 Function enclosure

Ordinary differential equations, initial values and the most of intermediate results
are stored in the form of function enclosures in the rest of this paper. In this section
we present the structure and meaning of the function enclosure used. We also list
essential rigorous operations with the enclosures based on both the truncated Taylor
series (Taylor function enclosures) and the truncated Chebyshev series (Chebyshev
function enclosures). We also discuss how to construct function enclosures for a given
function and we compare Taylor and Chebyshev function enclosures.

2.1 Polynomial basis

Definition 1 A polynomial basis is a set of linearly independent univariate polyno-
mials that, in a linear combination, can represent every univariate polynomial in a
polynomial vector space.

The power polynomial basis in variable x is the set of polynomials Pi(x) = xi for
all i ∈ N0.

The Chebyshev polynomial basis in variable x is the set of polynomials Ti(x)

where T0(x) = 1, T1(x) = x and Ti(x) = 2x Ti−1(x) − Ti−2(x) for i ∈ {2..∞}.

For a given polynomial basis, a univariate polynomial can be represented as a
linear combination of some polynomials from that basis. For example polynomial
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x3 + 3x2 − 2 can be represented as P3(x) + 3P2(x) − 2P0(x) in power basis or
0.25T3(x) + 1.5T2(x) + 0.75T1(x) − 0.5T0(x) in the Chebyshev basis.

The domain for all variables in the rest of the paper is the interval [−1, 1]. If a
variable has a different domain, we do a substitution of the original variable to a
shifted and scaled variable that fits the [−1, 1] domain. The reason for this is that
polynomials in both power and Chebyshev basis are bound on this interval as stated
by the following theorem:

Theorem 1 For all i ∈ N0 and x ∈ [−1, 1]: −1 ≤ Pi(x) ≤ 1 and −1 ≤ Ti(x) ≤ 1.

The inequality for the power basis is trivial. In the Chebyshev basis, the bound for
the value of Ti(x) follows from the alternative equivalent definition of the Chebyshev
basis: Ti(x) = cos(i arccos(x)).

2.2 Comparison Of taylor and chebyshev truncated series

In this section, we compare Taylor and Chebyshev truncated series. We show that the
magnitude of coefficients, the truncation error and the multiplication error are lower
or equal in the truncated Chebyshev series compared to the truncated Taylor series.
In [18], the authors say that the Chebyshev series may lead to an increase in the
magnitude of coefficients, since low order approximations of high-order monomials
like xn usually involve larger low order terms cancelling each other. This is true, when
the approximation is expressed in the Taylor basis, but when the entire computation is
evaluated in the Chebyshev basis, the magnitude of the coefficients does not increase
as shown in the following Lemma. Because of this, such limitation does not affect
algorithms in this paper.

Lemma 1 For all n, the Chebyshev series of the function f (x) = xn is a Chebyshev
polynomial of degree n, all the coefficients in the Chebyshev polynomial are positive
and their sum is equal to 1.

Proof We will prove the lemma by induction. For n = 0 the proposition is true. Let
us assume it holds for all n ≤ k. For k, we have that xk = ∑k

i=0 aiTi(x) for some
{a}i positive with the sum of 1. For n = k + 1 we will use identity Ti(x)Tj (x) =
(Ti+j (x) + T|i−j |(x))/2: xk+1 = T1(x)

∑k
i=0 aiTi(x) = ∑k

i=0 aiT1(x)Ti(x) =
∑k

i=0 aiTi+1(x)/2 + ∑k
i=0 aiT|i−1|(x)/2, thus for all i: ai/2 appears twice in the

series coefficients of function xk+1. Since all ai are positive, there is no cancellation
and all coefficients are again positive. The sum of new coefficients is again equal
to 1.

Given a function series f (x) = ∑∞
i=0 aibi(x) in either of the two bases, the sum∑∞

i=n+1 |ai |, if it exists, is particulary important, because this sum gives an upper
bound for the truncation error we make due to Theorem 1. In the following Theo-
rem, we are given a function and we construct its Chebyshev polynomial from its
Taylor polynomial. Since both polynomials are unique, this transformation allows us
to compare truncation error in both bases.
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Theorem 2 For a function f (x) with Taylor series f (x) = ∑∞
i=0 aix

i: if the series
coefficients {a}i converge absolutely (i.e.,

∑∞
i=0 |ai | < ∞), the Chebyshev series

coefficients {t}i converge absolutely as well and for all k: ∑∞
i=k |ti | ≤ ∑∞

i=k |ai |.

Proof We have that f (x) = ∑∞
i=0 aix

i and for each term fi(x) = aix
i we can con-

struct Chebyshev series with coefficients t ij using Lemma 1 such that
∑i

j=0 |t ij | =
|ai |, for all j > i: t ij = 0 and fi(x) = ∑i

j=0 t ij Tj (x). We can now construct Cheby-

shev series for f (x): ti = ∑∞
j=i t

j
i . This sum exists since |tji | < |aj | due to Lemma

1 and series {a}i converge absolutely. Thus for all k:
∑∞

i=k |ti | = ∑∞
i=k | ∑∞

j=i t
j
i | ≤

∑∞
i=k

∑∞
j=i |tji | ≤ ∑∞

j=k

∑∞
i=k |tji | ≤ ∑∞

j=k |aj |.

Corollary 1 If we apply Theorem 2 for k = 0, we see that for all functions with
absolute convergent Taylor series, the Chebyshev series does not lead to an increase
in the magnitude of coefficients.

We have proved that the increase in the magnitude of coefficients in the Cheby-
shev basis does not affect functions with absolutely convergent power series. The
truncation error is also lower in the Chebyshev basis. In some cases low order coef-
ficients may be lower in the Taylor basis. Then, according to the above Theorem,
higher order coefficients that contribute to the truncation error are higher. Decreas-
ing the coefficient magnitude while increasing the truncation error negativelly affects
precision thus we may conclude that the behavior in the Chebyshev basis is superior
to the behavior in the Taylor basis.

Another fundamental limitation of the use of Chebyshev approximations accord-
ing to the authors of [18] is that the truncated Chebyshev series of a product f1×f2, in
general, cannot be obtained from the truncated Chebyshev series of the factors f1 and
f2. The reason is, that the result depends on the unknown high-order terms. As a con-
sequence, the authors say that the methods cannot be used to compute the truncated
Chebyshev series of the multiplication, and the approximation will be sub-optimal.

While the argument that the optimal truncated Chebyshev series of the f1 × f2
cannot be obtained is correct, this does not have such a negative consequences. If
the truncated Chebyshev series of functions f1 and f2 are constructed, the exact
product of those approximations can be obtained. If the input to the multiplication
are two better approximations of f1 and f2, we show that the result is again a better
approximation of f1 × f2.

In the truncated series multiplication of functions f1(x) = ∑n
i=0 pibi(x) with

uncertainty e1 and f2(x) = ∑n
i=0 qibi(x) with uncertainty e2, the error is generated

from three sources:

– rounding
– e1 × |maxxf2(x)| + e2 × |maxxf1(x)| + e1e2

– truncation of (
∑n

i=0 pibi(x)) × (
∑n

i=0 qibi(x))

In Theorem 2, we proved that the magnitude of coefficients is smaller in the
Chebyshev series. Because of this, we can expect also smaller rounding errors in the
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Chebyshev series multiplication. In the same theorem, we argued, that the truncation
error is lower in the truncated Chebyshev series. Thus the errors e1 and e2 are both
lower in the Chebyshev basis and the second multiplication error is lower as well.
Finally, the third error source for the power series is

∑2n
i=n+1

∑n
j=i−n pjqi−jPi(x),

while for the Chebyshev series it is
∑2n

i=n+1
∑n

j=i−n pjqi−j Ti(x)/2. Because
of the factor 1/2 and the lower expected coefficients magnitude in the trun-
cated Chebyshev series this error is lower as well. We conclude that, even
though the computed Chebyshev approximation is sub-optimal, it is better than
the optimal power series multiplication result. We demonstrate this on an
example.

Example Assume we want to multiply order three approximations of functions
f1(x) = sin(x) and f2(x) = x2 ot the domain x ∈ [−1, 1]. The Taylor polynomial
for f1(x) is x + x3/6. The approximation error of f1(x) is highest in x = ±1 and it
is sin(1) − 5/6 ∼= 0.00814. The multiplication result in the Taylor basis is x3 + x5/6
but since we work in order three, the final approximation is x3. The approximation
error is again highest in x = ±1 and it is 1−sin(1) ∼= 0.15853. The Chebyshev poly-
nomial for f1(x) is approximately 0.88010T1(x) − 0.03913T3(x) and for f2(x) it is
T0(x)/2 + T2(x)/2. The approximation error of f1(x) is 0.0005 in x = 0.307721.
The truncated multiplication result in the Chebyshev basis is 0.65029T1(x) +
0.20046T3(x). The error of the approximation is 0.00973496 in x = 0.307879. In
this example, both approximation errors increased after the multiplication by a simi-
lar factors. The Chebyshev approximation that we have computed is not the truncated
Chebyshev series of f1(x)×f2(x), thus it is sub-optimal, but it is still better than the
optimal Taylor approximation.

2.3 Function enclosure and enclosure operations

In this section, we describe our function enclosure formalism, that we use for storing
the function representation in the algorithm.

In our computations, we can use only the subset of the real numbers, that are
representable on computer hardware. We denote the set of such numbers by Ω and
the subset of representable numbers with the magnitude that cannot underflow or
overflow in floating-point arithmetic operations by Ω∗ ⊂ Ω . The detailed discussion
of floating-point arithmetic can be found in Appendix 8. Now we define our rigorous
function enclosure of a multivariate function.

The intuition behind the following function enclosure definition is that we store
coefficients of the truncated Taylor or Chebyshev series of the represented function
together with a single floating-point number used for the aggregate error from all
sources (computation, rounding, truncation, etc.).

Definition 2 A rigorous function enclosure in polynomial basis {b}∞0 is a pair
(F, e) ∈ (Nm

0 → Ω∗) × Ω of the truncated series coefficients F and an
error bound e. The center value of such an enclosure is val(F, x1, . . . , xm) :=∑

i∈Nm
0

F(i)
∏m

j=1 bij (xj ). The rigorous function enclosure (F, e) represents all
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functions g(x1, . . . , xm) such that ∀x1, . . . , xm ∈ [−1, 1]m : g(x1, . . . , xm) ∈
[val(F, x1, . . . , xm)−e, val(F, x1, . . . , xm)+e]. We denote this representation rela-
tion by g ∈ (F, e). We denote the set of all rigorous function enclosures with m

variables by Ψm. We say that the degree of enclosure is n, if for all i = (i1, . . . , im)

such that
∑m

j=1 ij > n : F(i) = 0.

Using the rigorous function enclosure, we can directly represent any polyno-
mial with coefficients in Ω∗, given that the degree of the enclosure is greater or
equal to the degree of the polynomial represented. For example the polynomial
2b1(x1)b0(x2) + 3b2(x1)b5(x2) can be represented as (F, e) = ({a1,0 = 2, a2,5 =
3}, 0) (we omit the zero polynomial coefficients in F ). Moreover, using the error
term, we can represent polynomials with coefficients that are not in Ω∗, polynomials
with greater degree than the degree of the enclosure, and functions with absolutely
convergent series. For example, the function g(x) = 0.45x2 + 0.04x100 + sin(x)

can be represented using a Taylor enclosure of degree two using the following
observations:

– 0.5 ∈ Ω∗ and for x ∈ [−1, 1] : |0.45x2 − 0.5x2| ≤ 0.05

– for x ∈ [−1, 1] : |0.04x100| ≤ 0.04

– for x ∈ [−1, 1] : |sin(x) − x| ≤ 1 − sin(1) < 0.16

thus we replace coefficient 0.45 
∈ Ω∗ with 0.5 ∈ Ω∗, we include high-order term
0.04x100 in the error term and we replace sin(x) with its approximation x. We add
up all the errors and store it in the error term. g(x) can now be represented as
(F, e) = ({a1 = 1, a2 = 0.5)}, 0.25), that is P1(x) + 0.5P2(x) = x + 0.5x2 with the
error 0.25.

In the verified integrator, the following operations with rigorous function enclo-
sures with m variables are required:

– unary minus : Ψm → Ψm, such that if g ∈ (F, e) then
−g ∈ unary minus((F, e)).

– add : Ψm × Ψm → Ψm, such that if g1 ∈ (F1, e1) and g2 ∈ (F2, e2) then
g1 + g2 ∈ add((F1, e1), (F2, e2)).

– mul : Ψm × Ψm → Ψm, such that if g1 ∈ (F1, e1) and g2 ∈ (F2, e2) then
g1 × g2 ∈ mul((F1, e1), (F2, e2)).

– for all k: substitute : Ψm×Ψ m
k → Ψk , such that if g ∈ (F, e) and s1

∈ (S1, q1), . . . , sm ∈ (Sm, qm), then g(s1, . . . , sm) ∈ substitute((F, e),

(S1, q1), . . . , (Sm, qm)).
– integrate : Ψm → Ψm, such that if g(x1, . . . , xm) ∈ (F, e) then

h(y, x2, . . . , xm) = ∫ y

0 g(x1, . . . , xm)dx1 ∈ integrate((F, e)).

Note that in the substitution operation, we substitute function enclosures (Si, qi)

in the enclosure (F, e) whose domain is [−1, 1]m. Thus the substitution is valid only
if the range of all (Si, qi) is a subset of [−1, 1]. When using substitution, we have to
prove that this inclusion holds.

The details of the construction of the operations above can be found in Section 5.
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3 Verified integration - single step

The problem we are solving is the initial value problem for a given system of ordinary
differential equations and a set of initial values. Given the input:

– system of n differential equations ẋ = f (x)

– initial values over m free variables {x | ∃a ∈ [−1, 1]m : g(a) = x}
– bound on time tmax

we want to compute the function h(t, a), that is the solution to the system of
differential equations dh(t, a)/dt = f (h(t, a)) and h(0, a) = g(a).

Both input functions f and g are given in the form of rigorous function enclosures.
The result of the computation is an enclosure of function h that is valid for time
t ∈ [−tmax, tmax] 1.

To obtain the enclosure for the solution h of the initial value problem, we use a
method based on the iterated use of the Picard operator [21]. We set h0(t, a) := 0
and we compute a sequence of enclosures for the recurrence hi+1(t, a) := g(a) +∫ tmax

0 f (hi(t, a))dt using the enclosure operations from Section 2. In case of conver-
gence, the series converges to h(t, a). Since the error term in the enclosure of g(a) is
constant and the error term in the enclosure of

∫ tmax

0 f (hi(t, a))dt increases with the
time bound tmax , we can control convergence by changing the time bound tmax to a
value small enough to give us a convergent series.

If we denote by (Hi, ei) the enclosure we obtain in the i-th step, we stop the
iteration of the Picard operator when a fixpoint (Hi+1, ei+1) ⊆ (Hi, ei) is reached.
(Hi+1, ei+1) is the enclosure of the problem solution h(t, a).

4 Verified integration - wrapping effect supression

As explained in Section 3, there is a limit time bound tmax for which the iteration
of Picard operator converges. If we want to integrate a differential equation over a
larger time-span, we have to do several steps of integration. If we denote the solution
in the i-th step by hi(t, a), then the most straightforward method to proceed with the
next step is to set the initial condition in the step i + 1 to gi+1(a) = hi(tmax, a). In
this section we explain, why such a simple approach is not suitable for the integration
over several time steps. We introduce a new method that is more suitable for multi-
step integration. We also discuss the difference between our method and the existing
[3, 17, 19].

In case the initial state in i-th step gi(a) contains uncertainty, i.e., its enclosure has
a non-zero error term, the error term in the enclosure of the single step integration
result hi(t, a) is always bigger, since hi(0, a) = gi(a), thus the computed error term
in the enclosure of hi cannot be smaller compared to error term in the input enclosure
of gi . The uncertainty in the enclosure of hi now applies for the entire time interval.

1In our algorithm, the function h is expanded at time 0, thus the computed result is valid also backwards
in time.
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Even if the differential equation was contracting, the same error term in hi enclosure
applies in both times t = 0 and t = tmax thus the error does not contract as it
should. Moreover, while applying the Picard operator iterativelly, we add gi with its
uncertainty in each iteration, but the information that we add the same uncertainty
in each iteration is lost, and thus the resulting error is higher. Finally, the wrapping
effect [22] causes exponential growth of the error term between the time steps. To
solve these problems, we introduce the following method:

For integration step i and variable index j , let
(
Gi

j , e
i
j

)
be the enclosure of gi

j (a).

We introduce a new free variable pi
j , we add term ei

jp
i
j to the enclosure coeffi-

cients and we clear the error term. The new enclosure (Qi
j , 0) now represents the

same set as
(
Gi

j , e
i
j

)
, since any point in interval

[
val(Gi

j ) − ei
j , val(Gi

j ) + ei
j

]
is

the value of the function val(Qi
j ) = val(Gi

j ) + ei
jp

i
j for some pi

j ∈ [−1, 1]. The

new variables pi now carry the information about the unknown uncertainty in the
i-th step and the dependency problem is solved. This is similar to the idea of uncer-
tainty handling by affine arithmetic [9], because what we do is we introduce affine
representation of the error to the system and then compute with it symbolically. The
main difference is that once introduced into the system, new variables undergo full
arithmetic as the regular statespace variables, thus we are able to enclose non-linear
non-convex error transformations. Moreover, in the case of a contracting differen-
tial equation, substituting tmax into hi(t, a, pi ) handles variables pi symbolically
and the error contracts the same way as the initial set in the contracting differential
equation.

The obvious problem is, that the initial set in the i-th step (Qi
j , 0) now con-

tains more free variables than the input
(
Gi

j , e
i
j

)
. To avoid increasing the variable

count in each integration step, we use the new set of variables pi not only to store
the error ei but also to keep the information about the dependency of the input
on the additional variables pi−1 from the previous step. This way the total num-
ber of variables is constant n + m during the computation, where n is the problem
dimension and m is the number of free variables a. Given the initial condition
gi

j (a, pi−1) = hi−1
j (tmax, a, pi−1) ∈ (

Gi
j , e

i
j

)
, we split it into gi+

j (a) ∈ (Gi+
j , 0)

and gi∗
j (a, pi−1) ∈ (

Gi∗
j , ei

j

)
, where Gi+

j contains all coefficients of monomi-

als independent on pi−1. Let us denote the bound on
(
Gi∗

j , ei
j

)
by qj . Now we

introduce new variables pi
j with coefficients qj , i.e., the range of monomial qjp

i
j

covers the unknown uncertainty [gi∗
j (a, pi−1) − ej , g

i∗
j (a, pi−1) + ej ]. We also store

(
Gi∗

j , ei
j

)
and after the integration we construct a wrapping-effect free result through

back-substitution of variables p.

Example To illustrate the approach, let us consider a discrete system, where ±e

denotes uncertainty of size e:

xn+1 = xn − yn

yn+1 = xn + yn

g0(a) = (3 + a ± 0.1, ±0.1), i.e.(x0, y0) ∈ [1.9, 4.1] × [−0.1, 0.1]
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where in addition to the initial state error, computation of each step involves a new
error of magnitude 0.1. In case of a naive method, without the wrapping effect
handling mechanism, the result is the following sequence of states:

g1(a) = ((3 + a) ± 0.3, (3 + a) ± 0.3)

g2(a) = (±0.7, (6 + 2a) ± 0.7)

In our method, we replace g0(a) with equivalent g0(a, p0
1, p

0
2) and we compute g1:

g0

(
a, p0

1, p0
2

)
=

(
(3 + a) + 0.1p0

1, 0.1p0
2

)

g1

(
a, p0

1, p0
2

)
=

(
(3 + a)+0.1

(
p0

1 −p0
2

)
± 0.1, (3 + a)+0.1

(
p0

1 + p0
2

)
± 0.1

)

Now we split g1 into g+
1 (a) = ((3+a), (3+a)) and the remaining part g∗

1

(
a, p0

1, p
0
2

)
.

We find the bound on the latter part and construct new initial state. We also store the
relation betweeen

(
p1

1, p
1
2

)
and

(
p0

1, p
0
2

)
:

g1

(
a, p1

1, p1
2

)
=

(
(3 + a) + 0.3p1

1, (3 + a) + 0.3p1
2

)

(
p1

1, p1
2

)
=

((
p0

1 − p0
2

)
/3 ± 1/3,

(
p0

1 + p0
2

)
/3 ± 1/3

)

Computing the following step leads to
g2(a, p1

1, p1
2) = (0.3

(
p1

1 − p1
2

)
± 0.1, (6 + 2a) + 0.3

(
p1

1 + p1
2

)
± 0.1)

Using the back-substitution, we can estimate the error in g2:

0.3
(
p1

1 − p1
2

)
± 0.1 = 0.3(

(
p0

1 − p0
1 − 2p0

2

)
/3 ± 2/3) ± 0.1

Note that in the previous step, there is a cancellation in the symbolic computation
of error and p0

1 is removed from the expression. Substitution of ±0.1 for p0
2 in the

last expression leads to the optimal error bound 0.5 compared to 0.7 in the naive
method.

The overall algorithm for the multiple step verified integration follows:

input:
differential equations (Fj , ej )

initial condition
(
G0

j , e
0
j

)

time bound tmax , number of steps N

for i from 0 to N − 1 do
// we start by introducing variables pi

j

for each j : split Gi
j into Gi+

j that does not contain variables pi−1

and the remaining coefficients Gi∗
j

estimate the bound qj on
(
Gi∗

j , ei
j

)
and add term qjp

i
j to Gi+

j

(Hj , ej ) := (∅, 0)

// Picard iteration cycle
do

for each j : (H ′
j , e

′
j ) := (Hj , ej )

(Hj , ej ) :=
add((Gi+

j , 0), integrate(substitute((Fj , ej ), (H
′
1, e

′
1), . . . , (H

′
n, e

′
n))))
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while ∃j : (Hj , ej ) 
⊆ (H ′
j , e

′
j )

// Substitute tmax for time
for each j :

(
Gi+1

j , ei+1
j

) := substitute((Hj , ej ), ({a0 = tmax}, 0), ID, . . . , ID)

where ID is a identity function
for each j :

(
RN

j , eN
j

) := (
GN

j , eN
j

)

// back-substitution to compute result free of p variables
for i from N − 1 down to 0 do

for each j :
(
Ri

j , e
i
j

) :=
substitute

((
Ri+1

j , ei+1
j

)
, ID, . . . , ID,

(
Gi∗

1 , ei
1

)
, . . . ,

(
Gi∗

n , ei
n

))

i.e., we substitute
(
Gi∗

k , ei
k

)
for variables pi

k and keep variables a unchanged
return

(
R0

j , e
0
j

)

In addition to this algorithm, the error bound can be estimated not only in the
end of the computation, but it can be computed more often based on a heuristic to
minimize qjp

i
j introduced to the system.

There are several other known methods of dealing with the error growth in the
multi-step verified integration. The shrink wrapping approach [3] is based on the
idea of enclosing the remainder error into the range of the polynomial part of the
function and dropping the error term. In the preconditioning approach [19], the
idea is to write the initial values g(a) in the form of composition of two func-
tions, where the outer error-free function can be viewed as a specific coordinate
system in which the motion is studied. In Lohner’s QR approach [17] the error
is represented in a moving orthogonal coordinate system that matches the rota-
tion of the system. In Kühn’s approach [15] the error is enclosed in the high order
zonotope. In all of these methods, given a non-linear g(a), authors use only linear
part of it. In shrink wrapping, the linear part is then used to enclose the remain-
der error, while in preconditioning, the linear part is used as the basis of the outer
function in the composition. In QR approach, the linear part is used to find suit-
able coordinate system to express the solution and in zonotope approach high order
zonotopes are used. In all above methods, non-linear information is ignored and
non-linear non-convex error transformations are enclosed by linear means. Such an
approach works well in case the linear part dominates the non-linear part, how-
ever, in case the linear part is small or ill-conditioned, the result of applying
such a computation based on linear terms to non-linear part is unpredictable. In
addition to this, even if input set and differential equations are linear, the interme-
diate results may become non-linear. Another disadvantage of the shrink wrapping
approach is that altering the polynomial part of the input weakens the corespondence
between the input and output. Output r(a) still represents the set g(a) integrated
over time tmax but for a given a0, the point g(a0) integrated over time tmax is not
r(a0).

In their software COSY Infinity Makino and Berz also use additional variables
to supress wrapping effect in the, yet unpublished, PSum algorithm. This algorithm
again uses only linear combinations of additional variables. The method proposed in
this paper has several differences from the PSum algorthm that allow us to enclose
non-linear error transformations.
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The advantage of the known methods is that they, except in the PSum algorithm,
do not increase the number of free variables. Having less free variables reduces the
computation cost of the single step integration and adding new variables causes expo-
nential growth of computation time in the general case. In our case, the new variables
represent the error that is usually small and we introduce only the affine combination
of such variables into the enclosure of the initial set. The increase in the coefficient
count of the result is thus not exponential and in our experiments the number of terms
in the enclosure of the solution depending on variables p was approximately the same
as the number of terms that do not depend on p.

5 Polynomial operations

In this section, we show how to perform the polynomial operations listed in
Section 2.

5.1 Basis independent polynomial operations

The operations unary minus and add as presented in this paper are independent of
the polynomial basis, so the same operation applies for the Taylor and Chebyshev
enclosures.

For the unary minus operation, it is enough to apply floating-point unary minus

on each individual coefficient in the enclosure. That is unary minus((F, e)) =
(unary minus(F ), e).

Theorem 3 For all functions g ∈ (F, e): −g ∈ (unary minus(F ), e).

Proof g ∈ [val(F )−e, val(F )+e] implies that −g ∈ [−val(F )−e, −val(F )+e].
Since from definition of val, we have −val(F ) = val(−F), thus −g ∈ [val(−F)−
e, val(−F) + e] and −g ∈ (unary minus(F ), e).

For the add((F1, e1), (F2, e2)) polynomial operation, we apply floating-point add
on each pair of corresponding coefficients in the input enclosures. For all i, we
compute floating-point numbers (ai, ei) = add(F1(i), F2(i)). We compute e3 as the
upward rounded sum of all errors |ei|. For all i, we set F(i) := ai. Now we construct
the result of the addition: add((F1, e1), (F2, e2)) = (F, e1+e2+e3).

Theorem 4 For all functions g1 ∈ (F1, e1) and g2 ∈ (F2, e2):
g1 + g2 ∈ add((F1, e1), (F2, e2)).

Proof g1 + g2 ∈ [val(F1) + val(F2) − e1 − e2, val(F1) + val(F2) + e1 + e2].
Let us examine val(F1) + val(F2). It is the sum of: (F1(i) + F2(i))

∏m
j=1 bij (xj ) =

(ai + ei)
∏m

j=1 bij (xj ). From the Theorem 1, we can bound the absolute value of
ei

∏m
j=1 bij (xj ) to be |ei| and the sum of all of such terms never exceed e3 in mag-

nitude. The sum of the rest of the terms is exactly val(F ), thus we have g1 + g2 ∈
(F, e1+e2+e3).
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The result of the above operation may not be a valid function enclosure, since
some of the computed ai may not lie in Ω∗ (however, ai ∈ Ω , since we assume
that both input enclosures are a valid function enclosures). We handle this by the
following additional operation normalize: In case there is an overflowing coef-
ficient ai, we report an overflow error and we stop the computation. For each
underflowing ai, we set that coefficient in F to zero and we bound the maxi-
mum absolute value of the term corresponding to that coefficient using Therorem
1 to be |ai|. We add this additional error to the error term using upward rounded
addition.

The normalize operation has to be used not only after the add operation, but
after all remaining operations as well, since all of those perform some floating-point
computation.

Now we formulate a lemma that allows us to use the add operation to simplify the
rest of the function enclosure operations.

Lemma 2 For function g and function enclosure (F, e) such that g ∈ (F, e) and
for arbitrary index i, we can construct new coefficients G and their complement G−
such that G(i) := 0 and for all j, j 
= i: G(j) := F(j). G− is the remaining i-th
coefficient: G− := F − G. For the new coefficients, the following identity holds:
g − val(G−) ∈ (G, e).

Proof Since g ∈ (F, e), g ∈ [val(F )−e, val(F )+e] thus g−val(G−) ∈ [val(F )−
val(G−)− e, val(F )− val(G−)+ e]. Since F −G− = G, we have g − val(G−) ∈
[val(G) − e, val(G) + e].

In a non-trivial case when F(i) is non-zero, the enclosure of the function val(G−)

is (G−, 0) and it has only one non-zero coefficient. The enclosure (G, e) of the func-
tion g − val(G−) has one less non-zero coefficient compared to (F, e), thus both
splitted enclosures are simpler compared to the original enclosure. When multiplying,
integrating or substituting into (F, e), we can now multiply, integrate or substitute
into those simpler enclosures and then add the results, because of the following
identities:

– g × f = (g − val(G−)) × f + val(G−) × f

– g(f ) = (g − val(G−))(f ) + val(G−)(f )

–
∫

g = ∫
(g − val(G−)) + ∫

val(G−)

We can iterate the use of Lemma 2 to split enclosures with more than one coefficient
until we arrive in enclosures with at most one non-zero coefficient. Because of this,
it is enough to show the rest of the operations on such simple inputs.

5.2 Taylor enclosure operations

In this section we explain how to perform the mul, substitute and integrate

function enclosure operations with Taylor enclosures.
For the mul((F1, e1), (F2, e2)), let us assume F1 is non-zero only in a single

index i and F2 is non-zero only in index j. We compute (a, b) = mul(F1(i), F2(j)).
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The result of the multiplication mul((F1, e1), (F2, e2)) is then
(F (i + j) = a, b+e1×|F2(j)|+e2×|F1(i)|).

For the substitute((F, e), (S1, q1), . . . , (Sm, qm)) operation, we again show, how
to do this operation when F has only one non-zero coefficient. Let us assume F is
non-zero only in a single index j. We compute enclosure for F(j)× (S1, q1)

j1 ×· · ·×
(Sm, qm)jm using the mul operation and finally we add e to the error using upward
rounded addition.

For the integrate((F, e)) operation, we again assume that F has only one non-zero
coefficient at index j. We compute floating-point numbers (a, b) = div(F (j), j1 +1)

and new index i = j+(1, 0, . . . , 0). The result of the integration is then the enclosure
(F (i) = a, b+e).

5.3 Chebyshev enclosure operations

In this section we present new method to perform the mul, substitute and integrate
function enclosure operations with multivariate Chebyshev enclosures.

For the mul((F1, e1), (F2, e2)), we again assume F1 is non-zero in a single index i
and F2 is non-zero only in index j. We compute (a, b) = mul(F1(i), F2(j)). To con-
struct the result of the multiplication, we need the following identity: for all p, q, x:
Tp(x)Tq(x) = (Tp+q(x) + T|p−q|(x))/2. In case p = 0 or q = 0 this identity sim-
plifies to Tp(x)Tq(x) = Tp+q(x). We count the number m of indices k such that
ik = 0 or jk = 0 and we compute a′ = a/2m. We construct the result coeffi-
cients F such that for all indices r, where for all k: rk = ik + jk or rk = |ik − jk|
we set F(r) = a′. The result of the multiplication mul((F1, e1), (F2, e2)) is then
(F, b+e1×|F2(j)|+e2×|F1(i)|).

Multiplication of two n-variable function enclosures that have one non-zero coef-
ficient each may result in up to 2n non-zero coefficient result. This is a big increase
compared to single non-zero coefficient in the same case for Taylor enclosures, how-
ever, it happens only in a special case when the multiplied coefficients belong to a
terms that depend on most of the variables. In practice, such coefficients are small and
the division with the divisor 2m decreases their magnitude even more. In Section 6
we describe a recursive algorithm for multiplication that is efficient for the function
enclosures that appear in practice.

For the substitute((F, e), (S1, q1), . . . , (Sm, qm)) operation we use the same
approach as we did with the power basis, but we use Clenshaw Algorithm 7 to
compute enclosure of F(j) × Tj1((S1, q1)) × · · · × Tjm((Sm, qm)).

For integrate((F, e)) operation, we need the following identities:

–
∫ y

0 T0(x)dx = T1(y)

–
∫ y

0 T1(x)dx = (T0(y) + T2(y))/4
– for even i > 1:

∫ y

0 Ti(x)dx = (−Ti−1(y)/(i − 1) + Ti+1(y)/(i + 1))/2
– for i > 1 and i ≡ 1 mod 4:∫ y

0 Ti(x)dx = ((1/(i−1)+1/(i+1))T0(y)−Ti−1(y)/(i−1)+Ti+1(y)/(i+1))/2
– for i > 1 and i ≡ 3 mod 4:∫ y

0 Ti(x)dx = ((−1/(i − 1) − 1/(i + 1))T0(y) − Ti−1(y)/(i − 1) + Ti+1(y)/

(i + 1))/2
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We assume the only non-zero coefficient in F is F(i) and i1 ≡ 1 mod 4. The
rest of the cases are analogous to this one. We compute floating point numbers
(a, b) = div(F (i), i1−1), (c, d) = div(F (i), i1+1) and (p, q) = add(a, c). To con-
struct the result coefficients G of the integration, we set G(i − (1, 0, . . . , 0)) = a/2,
G(i + (1, 0, . . . , 0)) = c/2 and G(i − (i1, 0, . . . , 0)) = p/2. The result of the
integration is than (G, e+b+d+q/2).

6 Implementation

For enclosures appearing in practice, most of the high degree terms are usually small
in magnitude. Because of this characteristics, it is essential for performance reasons
to store and compute with enclosures in sparse form. In our experiments, the addition
and integration operations are easy to perform since in those operations result can
be constructed quickly based on Lemma 2. The multiplication operation is the most
time-consuming operation and it is often used as a sub-operation in the substitution
operation. Because of this, we explain how to perform the multiplication operation
effectively.

In our implementation, we fix n, the degree of all stored enclosures. If an oper-
ation creates a term with order higher than n or a term that is much smaller
in magnitude than the error term, we include such terms in the error using the
same approach as we use for hiding underflowing terms in normalize operation in
Section 5.1.

For the performance reasons, it is important to detect such a small and high-order
terms early in the computation, so that the individual coefficients are estimated and
never computed. To do this, in Taylor enclosure multiplication we group terms in the
input based on their degree. For each pair of the groups from the input, we compute
the multiplication only if the sum of the group degrees is less or equal to n. In case the
sum of degrees is greater than n, the bound on the group is computed using upward
rounded addition and then the upward rounded multiplication of the bounds is added
to the error. This way individual coefficients from groups that would only contribute
to error term are never multiplied.

Let m be the number of variables. In the Chebyshev enclosure multiplication,
using a naive multiplication algorithm leads to a huge increase in the compu-
tation time, because each pair of the input coefficients contributes to up to 2m

coefficients in the result. We propose the following recursive algorithm for the
multiplication to avoid this problem: When multiplying Chebyshev polynomials
p(x1, . . . , xm) and q(x1, . . . , xm), we first isolate the first variable: p(x1, . . . , xm) =∑

i ai(x2, . . . , xm)Ti(x1), q(x1, . . . , xm) = ∑
i bi(x2, . . . , xm)Ti(x1). Now, for

each pair (i, j) we recursively multiply polynomials in one less variable:
c(i,j)(x2, . . . , xm) = ai(x2, . . . , xm)bj (x2, . . . , xm). We can then construct the result
of the multiplication: p × q = ∑

(i,j)(Ti+j (x1) + T|i−j |(x1))c(i,j)(x2, . . . , xm)/2. In
this way, a lot of cancellation occurs in each level of the recursion since the total num-
ber of coefficients c(i,j) is much higher than the maximum degree n and the worst
time case complexity of the multiplication is asymptotically the same as for power
basis multiplication.
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7 Computational experiments

To compare our simple implementation with the existing mature Taylor model
software COSY Infinity, we use Volterra equation example from [20]:

ẋ = 2x(1 − y)

ẏ = y(x − 1)

x0 ∈ [0.95, 1.05]; y0 ∈ [2.95, 3.05]; tmax = 5.488138468035

and Roessler system example from [19]:

ẋ = −(y + z)

ẏ = x + 0.2y

ż = 0.2 + z(x − 5.7)

x0 ∈ [−0.2, 0.2]; y0 ∈ [−8.58095, −8.18095]; z0 ∈ [−0.1704098, 0.2295902]
tmax = 6

In the computation, we use small time step sizes, such that the precision is not
limited by the Picard operator, but the representation order becomes the limit. This
way we can compare the ability to enclose non-convex shapes by the Chebyshev
function enclosure and the Taylor function enclosure. The width of the error of the
enclosure in time tmax for both examples is presented in Table 1.

Our implementation using Taylor enclosure integration is worse than COSY, prob-
ably because of the worse Picard operator implementation. Replacing the Taylor
enclosures with the Chebyshev enclosures and keeping the rest of the algorithm
unchanged allows us to get a several orders of magnitude smaller error term in the
problem solution. The difference in the error magnitude is higher with the higher
order of the enclosure and with high-order enclosures, we compute better results
compared to COSY.

We took additional benchmarks from the VERICOMP online database [1]. In the
Table 2 we present enclosure width and computation time of our tool on VERICOMP
benchmarks 1–6, and benchmark 28. We compare our tool to publicly available tools

Table 1 Experimental results. COSY Infinity results from [19, 20]

Our tool COSY

Problem (enclosure degree) Taylor enclosure Chebyshev enclosure

Volterra (10) 1.1E-6 5.7E-9

Volterra (12) 3.4E-8 5.2E-11 3E-9

Volterra (14) 1.1E-9 9.8E-13

Roessler (12) 1.8E-6 1.4E-8 1.3E-9

Roessler (14) 1.2E-7 2.7E-10 2.9E-10

Roessler (16) 9E-9 5.7E-12 7.3E-11

Roessler (18) 6.6E-10 5.3E-13 3.9E-11
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Table 2 VERICOMP computation experiments [1]

VNODE LP RIOT Our tool

Benchmark # Variable count Width Time Width Time Width Time

1 2 4.67079 0.01s 10.1 2s 4.67078 0.08s

2 3 0.232544 0.01s 0.235 0.7s 0.232544 0.03s

3 1 0.89 0.01s 0.44 40s 0.38 0.1s

4 2 0.073 0.02s 0.067569 38s 0.067561 0.3s

5 51 0.21527 2s – – 0.21527 12s

6 30 2.95E-5 3s – – 2.54E-5 93s

28 2 – – – – 1.018 4.5s

VNODE LP [24], RIOT [12] and ValenciaIVP [26], however we omit results of the
tool ValenciaIVP in the table, bacause it does not provide tightest results on any of the
displayed benchmarks. For each tool and benchmark the result depends on the solver
settings. We present the best result based on the enclosure width. In case multiple
settings provide narrow results, we display the one with the lowest computational
time.

The benchmarks in the VERICOMP database include uncertainties in the ODE
or in the initial state such that the optimal result is not a single point but rather a
set of points. Where the optimal width of this set is known, our results in Table 2
match the optimal width in all displayed digits. From Table 2, we can see that tool
VNODE LP is always the fastest one but it cannot provide tightest results for non-
linear benchmarks 3,4,6, and 28. The tool RIOT sometimes outperforms VNODE LP
in terms of precision, but it is much slower and sometimes struggles with simple
linear benchmarks as benchmark 1. Our tool using Chebyshev function enclosures
can solve some benchmarks unsolved by other tools, while providing tight results.

Finally, to evaluate our wrapping effect suppression method, we use two-state pin-
cushion and stretch benchmark from [3]. Considering a two state system instead of an
ODE allows us to perform hundreds of thousands of steps and evaluating wrapping
effect suppression method on a greater scale.

From the results in Table 3 we can conclude that both tools can handle the wrap-
ping effect in this benchmark and there is not an exponential growth of the error.
For the initial state (1, 1) + [−0.05, 0.05]2 both tools fail to compute the enclosure

Table 3 Error width in the two-state pincushion and stretch benchmark [3] after 100000 steps

Polynomial COSY Our tool

order [−0.05, 0.05]2 (1, 1) + [−0.05, 0.05]2 [−0.05, 0.05]2 (1, 1) + [−0.05, 0.05]2

5 2 × 10−2 – 3.8 × 10−3 –

10 1 × 10−7 2 × 10−4 1.3 × 10−8 7.2 × 10−4

20 1 × 10−9 5 × 10−8 2.7 × 10−12 1.1 × 10−9
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with order 5 polynomials. COSY outperforms our tool with order 10 polynomials,
but with higher orders our tool provides tighter enclosures. This type of behavior can
be caused by various causes. One possible cause is the different implementation of
enclosure division and square root. Another possibility is the different heuristic strat-
egy in the removing of the underflowing polynomial terms. Tighter enclosures in the
order 20 can be attributed to the use of the Chebyshev polynomial enclosures.

8 Conclusion

In this paper, we introduced two improvements to the Taylor model-based verified
integration. Replacing the Taylor enclosures with the Chebyshev enclosures allows
the method to compute enclosure of the solution of the initial value problem with
higher precision while using low order approximations. This is a very important prop-
erty when the number of variables grows big, because the number of polynomial
coefficients increases drastically in such a case with each additional order. Being able
to approximate function better with less coefficients is a crucial property of the future
rigorous integrators. The method is also able to suppress the wrapping effect over
multiple integration steps due to new error handling approach. Computational exper-
iments confirm an advantage of the use of the Chebyshev enclosures over the Taylor
enclosures as well as the suppression of the wrapping effect. In the future work, we
plan to improve our step size control and use better single step algorithm. We plan to
use the method in the hybrid system safety verification Algorithm [25].
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Appendix A: Self-validated floating point arithmetic

In this section we describe how we use the arithmetic operations to get rigorous
bounds on all computed values and we compare the operations presented here to other
rigorous frameworks. The approach is similar to [28], where authors use multiple
floating point numbers to achieve high precision. We limit ourselves to single float-
ing point number representation, but still in Theorem 5 we proove, that this method
provides better results than the interval arithmetic approach [23].

In our algorithms we use the floating point numbers for representing the numerical
quantities. All floating point numbers are assumed to be in IEEE double precision
format [14]. We denote the set of all representable numbers by Ω ⊂ R. Since only the
fixed number of binary digits are being stored, the arithmetic operations like addition
and multiplication involve rounding of the result. In the following, we distinguish
between the exact arithmetic operations (+, −, ×, / etc.) and the rounded floating
point operations (⊕, �, ⊗, � etc.). Rounded values are assumed to be computed in
the default round to nearest, ties to even rounding mode.
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The arithmetic operation on hardware may overflow or underflow, that is, it pro-
duces result greater or smaller in magnitude than the numbers in Ω . Since this may
cause some unwanted behavior, we pick a big constant M (in our case 10100), such
that the arithmetic operation on the set Ω∗ = {x | x ∈ Ω and x ∈ [−M, M] and
(x = 0 or x ≤ −1/M or x ≥ 1/M)} never overflows or underflows. In general,
when an overflowing result is produced during the computation, we cannot continue
with computation and we report an overflow error. However, when the underflowing
result is produced, such value is treated as zero and rigorous bound for this result is
treated as the roundoff error.

In the following, we require the existence of the following operations:

– unary minus : Ω → Ω such that unary minus(x) = (−1) × x

– upward-rounded addition +: Ω∗ × Ω∗ → Ω such that x+y = a implies that a

is the smallest element in Ω such that a ≥ x + y

– upward-rounded multiplication ×: Ω∗ × Ω∗ → Ω such that x×y = a implies
that a is the smallest element in Ω such that a ≥ x × y

– add : Ω∗ × Ω∗ → Ω × Ω such that add(x, y) = (a, b) implies that x ⊕ y = a

and x + y = a + b

– mul : Ω∗ × Ω∗ → Ω × Ω such that mul(x, y) = (a, b) implies that x ⊗ y = a

and x × y = a + b

– div : Ω∗ × (Ω∗ − {0}) → Ω × Ω such that div(x, y) = (a, b) implies that
x � y = a and |x/y − x � y| ≤ b

The operations unary minus, + and × are guaranteed to exist due to the IEEE
Standard [14]. The operations add and mul can be computed using the method intro-
duced in [10], based on the observation that for a, b ∈ Ω∗ : (a+b)−(a⊕b) ∈ Ω and
(a×b)−(a⊗b) ∈ Ω . The operation div(x, y) is a pair of x�y and an error, that we
compute using correctly rounded operations on the expression |x−((x�y)×y)|/|y|.

When using above addition and multiplication operations, each operation com-
putes the result as the sum of two floating point values. For operation op(x, y) =
(a, b), we say that a is the result of the operation and e = |b| is the error of the opera-
tion. We than say that the exact result of the operation lies in the interval [a−e, a+e].
In the subsequent operations we use only the value of a in the computation and we use
the error separately to get the rigorous bounds on the computed values. The details
on how the rigorous bound is estimated varies with each operation and we explain it
individually for each rigorous operation in the rest of the paper.

Note that taking the absolute value of b, we discard the sign of the error and
we store only the magnitude of the error. It is possible to construct an alternative
approach that does not discard the sign of the error, but instead uses two error terms
elo and ehi and represents the quantity as [a+elo, a+ehi]. With such an approach, we
can further decrease the size of the error for the cost of higher storage requirements.
We have decided for the simpler approach, because having only one error term sim-
plifies our computation. Moreover, in vast majority of our computation, we deal with
coefficients of the symbolic polynomials with range [−1, 1]. Interval multiplication
of the error and interval [−1, 1] makes the sign of error irrelevant.

To illustrate the approach, let us assume we want to compute rigorous bounds for
(x +y)× z, where x, y, z ∈ Ω∗. First, we compute add(x, y) = (a, b) and e1 = |b|.
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For simplicity, let us assume that a ∈ Ω∗, otherwise we would have to handle the
overflow or the underflow in the computation. Now we compute mul(a, z) = (c, d)

and e2 = |d|. To estimate the total error e such that (x + y) × z ∈ [c − e, c + e], we
observe that (x + y) × z = (a + b) × z = c + d + b × z. We bound the error term
d + b × z using the upward-rounded arithmetic: e = |d|+|b|×|z| = e2+e1×|z|.

Now we show, that addition and multiplication operations presented in this section
behave superior compared to the similar operations in interval arithmetic. For an
operation with exact result x, interval arithmetic computes x, x ∈ Ω such that x ∈
[x, x], and x, x are the closest lower and upper estimates of x in Ω .

Theorem 5 For above operations add and mul, the computed interval [a −e, a +e]
has always smaller or equal width to the interval [x, x] computed in interval
arithmetic.

Proof Let x be the exact result of the given arithmetic operation. Since a is the round
to nearest, ties to even rounded x and x, x are two closest values to x in Ω , a has to
be one of them. Without loss of generality, let a = x. Since e is the exact error, we
have x = a + e. Because a is the nearest floating point number to x, x − x ≤ x − x,
thus a + e − a ≤ x − a − e and 2e ≤ x − a = x − x.

As the consequence of the Theorem 5 we use a single floating point value for
each numerical quantity and single positive floating point value for an error term
throughout this paper. When representing polynomials we decided to use single float-
ing point number for each polynomial coefficient and single error term for the entire
polynomial. Comparing this approach to one, where there are interval polynomial
coefficients and polynomial operations are evaluated in interval arithmetic, our tech-
nique generates less over-approximation due to Theorem 5 and requires less memory
to store polynomial coefficients.

Appendix B: Vericomp example number 28

In this section we discuss benchmark number 28 from Section 7 that was not solved
by any of the competitive tools. The benchmark equations are:

x′
0 = x2

0x2
1 − x4

0 − x0x
2
1 + x3

0 − x4
1

x′
1 = −x3

1 + x2
0x1

x0 ∈ [0.2, 1.0]; x1 ∈ [0.6, 1.0]
The reason why this benchmark is hard to solve is the divergent behavior for neg-

ative values of variable x0. The terms −x4
0 + x3

0 in the differential equation cause
fast explosion of the solution states for flows that reach negative values of x0. This
is clearly visible also on the vector field for this example in Fig. 1. The actual solu-
tion does not reach this divergent flow, however it gets close to the states that do.
As a result, it is crucial to keep overapproximation as small as possible in order to
solve this benchmark. Using affine enclosures or zonotope enclosures of the solution
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Fig. 1 Vector field of VERICOMP benchmark number 28

set always involve some systematic overapproximation and in systems like this, it
leads to failure to solve the benchmark. This benchmark thus shows, that our effort to
enclose non-linear solution sets with small overapproximation is important in modern
rigorous IVP solvers.

The original VERICOMP benchmark number 28 time bound is T = 1, but we
present our solution for times up to T = 10, while competitive solvers were unable

Fig. 2 Solution polynomial and sampled numerical solutions for time T = 1 and T = 10
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to solve the basic version with any setting. In Fig. 2, we show solution polynomial
for the benchmark 28 obtained with our tool and the numerical solution for the grid
of 64x64 points covering the initial box. The numerical solution was obtained with
the function NDSolve from the application Mathematica. Only the polynomial
part of the solution is displayed. The error bounds for the three presented polynomial
enclosures in times T = 1 and T = 10 were 0.00012 and 0.0061 respectively.

References

1. Auer, E., Rauh, A.: Vericomp: a system to compare and assess verified ivp solvers. Computing 94,
163–172 (2012). doi:10.1007/s00607-011-0178-4

2. Battles, Z., Trefethen, L.N.: An extension of MATLAB to continuous functions and operators. SIAM
J. Sci. Comput. 25, 1743–1770 (2004)

3. Berz, M., Makino, K.: Suppression of the wrapping effect by Taylor model-based verified
integrators: long-term stabilization by shrink wrapping. Int. J. Differ. Equ. Appl. 10(4), 385–
403 (2005)

4. Boyd, J.P.: Chebyshev and Fourier Spectral Methods, p. 688. Courier Dover Publications, New York
(2001)
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