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Abstract Models based on stochastic differential equations are of high interest today
due to their many important practical applications. Thus the need for efficient and
accurate numerical methods to approximate their solution. In this paper, we propose
several adaptive time-stepping strategies for the strong numerical solution of stochas-
tic differential equations in Itô form, driven by multiple Wiener processes satisfying
the commutativity condition. The adaptive schemes are based on I and PI control,
and allow arbitrary values of the stepsize. The explicit Milstein method is applied to
approximate the solution of the problem and the adaptive implementations are based
on estimates of the local error obtained using Richardson extrapolation. Numerical
tests on several models arising in applications show that our adaptive time-stepping
schemes perform better than the fixed stepsize alternative and an adaptive Brownian
tree time-stepping strategy.
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1 Introduction

Stochastic modeling and simulation have become areas of intense research in recent
years, as more sophisticated mathematical models of physical phenomena became
available. Stochastic differential equations arise in many applications. Examples
include molecular biology, epidemiology, population dynamics, optimal control
theory, hydrology, theoretical physics and finance [1–3].

Stochastic models are computationally much more challenging than deterministic
models. The high computational cost of the numerical simulations of stochastic mod-
els arising in applications motivated the search for more efficient approaches [1, 4].
One way to reduce the computational cost of an approximation algorithm is to use
adaptive time-stepping schemes to advance the numerical solution. In the framework
of ordinary differential equations, stepsize adapting strategies have been proved to be
essential in generating optimal algorithms. While for the numerical solution of ordi-
nary differential equations such strategies have been well-developed [5], much less
work has been done on designing adaptive algorithms for approximating the solution
to stochastic differential equations (SDE).

The design of an adaptive time-stepping technique depends on whether the SDE
is in the Itô or the Stratonovich form, and whether strong or weak numerical solu-
tion of the SDE is required. Weak numerical solutions are acceptable when only
the moments of the exact solution need to be estimated accurately, while strong
numerical solutions are required when individual trajectories of the exact solution
need to be well approximated. Both weak and strong numerical methods are crucial
and the choice between the two depends on the application. According to Burrage,
Burrage & Tian [6], “in genetic regulation, for example, where the behaviour of just
one molecule can be highly significant, strong solutions can be important”. While
strong numerical solutions can be critical for stochastic models in molecular biol-
ogy and biochemistry [6–9], weak numerical solutions are sufficient for models in
financial mathematics.

Adaptive time-stepping for the strong (pathwise) solution of stochastic differential
equations driven by one Wiener process was considered by Lamba [10], Mauthner
[11], Hofmann, Müller-Gronbach & Ritter [12]. Adaptivity for Stratonovich stochas-
tic differential equations with multidimensional Wiener processes was studied by
Burrage & Burrage [13], Burrage, Burrage & Tian [6]. In Hofmann et al. [12],
adaptive time-stepping strategies in the mean-square sense were developed, which
were optimal for asymptotically small stepsizes. Adaptive discretization schemes for
the weak solution of stochastic differential equations were discussed in Szepessy
et al. [14]. Gaines & Lyons [15] showed that to guarantee convergence for variable
stepsize schemes applied to the pathwise solution of stochastic differential equations
a strong order at least one discretization scheme is needed. An important difficulty
in integrating the pathwise solution of a system of stochastic differential equations is
that, when rejection of stepsizes is allowed, the solution should remain on the same
Brownian path. Otherwise a bias in the numerical solution is introduced. Mauthner
[11, 16] developed a general adaptive strategy for the numerical pathwise solution
of Stratonovich stochastic differential equations with one driving Wiener process.
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This strategy works as follows: once a stepsize is rejected and a smaller stepsize is
considered, the necessary Wiener integrals for the smaller stepsize are conditioned
on the previously generated Wiener integrals, corresponding to the rejected stepsize,
such that the same Brownian path is traversed. Burrage & Burrage [13] introduced
a general adaptive algorithm for Stratonovich SDEs, when Runge-Kutta methods
are considered and an embedded method is used to estimate the local error. The
Runge-Kutta methods employed have strong order one for problems with commu-
tative noise. Gaines & Lyons [15] proposed a Brownian tree structure for adapting
the stepsize for stochastic differential equations, where only halving and doubling of
the stepsize is allowed. This is the standard adaptive time-stepping method for Itô
SDEs driven by multidimensional Wiener processes, however it is a very restrictive
strategy.

In this paper, we propose some alternative adaptive time-stepping strategies for the
strong numerical solution of multidimensional Itô stochastic differential equations,
driven by multiple Wiener processes which satisfy the commutativity condition.
The case of the strong numerical solution of SDE driven by one Wiener process is
well understood and we do not advocate the use of our approach for this class of
problems. Stochastic differential equation models with commutative noise arise in
a wide range of application areas such as genetics (e.g., Shiga model [1]), finance
(e.g., LIBOR Market Models [17]), physics (e.g., stochastic Lorenz equations) and
biological sciences (e.g., Duffing-van der Pol oscillator [1]), etc.

We employ the Milstein method to compute the numerical solution of the stochas-
tic differential equation and use extrapolation to cheaply estimate the local error of
the Milstein scheme. We propose some adaptive time-stepping strategies based on I
and PI controllers. On each individual path, the adaptive method adjusts the time-step
such that the local error during one step is below the user-prescribed tolerance. Such
a time-stepping scheme is convergent, since the Milstein method has strong order
of convergence one. This method works very well for problems which are non-stiff
or mildly stiff. Our approach extends to Itô SDEs the work of Söderlind [18, 19],
who developed PI-controllers which behave well for the numerical solution of ordi-
nary differential equations. Moreover, in our adaptive time-stepping strategy, when
a stepsize is rejected only the Wiener increments corresponding to the smaller step-
size are conditioned on the previously generated Wiener increments. This reduces
the computational cost of adapting the time-step. Therefore, our direct method
for Itô SDE is less expensive than transforming the problem into a Stratonovich
SDE and applying the variable time-step technique proposed by Burrage, Herdiana
and Burrage in [20] where, in addition, higher order Wiener integrals need to be
conditioned.

The paper is organized as follows. In Section 2 we describe the necessary back-
ground for the numerical solution of stochastic differential equations. In Section 3,
some new adaptive algorithms for selecting the stepsize are presented. In Section 4,
we give some numerical results for several stochastic models arising in applications.
We compare the proposed adaptive schemes with the fixed stepsize ones as well as to
the existing adaptive methods based on a Brownian tree and show that our adaptive
methods perform better than both of these alternative approaches.
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2 Numerical solution of stochastic differential equations

Let us consider a system of stochastic differential equations in Itô form

dX = f(t, X)dt +
m∑

j=1

gj (t, X)dWj (1)

where f : R+ × R
d → R

d , g : R+ × R
d → R

d × R
m, and Wj(t) are independent

scalar Wiener processes for j = 1, . . . , m. A Wiener process W = {W(t), t ≥ 0} is
a Gaussian process satisfying

W(0) = 0 w.p.1 , W(t) − W(s) ∼ √
t − s · N(0, 1) ,

and having independent increments, W(t) − W(s) and W(u) − W(v), for any 0 ≤
s < t < v < u ≤ T .

We assume that the drift coefficient f and each diffusion coefficient gj in (1)
satisfy the Lipschitz condition: there exists some constant M > 0 such that

‖f(t, y) − f(t, z)‖ ≤ M‖y − z‖ , ‖gj (t, y) − gj (t, z)‖ ≤ M‖y − z‖
for all y, z ∈ R

d and t ∈ [0, T ]. This condition [1] ensures that an initial value
problem for the stochastic differential (1) has a pathwise unique solution on [0, T ].

For any j = 1, . . . , m, let us denote the following differential operator by

Lj =
d∑

k=1

gk,j ∂

∂Xk
. (2)

A stochastic differential equation in Itô form (1) can be written in Stratonovich
form as

dX = F(t, X)dt +
m∑

j=1

gj (t, X) ◦ dWj

where F = (
F 1, . . . , F d

)′ and

Fk(t, X) = f k(t, X) − 1

2

m∑

j=1

Ljgk,j (t, X)

for k = 1, . . . , d, and the differential operator Lj is defined by (2).
Since in most cases a closed form solution does not exist, numerical methods are

needed to approximate the solution of a stochastic differential equation, at some grid
points of the time-interval [0, T ], 0 = t0 < t1 < · · · < tn < · · · < tN = T .

Definition 1 A time-discretization of X(t) on [0, T ], X̂n, is said to have strong order
of convergence γ > 0 if there exist a constant C > 0, independent of h, and δ > 0
such that

E
(|X(tn) − X̂n|

) ≤ Chγ ,

for any fixed tn = n · h ∈ [0, T ] and any h ∈ (0, δ).
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2.1 Milstein method

A widely used numerical method of strong order 1 is the Milstein scheme, which
may be written as

Xk
n+1 = Xk

n +f k(tn, Xn)hn +
m∑

j=1

gk,j (tn, Xn)�W
j
n +

m∑

j1,j2=1

Lj1gk,j2(tn, Xn)I
(n)
(j1,j2)

for k = 1, . . . , d. The Wiener increments can be generated numerically by �W
j
n =

W
j

n+1 − W
j
n = √

hn · rj,n where tn+1 = tn + hn and rj,n are realizations of the
standard normal random variable N(0, 1). We denote the double Itô integrals by

I
(n)
(j1,j2)

=
∫ tn+1

tn

∫ s1

tn

dWj1(s2)dWj2(s1) , (3)

where j1, j2 = 1, . . . , m. Note that for j1 �= j2 the double Itô integrals cannot be
expressed in terms of the increments �W

j1
n and �W

j2
n . Their numerical approxima-

tion is computationally intensive [1, Chapter 5]. Such expensive simulations can be
avoided when the stochastic differential equation has commutative noise.

The stochastic differential equation is said to have commutative noise if

Lj1gj2 = Lj2gj1 for any j1, j2 = 1, . . . , m, with j1 �= j2 ,

where the differential operators Lj are defined by (2). Then, the following general
property can be used to simplify the numerical scheme,

I
(n)
(j1,j2)

+ I
(n)
(j2,j1)

= �W
j1
n �W

j2
n

for j1 �= j2 and j1, j2 = 1, . . . , m. In addition, for any j1 = 1, . . . , m

I
(n)
(j1,j1)

= 1

2

(
(�W

j1
n

)2 − hn) .

In the case of stochastic differential equations with commutative noise, the Milstein
scheme reduces to

Xk
n+1 = Xk

n + f k(tn, Xn)hn +
m∑

j=1

gk,j (tn, Xn)�W
j
n

+ 1

2

m∑

j1 �=j2

Lj1gk,j2(tn, Xn)�W
j1
n �W

j2
n

+ 1

2

m∑

j=1

Lj gk,j (tn, Xn)
(
(�W

j
n )2 − hn

)

for k = 1, . . . , d. Therefore the simulation of higher dimensional Itô integrals is no
longer necessary. It is interesting to observe that, similarly to the Milstein scheme,
the simulation of stochastic differential equations with non-commutative noise by
Runge-Kutta schemes of strong order 1 or higher is not possible if only the Wiener
increments �W

j
n are employed. Thus, the advantage of using numerical schemes of
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strong order greater than 1 is reduced, as then it is required to sample the expensive
higher dimensional Itô integrals.

2.2 Local error estimation

By analogy to ordinary differential equations, assuming the same starting point of
the current step, the (pathwise) local error is the difference between the exact and the
numerical solution on the same Brownian path, at the end of the step. For a strong
method, the numerical solution approximates the exact solution on each Brownian
path. On such a path, while the local error is a random quantity, it has an Itô-Taylor
series structure associated with it [1].

A variable stepsize implementation depends on the measure of the error generated
by the numerical method under consideration. In the following, we use extrapola-
tion [5] to estimate the local error obtained after each step with the Milstein method.
Extrapolation is a cheap method to approximate the error if the problem is not
stiff. The numerical solution is computed first in one step, say on [tn, tn+1), where
tn+1 = tn + hn. Then, the solution is approximated in two steps over the same inter-
val: on [tn, tn + hn/2) and again on [tn + hn/2, tn+1). Finally, local extrapolation
is applied, that is the local error in the numerical solution is approximated by tak-
ing the difference between the approximated values in two steps, Xn+1,2, and in one
step, Xn+1,1.

If the user-prescribed tolerance is T ol, then the local error is approximated by

err(Xn, hn) =
√√√√ 1

d

d∑

k=1

(
Xk

n+1,2 − Xk
n+1,1

T ol

)2

(4)

and should satisfy the condition

err(Xn, hn) ≤ 1 . (5)

We note that, for stochastic differential equations, if a numerical method is of
strong (global) order γ , then the local error has order (γ + 1/2) rather than (γ + 1),
as is the case for ordinary differential equations. The fractional order is a result of
the property that the root mean square order of each Wiener process is h

1/2
n . Thus the

local error approximation for a step hn behaves as

err(Xn, hn) ≈ φ(tn, Xn)

T ol
· h

γ+1/2
n ,

where φ(tn, Xn) = φn is the principal error function. The function φ depends on both
the drift and the diffusion coefficients. In general, the dependency of the principal
error function on these coefficients is quite complex and it is difficult to decom-
pose the local error estimate into the drift-dominating and the diffusion-dominating
components. Extrapolation is a simple and inexpensive method to estimate the error
for a general class of stochastic differential equations. In particular, it avoids the
evaluations of quite complicated error terms.
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3 An adaptive time-stepping scheme

In this section we discuss a variable time-stepping strategy which allows rejection
of a stepsize, while guaranteeing that the correct Brownian path is followed. This
ensures that the correct statistics of the numerical solution are maintained. Accord-
ing to Gaines & Lyons [15], a numerical method of strong order 1 guarantees that
an adaptive time-stepping method converges to the strong solution of a stochastic
differential equation. Gaines & Lyons [15] used a stepsize selection strategy which
allowed only preserving the step or doubling/halving of the previous stepsize. More
precisely, the choice of the time intervals was such that a tree structure was gener-
ated, called a Brownian tree. Following Gaines & Lyons [15], we assume, without
loss of generality and for ease of discussion, that the interval of integration is [0, 1].
This binary tree may have only intervals of the form [k/2n, (k +1)/2n] for k, n ∈ N.
The first level of the tree is obtained by computing the Wiener increments on N unit
length subintervals of the initial interval,

�Wk = W(k) − W(k − 1), for k = 1, . . . , N .

Therefore each Wiener increment �Wk is normally distributed with mean zero and
variance one. When the accuracy is not satisfied on one of the intervals [k − 1, k],
then this interval is divided in two subintervals of the same length and the accuracy is
verified on each. If a smaller stepsize is needed to satisfy the accuracy requirement,
then such a stepsize is obtained with a recursive generation of smaller subintervals
by taking the midpoint of the current interval. The Wiener increments corresponding
to level j are constructed as

�W2k−1,j+1 = 1

2
�Wk,j + zk,j ,

�W2k,j+1 = 1

2
�Wk,j − zk,j , for j = 1, 2, . . . ,

where zk,j−1 are normally distributed with mean zero and variance 2−j . The Brow-
nian path has to pass through all the points generated for the smaller subintervals
before progressing to an upper lever in the tree. This condition imposes serious
restrictions on the selection of a stepsize, and may slow down the integration process
significantly.

In the generic case of a non-commutative SDE, Gaines & Lyons show that it
is sufficient to include the approximation of the Lévy areas A(i,j)(t, t + h) =
I(i,j)(t, t + h) − I(j,i)(t, t + h), in addition to the Wiener increments, to guarantee
convergence of the variable stepsize method. A different technique is to discretize
directly the double Itô integrals (3) by using the Karhunen-Loève or Fourier expan-
sions of the Brownian bridge processes corresponding to the Wiener processes in the
SDE. Both approximations, by Lévy areas and by Karhunen-Loève expansions, are
quite expensive.

The strategy we consider in this paper is based on an alternative method intro-
duced by Mauthner [11, 16] for stochastic differential equations with a single driving
Wiener process and which was extended in Burrage [21], Burrage & Burrage [13] and
Burrage, Herdiana and Burrage [20] for multiple driving Wiener processes. These
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approaches apply to Stratonovich stochastic differential equations. They employ
embedded stochastic Runge-Kutta (SRK) methods to advance the solution and the
difference between the higher order and the lower order approximations is used to
estimate the local error. The SRK methods are of global order 1, as required for
the convergence of an adaptive scheme, provided that the noise is commutative.
Otherwise the global order is 1/2.

The idea is as follows: assume that a step h is computed and the Wiener increment

�Wh = W(t + h) − W(t) =
∫ t+h

t

dW(s)

is sampled (�Wh = ih, with ih ∈ R a realization of the Wiener increment). If the
step h is rejected, then ih is stored and a smaller stepsize 0 < h1 < h is tried. Then
the Wiener increments on the subintervals [t, t +h1] and [t +h1, t +h] are evaluated,
conditioned on the Wiener increments on the entire interval [t, t +h], i.e. �Wh = ih.
This ensures maintaining the same Brownian path.

Let us denote the Wiener increments on [t, t + h1] and on [t + h1, t + h] by

�Wh1 = W(t + h1) − W(t) , �Wh2 = W(t + h) − W(t + h1) ,

where h2 = h − h1. The increments should satisfy the additivity condition given by
the direct integration

�Wh1 + �Wh2 =
∫ t+h

t

dW(s) = ih . (6)

Moreover, the Wiener increments are normally distributed and they obey the condi-
tions for expectation

E((�Wh1 , �Wh2)) = (0, 0) (7)

and for covariances

Cov((�Wh1 , �Wh2)) =
(

h1 0
0 h2

)
(8)

which guarantee that the correct Brownian path is followed. Then, it can be shown
that the Wiener increments satisfying the conditions (6), (7) and (8) can be calculated
as [13, 16]

�Wh1 = h1

h
ih +

√
h1h2

h
z , �Wh2 = h2

h
ih −

√
h1h2

h
z , (9)

where z = N(0, 1) is a new random variable.
A stepsize hn+1 is accepted if err(Xn+1, hh+1) ≤ 1, otherwise it is rejected and

the procedure above is applied. Since the error estimate computed for the previ-
ous successful stepsize is err(Xn, hn) = (φn/T ol)h

γ+1/2
n , then an optimal stepsize

hn+1 should satisfy (φn+1/T ol)h
γ+1/2
n+1 = 1. Based on these relations, the standard

approach from ODE is to choose the next stepsize hn+1 to satisfy

hn+1 = hn

(
f ac

err(Xn, hn)

)1/(γ+1/2)
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where the safety factor f ac ≤ 1 is introduced to reduce the chance of rejecting
the next stepsize. Since the stepsize should not increase or decrease too much, the
following stepping scheme is employed

hn+1 = hn min
(
f acmax, max(f acmin, (f ac/err(Xn, hn))

1/(γ+1/2))
)

(10)

which is known as the integral stepsize controller in the deterministic framework [5].
The maximal stepsize increase allowed f acmax > 1 and the minimal stepsize
decrease f acmin < 1 are chosen depending on the problem. We remark that SDEs
seem to be more sensitive than ODEs to the choice of f acmax and f acmin. For
example, if f acmax is too large, the algorithm may lead to many step rejections. On
the other hand, if f acmax is too small, then the stepping strategy may take more
steps than necessary to traverse the integration interval, while satisfying the tolerance.
A smaller sensitivity arises for f acmin.

3.1 Proportional-integral stepsize control

We present below the approach to adaptive time-stepping based on control theory,
and in particular using predictive-integral (PI) controllers, proposed by Söderlind for
ODE [18, 19] and by Burrage, Herdiana and Burrage [20] for Stratonovich SDE. We
are interested in the PI-controllers which behave well for the numerical solution of
Itô SDEs. Let us take k to be the order of the local error, that is k = γ + 1/2 where γ

is the order of the global error. Thus, in the asymptotic regime, the local error per step
can be written as e(Xn, hn) = φnh

k
n, where φn may vary significantly. The standard

adaptive stepsize algorithm based on this error is

hn+1 = hn

(
f ac · T ol

e(Xn, hn)

)1/k

. (11)

By taking the logarithm in (11) we obtain

log(hn+1) = log(hn) + 1

k

(
log(f ac · T ol) − log(e(Xn, hn))

)
(12)

which is called a discrete-time integral (I) controller in control theory. Its name comes
from the observation that the solution of the difference equation (12) is

log(hn) = log(h0) + 1

k

n−1∑

j=0

(log(f ac · T ol) − log(e(Xj , hj ))) , (13)

which is similar to a discrete representation of an integral.
The process that needs to be controlled is modeled by the local error, for which

we derive that
log(e(Xn, hn)) = k log(hn) + log(φn) . (14)

We wish to study now the closed loop-dynamics [18] which considers the interaction
of the controller and of the process it controls. Thus, we can substitute (14) into (12)
to obtain

log(hn+1) = 1

k
(log(f ac · T ol) − log(φn)) . (15)
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This is a difference equation in log(hn). Its characteristic equation, q = 0, has as
unique root the origin. The factor kI = 1/k is called the integral gain of the con-
troller. Though, in control theory kI is viewed as a design parameter, its value being
determined depending on the desired properties of the controller. In the particular
case kI = 1/k, we obtain the dead-beat controller, which predicts a stepsize as
non-smooth as the principal error function. We note that the principal error function
φn depends on the Wiener processes, thus it takes random values. This makes the
dead-beat controller less attractive when solving numerically stochastic differential
equations. If kI is an arbitrary parameter, then the closed loop-dynamics become

log(hn+1) = (1 − kkI ) log(hn) + kI (log(f ac · T ol) − log(φn)) .

The difference equation above has the characteristic equation q − (1−kkI ) = 0 with
the root q = 1 − kkI . The controller is stable if and only if its root is inside the unit
circle, thus kkI ∈ (0, 2). Hence, we derived the integral controller

hn+1 = hn

(
f ac · T ol

e(Xn, hn)

)kI

.

However, it is well-known in control theory that more robust controllers may be
designed by inserting a proportional component in the integral controller. Such con-
trollers are called proportional-integral, or PI. We may compute them by adding a
term proportional to the control error (log(f ac · T ol) − log((e(Xn−1, hn−1)) to the
integral controller (13). Consequently,

log(hn) = log(h0) + kI

∑n−1
j=0(log(f ac · T ol) − log(e(Xj , hj )))

+ kP (log(f ac · T ol) − log((e(Xn−1, hn−1)) ,

where kP is the proportional gain. This leads to the following recursion

log(hn+1) = log(hn) + kI (log(f ac · T ol) − log(e(Xn, hn)))

+ kP (log(e(Xn−1, hn−1))) − log(e(Xn, hn)))
(16)

Hence, we get the PI-controller

hn+1 = hn

(
f ac · T ol

e(Xn, hn)

)kI
(

e(Xn−1, hn−1)

e(Xn, hn)

)kP

or, equivalently,

hn+1 = hn

(
f ac · T ol

e(Xn, hn)

)kI +kp
(

e(Xn−1, hn−1)

f ac · T ol

)kP

. (17)

If we substitute the asymptotic model of the local error (14) into the difference
equation of the controller (16), we obtain the closed loop-dynamics

log(hn+1) = (1 − kkI − kkP ) log(hn) + kkP log(hn−1)

+ kI (log(f ac · T ol) − log(φn)) + kP (log(φn−1) − log(φn))

The characteristic equation of this difference equation is

q2 − (1 − kkI − kkP )q − kkP = 0 . (18)
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The PI-controller is stable provided that the roots of characteristic equation (18) are
inside the unit circle. We are interested in controllers which are suited for solving
numerically non-stiff SDEs.

We note that the controller PI-1 with parameters satisfying (kkI , kkP ) = (0.3, 0.1)

gives good results for the Milstein scheme. The controller is stable.
After performing many simulations, we propose an improved controller, PI-2, with

parameters (kkI , kkP ) = (0.101, 0.009). The PI-2 controller shows an enhanced
performance over the other PI-controllers tested, including PI-1 and the standard PI-
controllers for ODEs, when Milstein’s method is employed. Its roots are [0.9, −0.01],
therefore it is stable. It has the advantage that its negative root is quite small while
the magnitude of the ratio of the positive to negative root is large, thereby reducing
the risk of step rejections.

In Fig. 1, we show in the top plot the values, inside the unit circle, of the roots
q1 (continuous line) and q2 (dashed line) of the (18) as functions of the parameters
kkI and kkP ; the black dots show the values of the roots for the controller PI-2. The
bottom plot gives a view from above, with the black lines delimiting the region in the
(kkI , kkP ) plane where both roots of the (18) are within the unit circle.

We remark that there is a trade-off between finding the largest ratio of the positive
to the negative value of the roots inside the unit circle and minimizing the total com-
putational cost of the method, that is the total number of attempted steps for the same
tolerance. A very large ratio of the roots is represented by points close to (0, 0) (blue
point in Fig. 1, bottom plot) and reduces the number of rejected steps but requires
a large total number of steps, being too conservative. Our choice for the PI-2 con-
troller (black point in Fig. 1, bottom plot) is determined experimentally, as a very
good compromise.

The results for the PI-1, PI-2 and dead-beat controllers are given below. We note
that, when applied to stochastic differential equations, the standard PI-controllers
developed for non-stiff ODEs require more work to achieve the same accuracy than
the adaptive controllers proposed in this paper. This is because their design objectives
are different in the deterministic framework. In the case of ODEs, the objective is
to choose controllers which lead to smooth stepsize sequences. In the case of SDEs,
one important challenge when designing pathwise-adaptive methods is to decrease
the (typically large) number of step rejections, since such rejections add signifi-
cantly to the computational effort. For mildly stiff Itô SDEs simulated with Milstein’s
method, we propose adaptive controllers for the strong (pathwise) numerical solu-
tion, that reduce the number of rejected steps and the total computational cost. The
adaptive schemes introduced are recommended for problems with non-negligible
noise. If, however, the focus is on the accurate approximation of the expected value
E(F(X(T ))), where F is a function and X(·) is the solution of the SDE (1), not
on the accurate simulation of each individual trajectory, then a different approach is
more efficient. This approach, called a multi-level Monte-Carlo (MLMC) method,
was introduce by Giles in [22, 23]. The MLMC methods [24] reduce the number of
paths that need to be generated in order to accurately approximate the expectation,
by averaging over a hierarchy of trajectories ranging from coarser to finer grids. The
coarser grid paths are more efficient to simulate but they are less accurate, while the
finer grid trajectories are more accurate but they are also more expensive to generate.
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Fig. 1 The roots of equation (18) as functions of kkI and kkP . The black dots in the top plot show the
roots used in PI-2. The bottom plot shows the region in the (kkI , kkP ) plane where both roots of the
equation (18) are within the unit circle

On a range of problems, the MLMC strategies maintain the accuracy associated with
the finer grids by using also some of the coarser grid simulations, such that the over-
all computational cost is significantly reduced. This is achieved by ensuring a close
coupling between the successive simulation levels, thus obtaining a low variance
between these levels of approximation. An interesting direction of research would be
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to design adaptive I and PI-controllers, based on good error estimates, for the MLMC
methods, which would increase the efficiency of these techniques. The hierarchy of
grids would be obtained by increasing the accuracy of the numerical solution.

In the next section, we test the proposed adaptive techniques against the two
other currently existing strategies for the strong numerical solution of generic Itô
SDE driven by multiple Wiener processes (with or without commutative noise),
the fixed stepsize scheme and the Brownian tree adaptive strategy. Our methods
show an improved performance over both of these alternative schemes for the com-
mutative case, which suggests that a similar improvement may be possible in the
non-commutative case.

4 Numerical results

In this section we test the adaptive algorithms proposed above on several examples of
Itô stochastic differential equations arising in applications. The adaptive schemes are
compared to fixed stepsize schemes and adaptive schemes using Brownian trees for
the strong numerical solution of the models under consideration. The procedure for
the comparison is as follows: for each tolerance T ol we ran the adaptive algorithms
first, for the I and PI controllers and recorded the total numbers of steps attempted by
each (the number of accepted and of rejected steps). Next, we ran the fixed stepsize
algorithm with the same number of steps as the maximum between the number of
steps taken by the I and the PI-based methods for the tolerance T ol. In addition, we
ran the existing adaptive schemes based on Brownian trees for the same tolerance
and record the total number of attempted steps. In each case, we estimated the error
obtained according to the formula for the local error (4). We remark that the error
recorded in the last column of Tables 1, 2 and 3 is computed as the mean over the
maximum of the local errors on each individual trajectory. However, we should note
that the I and the PI adaptive schemes ensure that the local error on each step and on
each trajectory is below the given tolerance.

4.1 Marine bacteriophage infection model

A dimensionless deterministic model for the epidemics induced by the virulent
phages on marine bacteria was given by Beretta & Kuang [25]. Below, we consider
a stochastic extension of the model introduced in Carletti [26] and Carletti et al. [27]

ds(t) = (as(t)(1 − (i(t) + s(t))) − s(t)p(t))dt + σ1(s(t) − s∗)dW 1(t)

di(t) = (s(t)p(t) − �i(t))dt + σ2(i(t) − i∗)dW 2(t)

dp(t) = (−s(t)p(t) − mp(t) + b�i(t))dt + σ3(p(t) − p∗)dW 3(t) .

(19)

Here s represents the susceptible bacteria, i the infected bacteria and p the phage
(viruses). The parameters a, �, m and b are the bacteria logistic growth, the bacteria
lysis death rate, the phage death rate and the virus replicating factor, respectively.
They have the values observed for the infection by viruses of the bacteria Cytophage
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Table 1 The phage-bacteria interaction model (1000 trajectories) f acmin = 0.2, f acmax = 1.4

Ratio # Attempted # Accepted # Rejected

Tol Method times steps (mean) steps (mean) steps (mean) Error

10−2 Adaptive PI-2 1.00 592 511 81 0.993

Adaptive PI-1 1.06 612 499 113 0.994

Adaptive I 1.14 650 492 158 0.995

Brownian tree − 760 501 259 0.995

Fixed 650 − − 28.74

2 · 10−3 Adaptive PI-2 1.00 1123 962 161 0.996

Adaptive PI-1 1.06 1147 930 217 0.996

Adaptive I 1.10 1195 899 296 0.997

Brownian tree − 1438 951 487 0.997

Fixed 1195 − − 43.66

10−3 Adaptive PI-2 1.00 1582 1352 230 0.997

Adaptive PI-1 1.02 1595 1290 305 0.998

Adaptive I 1.07 1655 1243 412 0.998

Brownian tree − 2043 1352 991 0.998

Fixed 1655 − − 46.79

2 · 10−4 Adaptive PI-2 1.00 3940 3354 586 0.999

Adaptive PI-1 1.02 3951 3185 766 0.999

Adaptive I 1.05 4002 2994 1008 0.999

Brownian tree − 5067 3360 1707 0.999

Fixed 4002 − − 48.40

marinoflava, that is a = 10, � = 24.628, m = 14.925 and b = 60. The noise
perturbs the positive equilibrium position E+ = (s∗, i∗, p∗) where

s∗ = m

b − 1
, i∗ = as∗(1 − s∗)

� + as∗ , p∗ = a�(1 − s∗)
� + as∗ .

Note b � b∗ = 1 + m = 15.925. The initial conditions are (s0, i0, p0) =
(0.3, 0.2, 5), while the noise coefficients have the values σi = 0.4 for i = 1, 2, 3.

The evolution of the three interacting species is given in Fig. 2 and a plot of the
stepsizes taken by the integral adaptive scheme vs. time for T ol = 2 · 10−3 on a
Brownian path is shown in Fig. 3. The behaviors of the I, PI-1, PI-2 adaptive, the
adaptive Brownian tree, and the fixed step size algorithms are reported in Table 1.
The table shows the ratio of the computation times of the adaptive algorithms to the
running time of the PI-2 adaptive scheme, the number of attempted steps, accepted
steps and the accuracy of the numerical method for a sequence of imposed tolerances.
The Brownian tree method fails on at least 10% of the trajectories tried, therefore
its average computational times were not meaningful and were not reported. For the
Brownian tree method, Table 1 presents the average number of attempted, accepted
and rejected steps only on the successful trials. For the same total work, the fixed
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Table 2 The stochastic Brusselator model (2000 trajectories), f acmax = 1.1, f acmin = 0.2

Ratio # Attempted # Accepted # Rejected

Tol Method times steps (mean) steps (mean) steps (mean) Error

2 · 10−2 Adaptive PI-2 1.00 464 415 49 0.990

Adaptive PI-1 1.01 464 415 49 0.990

Adaptive I 1.02 464 410 54 0.991

Brownian tree 1.07 531 356 175 0.994

Fixed 464 − − 5.147

10−2 Adaptive PI-2 1.00 590 529 61 0.990

Adaptive PI-1 1.01 593 530 63 0.993

Adaptive I 1.02 592 521 71 0.993

Brownian tree 1.14 727 485 242 0.997

Fixed 593 − − 5.724

2 · 10−3 Adaptive PI-2 1.00 1165 1048 117 0.996

Adaptive PI-1 1.01 1178 1060 118 0.996

Adaptive I 1.03 1177 1033 143 0.997

Brownian tree 1.62 2197 1459 738 0.998

Fixed 1178 − − 7.135

10−3 Adaptive PI-2 1.00 1643 1476 167 0.997

Adaptive PI-1 1.01 1666 1502 164 0.998

Adaptive I 1.02 1668 1465 203 0.998

Brownian tree 1.62 3049 2024 1025 0.998

Fixed 1668 − − 7.978

2 · 10−4 Adaptive PI-2 1.00 4083 3662 421 0.999

Adaptive PI-1 1.01 4198 3802 396 0.999

Adaptive I 1.03 4131 3641 490 0.999

Brownian tree 1.65 7267 4807 2461 0.999

Fixed 4198 − − 11.56

stepsize scheme gives an error up to 48 times larger than the adaptive algorithms
for the tolerances tested. The ratio between the number of rejected steps and the
total number of attempted steps for the adaptive method based on the I-controller
is around 25%, for the PI-1 controller is about 19%, for the PI-2 controller is less
than 15%, while, for the adaptive Brownian tree scheme, the ratio is between 33%
and 48% on the successful trials. The total work performed by the PI methods was
less than that of the I scheme, with the PI-2 adaptive scheme taking slightly fewer
steps in total than PI-1 for the same tolerance. The adaptive Brownian tree algo-
rithm took considerably more attempted steps on its successful trajectories than the I,
PI-1, and PI-2 methods for the same tolerance. Moreover, the Brownian tree approach
leads to a biased numerical solution due to the large number of rejected trajectories.
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Table 3 The stochastic chemical model (1000 trajectories) for f acmax = 1.5, f acmin = 0.2

Ratio # Attempted # Accepted # Rejected

Tol Method times steps (mean) steps (mean) steps (mean) Error

2 ∗ 10−2 Adaptive PI-2 1.00 1342 1145 197 0.9758

Adaptive PI-1 1.03 1356 1067 289 0.9888

Adaptive I 1.05 1386 1002 384 0.9919

Brownian tree 1.12 1556 1025 531 0.9978

Fixed − 1386 − − 111.6604

10−2 Adaptive PI-2 1.00 2109 1802 307 0.9840

Adaptive PI-1 1.03 2123 1667 456 0.9926

Adaptive I 1.05 2164 1564 600 0.9948

Brownian tree 1.12 2418 1597 821 0.9987

Fixed − 2164 − − 101.3402

2 ∗ 10−3 Adaptive PI-2 1.00 6108 5286 822 0.9929

Adaptive PI-1 1.03 6146 4845 1301 0.9975

Adaptive I 1.05 6217 4493 1724 0.9982

Brownian tree 1.10 6916 4576 2340 0.9995

Fixed − 6217 − − 87.2380

10−3 Adaptive PI-2 1.00 9911 8646 1265 0.9956

Adaptive PI-1 1.03 9961 7909 2052 0.9985

Adaptive I 1.06 10133 7332 2801 0.9989

Brownian tree 1.10 11008 7285 3723 0.9997

Fixed − 10133 − − 80.3096

On these trajectories, if a step satisfies the accuracy criteria, it is accepted even if
it produces negative population numbers. However, the integration will not recover
after such a step is accepted. By contrast, the proposed adaptive methods preserve the
positive amounts of species throughout the integration. Therefore, for our adaptive
strategies no additional positivity condition needs to be imposed. Also, we remark
that the fixed stepsize strategy is considerably less accurate than the variable stepsize
implementations.

0 2 4 6 8 10
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 2 4 6 8 10
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0 2 4 6 8 10
2

4

6

8

10

12

14

Fig. 2 The phage-bacteria interaction model: susceptible bacteria (left) and infected bacteria (center) and
phage (right). Only 40 trajectories are shown
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Fig. 3 The phage-bacteria interaction model: stepsize vs. time for Tol=2 ·10−3 and the I-adaptive scheme

4.2 Stochastic Brusselator

Another example of interesting qualitative behavior is the stochastic Brusselator [1].
The mathematical model is

dx1 = (
(α − 1)x1 + αx2

1 + (1 + x1)
2x2

)
dt + σx1(1 + x1)dWt

dx2 = ( − αx1 − αx2
1 − (1 + x1)

2x2
)
dt − σx1(1 + x1)dWt

(20)

for t ∈ [0, 100]. The system (20) is subject to the initial conditions x(0) =
[0.01, 0.01]T and the parameters are α = 2.1, σ = 0.2. The deterministic version of
the Brusselator exhibits unforced oscillations. Indeed, the problem exhibits a Hopf
bifurcation when α = 2 and for α > 2 becomes a limit cycle. The stochastic version
is obtained from the deterministic model by allowing the parameter α to be perturbed
by noise, α → α + σWt .

The dynamics of the two components of the Brusselator are shown in Fig. 4 for
a typical trajectory. The sequence of I-adaptive stepsizes on an individual Brownian
path, corresponding to a tolerance of 10−4, is plotted against time in Fig. 5. In Table 2,
we give the ratio of the simulation times of the adaptive algorithms to that of the
PI-2 adaptive scheme, the total number of attempted, successful and rejected steps
and the accuracy of the I, PI-1 and PI-2, and Brownian tree adaptive methods applied
to the Brusselator system, for a range of prescribed tolerances. The performance of
the fixed stepsize algorithm is also included. We observe that the error committed by
using the fixed stepsize algorithm, for the same tolerance and for the same work, is up
to 12 times higher than that obtained with the adaptive schemes. The ratio of rejected
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Fig. 4 The stochastic Brusselator model: for Tol=10−4

to attempted steps is remarkably low, below 12% for the I-controller, below 10%
for the PI-1 and PI-2 controllers, for the tolerances tried. However, for the adaptive
Brownian tree algorithm, it is at least 33%. The work taken by the I, PI-1, and PI-2
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Fig. 5 The stochastic Brusselator model: stepsize vs. time for Tol=10−4 and the I-adaptive scheme
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Fig. 6 The stochastic chemical reaction model: for Tol=10−2 Only 20 trajectories are shown

algorithms is similar. We note that the adaptive Brownian tree algorithm takes up to
a remarkable 90% more steps than the PI algorithms for the same tolerance. Thus,
the proposed I and PI adaptive methods perform much better than both the Brownian
tree adaptive scheme and the fixed stepsize one.

4.3 Chemical reaction model

The last example we consider is a chemical reaction model [28], which was modified
to include external commutative noise

dx1 = (−c1x1 − c2x1(x1 − 1) + 2c3x2)dt + x1
(
α1dW 1

t + α2dW 2
t

)

dx2 =
(c2

2
x1(x1 − 1) − c3x2 − c4x2

)
dt + x2

(
β1dW 1

t + β2dW 2
t

)
.

(21)

The system parameters take the values c1 = c2 = 10, c3 = 100 and c4 = 0.1 while
the stochastic coefficients are α1 = 5, α2 = β1 = 0.5 and β2 = 0.001. The initial
conditions are x1(0) = 1000 and x2(0) = 100. The integration is performed on the
interval [0, 0.01].

The graph of 20 trajectories is depicted in Fig. 6, while Fig. 7 shows the plot of the
evolution in time of the sequence of PI-2 adaptive stepsizes on an individual Brow-
nian path for T ol = 2 · 10−2. The ratio of the computation times of the variable
stepsize algorithms compared to the PI-2 adaptive strategy and the comparison
between the fixed stepsize scheme and the adaptive schemes are presented in Table 3,
for several tolerances. The error for the fixed stepsize algorithm is between approx-
imately 80 and 110 times larger than that obtained with the proposed adaptive
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Fig. 7 The stochastic chemical reaction model: stepsize vs. time for Tol=2 · 10−2 and the PI-2 adaptive
scheme

methods. For a tolerance ranging from 2 · 10−2 to 10−3 the number of rejected steps
is approximately 28% of the number of attempted steps for the I-adaptive imple-
mentation, approximately 21% for the PI-1 adaptive scheme and below 15% for the
PI-2 adaptive method. For the adaptive Brownian tree method the ratio of rejected to
attempted steps is between 33% and 35%. Brownian tree adaptive methods attempted
more steps than the I, PI-1, and PI-2 methods, but accepted fewer steps than the
PI-schemes for the same tolerance. The PI-controllers required less work than the
I-controller. The results show again the advantage of using the variable stepsize
methods based on PI-control over a constant step scheme or an adaptive Brownian
tree method.

5 Conclusion

This paper provides a strategy for adapting the stepsize in the strong numerical solu-
tion of Itô stochastic differential equations with commutative noise. The strategy
allows for a flexible stepsize selection, which is much less restrictive than the adap-
tive Brownian tree strategy (where only doubling and halving of the stepsize are
allowed). The stepsizes may be occasionally rejected, but such rejections are guar-
anteed not to introduce bias in the approximated solution. The underlying numerical
method used is the Milstein scheme and the local error is estimated at a low cost
by extrapolation. The proposed adaptive time-stepping strategies, based on integral
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and proportional-integral controllers, are tested on three interesting models arising
in applications and are shown to perform significantly better than the fixed stepsize
scheme and better than the adaptive Brownian tree method.

In the future, we will consider efficient and reliable adaptive schemes for stochas-
tic differential equations with non-commutative noise and optimal initial time-step
selection. In addition, future research may be done to extend the adaptive PI con-
trol strategies to the weak numerical solution of stochastic differential equations.
Weak higher order stochastic Runge-Kutta schemes were developed by Komori [29],
Komori & Burrage [30] and Rössler [31], and embedded stochastic Runge-Kutta
methods may be used to estimate the local error.

Acknowledgments The authors would like to thank the referees for their comments which helped
improve the presentation.

References

1. Kloeden, P.E., Platen, E.: Numerical solution of stochastic differential equations. Springer-Verlag,
Berlin (1992)

2. Gardiner, C.W.: methods, Stochastic a handbook for the natural and social sciences. Springer, Berlin
(2009)

3. van Kampen, N.G.: Stochastic processes in physics and chemistry. North-Holland, Amsterdam (2007)
4. Higham, D.J.: An algorithmic introduction to numerical simulation of stochastic differential equa-

tions. SIAM Review 43(3), 525–546 (2001)
5. Hairer, E., Nørsett, S.P., Wanner, G.: Solving ordinary differential equations I, 2nd revised edition.

Springer, Berlin (2009)
6. Burrage, K., Burrage, P.M., Tian, T.: Numerical methods for strong solutions of stochastic differential

equations: an overview. Proc. R. Soc. Lond. A 460(2041), 373–402 (2004)
7. Burrage, K., Hancock, J., Leier, A., Nicolau, D.V.: Modelling and simulation techniques for

membrane biology. Brief. Bioinform. 8(4), 234–244 (2007)
8. Salis, H., Kaznessis, Y.N.: An equation-free probabilistic steady-state approximation: dynamic appli-

cation to the stochastic simulation of biochemical reaction networks. J. Chem. Phys. 123, 214106
(2005)

9. Salis, H., Sotiropoulos, V., Kaznessis, Y.N.: Multiscale Hy3S: Hybrid stochastic simulation for
supercomputers. BMC Bioinform 7, 93 (2006)

10. Lamba, H.: An adaptive time-stepping algorithm for stochastic differential equations. J. Comput.
Appl. Math. 161, 417–430 (2003)

11. Mauthner, S.: Step size control in the numerical solution of stochastic differential equations. J.
Comput. Appl. Math. 100, 93–109 (1998)

12. Hofmann, N., Müller-Gronbach, T., Ritter, K.: The optimal discretization of stochastic differential
equations. J. Complexity 17, 117–153 (2001)

13. Burrage, K., Burrage, P.M.: 3. SIAM J. Sci. Comput. 24, 848–864 (2002)
14. Szepessy, A., Tempone, R., Zouraris, G.: Adaptive weak approximation of stochastic differential

equations. Commun. Pure Appl. Math. 54(10), 1169–1214 (2001)
15. Gaines, J.G., Lyons, T.J.: Variable step size control in the numerical solution of stochastic differential

equations. SIAM J. Appl. Math. 57, 1455–1484 (1997)
16. Mauthner, S.: Schrittweitensteuerung bei der numerischen Lösung stochastischer Differentialgle-

ichungen, PhD thesis, Technische Universität Darmstadt, Darmstadt, Germany (1999)
17. Glasserman, P.: Monte Carlo methods in financial engineering. Springer, New York (2010)
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