ORIGINAL PAPER

Convergence for a class of multi-point modified Chebyshev-Halley methods under the relaxed conditions

Xiuhua Wang · Jisheng Kou

Received: 26 November 2013 / Accepted: 4 April 2014 / Published online: 27 May 2014 © Springer Science+Business Media New York 2014

Abstract In this paper, the semilocal convergence for a class of multi-point modified Chebyshev-Halley methods in Banach spaces is studied. Different from the results in reference Wang and Kou (Numer. Algoritm. **64**, 105–126, [2012\)](#page-14-0), these methods are more general and the convergence conditions are also relaxed. We derive a system of recurrence relations for these methods and based on this, we prove a convergence theorem to show the existence-uniqueness of the solution. A priori error bounds is also given. The *R*-order of these methods is proved to be $5 + q$ with ω –conditioned third-order Fréchet derivative, where $\omega(\mu)$ is a non-decreasing continuous real function for $\mu > 0$ and satisfies $\omega(0) \geq 0$, $\omega(t\mu) \leq t^q \omega(\mu)$ for $\mu > 0$, $t \in [0, 1]$ and $q \in [0, 1]$. Finally, we give some numerical results to show our approach.

Keywords Recurrence relations · R-order of convergence · Semilocal convergence · Chebyshev-Halley method · Convergence condition

Mathematics Subject Classifications (2010) 65D10 · 65D99

1 Introduction

$$
F(x) = 0,\t\t(1)
$$

where $F : \Omega \subseteq X \to Y$ is a nonlinear operator on a non-empty open convex subset Ω of a Banach space *X* with values in a Banach space *Y*.

Newton's method [\[1\]](#page-14-1) is widely applied to find the solution of [\(1\)](#page-0-0). It converges quadratically under some suitable conditions. Recently, some papers about the thirdorder methods have been developed since their higher convergence speed. For the

X. Wang \cdot J. Kou (\boxtimes)

School of Mathematics and Statistics, Hubei Engineering University, Xiaogan 432000, Hubei, China e-mail: kjsfine@aliyun.com

classical Chebyshev-Halley methods, see references [\[2](#page-14-2)[–7\]](#page-14-3). Though the classical Chebyshev-Halley methods need to compute the second Fréchet derivative, they are useful in some applications. Such as the integral equations [8] and the quadratic equations $[9]$, where for the integral equations, the second Fréchet derivative is easy to compute; for the quadratic equations, the second Fréchet derivative is a constant. Moreover, in some applications where a quick convergence speed is needed, such as the stiff systems, the high-order methods are very useful $[10]$. So it is interesting to study some high-order methods. In reference [\[11\]](#page-14-0), we have considered the modified Chebyshev-Halley methods given by

$$
\begin{cases} z_n = x_n - \left(I + \frac{1}{2}G(x_n) + \frac{\delta_1}{2}G(x_n)^2\right) \Gamma_n F(x_n), \\ x_{n+1} = z_n - \left[I + G(x_n) + G(x_n)^2 + \frac{1}{2} \Gamma_n F''(u_n) G(x_n) \Gamma_n F(x_n)\right] \Gamma_n F(z_n), \end{cases} (2)
$$

where *I* is the identity operator, $\Gamma_n = F'(x_n)^{-1}$, $G(x_n) = \Gamma_n F''(u_n) \Gamma_n F(x_n)$, $u_n =$ $x_n - \frac{1}{2} \Gamma_n F(x_n)$, δ_1 is a parameter and $\delta_1 \in [-1, 1]$. By supposing that

(A1) There exists $\Gamma_0 = F'(x_0)^{-1}$ and $\|\Gamma_0\| \le \beta$,

 $(A2)$ $||\Gamma_0 F(x_0)|| \leq \eta$,

- $(A3)$ $||F''(x)|| < M$, $x \in \Omega$,
- $(A4)$ $||F'''(x)|| \leq N, x \in \Omega,$

(A5) $\|F'''(x) - F'''(y)\| \le \omega(\|x - y\|)$, $\forall x, y \in \Omega$, where $\omega(z)$ is a non-decreasing continuous real function for $z > 0$ and satisfy $\omega(0) \geq 0$,

(A6) there exists a non-negative real function $v \in C[0, 1]$, with $v(t) < 1$, such that $\omega(tz) \leq \nu(t)\omega(z)$, for $t \in [0, 1]$, $z \in (0, +\infty)$,

we have analyzed the semilocal convergence for the methods [\(2\)](#page-1-0). Numerical results show that the methods [\(2\)](#page-1-0) can solve some non-linear integral equation of mixed Hammerstein type successfully.

Note that under the conditions $(A1)$ - $(A6)$, we can not study the solution of some equations, for example,

$$
f(x) = x3 \ln(x2) + 3x2 - 10x + 1.7 = 0,
$$
 (3)

where $f(x)$ defines in $X = [-1, 1]$, $f(0) = 1.7$. Obviously, $f'''(x)$ can not satisfy the assumption $(A4)$. In reference $[12]$, under the assumptions $(A1)-(A3)$, the convergence for a family of methods are studied and the methods are given by

$$
x_{\theta,n+1} = x_{\theta,n} - \left[I + \frac{1}{2} L_F(x_{\theta,n}) [I - \theta L_F(x_{\theta,n})]^{-1} \right] F'(x_{\theta,n})^{-1} F(x_{\theta,n}), \quad (4)
$$

where $\theta \in [0, 1]$, $L_F(x_n) = F'(x_n)^{-1}F''(x_n)F'(x_n)^{-1}F(x_n)$. This family contains Chebyshev method ($\theta = 0$), Halley method ($\theta = 1/2$) and super-Halley method $(\theta = 1)$.

In this paper, we consider the semilocal convergence for a class of multi-point modified Chebyshev-Halley methods in Banach spaces given by

$$
\begin{cases}\nz_n = x_n - \left[I + \frac{1}{2}G(x_n) + G(x_n)^2 Q(G(x_n))\right] \Gamma_n F(x_n), \\
x_{n+1} = z_n - \left[I + G(x_n) + G(x_n)^2 + \frac{1}{2} \Gamma_n F''(u_n) G(x_n) \Gamma_n F(x_n) + \delta G(x_n)^3\right] \Gamma_n F(z_n),\n\end{cases} \tag{5}
$$

where *I* is the identity operator, $\Gamma_n = F'(x_n)^{-1}$, $G(x_n) = \Gamma_n F''(u_n) \Gamma_n F(x_n)$, $u_n =$ $x_n - \frac{1}{2} \Gamma_n F(x_n)$, *δ* is a parameter and $\delta \in [0, 1]$. In the methods [\(5\)](#page-1-1), *Q* is an operator which satisfies that there exists a real non-negative and non-decreasing function $\chi(t)$, such that $\|Q(G(x_n))\| \leq \chi(\|G(x_n)\|)$ and $\chi(t)$ is bounded for $t \in (0, s)$, where *s* will be defined in the latter developments. Obviously, the methods [\(5\)](#page-1-1) is more general than the methods (2) . To relax the conditions considered in reference $[11]$, we study the semilocal convergence of the methods (5) under the conditions $(A1)-(A3)$. Notice that the conditions $(A1)-(A3)$ which have been used in reference $[12]$ are weaker than the conditions $(A1)-(A6)$, since F''' is not required in the former. Applying the recurrence relations, a convergence theorem for methods [\(5\)](#page-1-1) is proved to show the existence-uniqueness of the solution and a priori error bounds is also given. Since the importance for convergence of iterative methods, in references [\[2,](#page-14-2) [3,](#page-14-7) [7,](#page-14-3) [10](#page-14-5)[–16\]](#page-14-8), the convergence of some methods are considered.

On the other hand, we give a brief proof to show that the *R*-order of methods [\(5\)](#page-1-1) is at least $5 + q$ with ω –conditioned third-order Fréchet derivative, where $\omega(\mu)$ is a non-decreasing continuous real function for $\mu > 0$ and satisfies $\omega(0) \geq 0$, $\omega(t\mu) \leq t^q \omega(\mu)$ for $\mu > 0, t \in [0, 1]$ and $q \in [0, 1]$. Obviously, the *R*-order of methods [\(5\)](#page-1-1) is higher than the one of the methods [\(4\)](#page-1-2) under the same conditions. Finally, some numerical results are given to show our approach.

2 Some preliminary results

Let *X* and *Y* be two Banach spaces, and let the nonlinear operator $F : \Omega \subset X \to Y$ be twice Fréchet differentiable in a non-empty open convex subset Ω and the conditions (A1)-(A3) hold, $x_0 \in \Omega$. Define $B(x, r) = \{y \in X : ||y - x|| < r\}$ and $B(x, r) = \{y \in X : ||y - x|| \leq r\}$. Furthermore, we define the following functions:

$$
p(t) = g_1(t) + \left[1 + t + \frac{3}{2}t^2 + \delta t^3\right]g_2(t),\tag{6}
$$

$$
h(t) = \frac{1}{1 - tp(t)},\tag{7}
$$

$$
\varphi(t) = t \left[1 + \frac{3}{2}t + \delta t^2 \right] g_2(t) + t g_1(t) \left[1 + t + \frac{3}{2}t^2 + \delta t^3 \right] g_2(t) + \frac{1}{2}t \left[1 + t + \frac{3}{2}t^2 + \delta t^3 \right]^2 g_2(t)^2,
$$
\n(8)

where

$$
g_1(t) = 1 + \frac{1}{2}t + t^2 \chi(t),
$$

$$
g_2(t) = \frac{1}{2}t \left[1 + 2t\chi(t) + g_1(t)^2 \right].
$$

The functions defined above will be used in the later developments, so next we study some of their properties. Let $f(t) = p(t)t - 1$. Since $f(0) = -1 < 0$ and

 $f(\frac{1}{2}) > \frac{231}{1024} > 0$, then we can conclude that $f(t) = 0$ has at least a root in $(0, \frac{1}{2})$. Let *s* be the smallest positive root of $p(t)t - 1 = 0$, then we obtain that $s < \frac{1}{2}$.

Lemma 1 *Let the functions* p *, h and* φ *be given in* [\(6–](#page-2-0)[8\)](#page-2-1)*, s be the smallest positive root of* $p(t)t - 1 = 0$ *; then* (a) $p(t)$ *and* $h(t)$ *are increasing and* $p(t) > 1$ *,* $h(t) > 1$ *for* $t \in (0, s)$ *,*

(b) *For* $t \in (0, s)$ *,* $\varphi(t)$ *is increasing.*

Define $\eta_0 = \eta$, $\beta_0 = \beta$, $c_0 = M\beta\eta$ and $d_0 = h(c_0)\varphi(c_0)$. Furthermore, we define the following sequences as

$$
\eta_{n+1} = d_n \eta_n,\tag{9}
$$

$$
\beta_{n+1} = h(c_n)\beta_n,\tag{10}
$$

$$
c_{n+1} = M\beta_{n+1}\eta_{n+1},\tag{11}
$$

$$
d_{n+1} = h(c_{n+1})\varphi(c_{n+1}),
$$
\n(12)

where $n \geq 0$. Some important properties of the previous sequences are given by the following lemma.

Lemma 2 *If*

$$
c_0 < s \quad \text{and} \quad h(c_0)d_0 < 1,\tag{13}
$$

where s is the smallest positive root of $p(t)t - 1 = 0$, then we have $h(c_n) > 1$ *and* $d_n < 1$ *for* $n \geq 0$ *,* (b) *the sequences* $\{\eta_n\}$, $\{c_n\}$ *and* $\{d_n\}$ *are decreasing*, (c) $p(c_n)c_n < 1$ *and* $h(c_n)d_n < 1$ *for* $n \ge 0$ *.*

The proof of this lemma can be obtained by induction.

Lemma 3 Let the functions p, h and φ be given in [\(6–](#page-2-0)[8\)](#page-2-1). Let $\alpha \in (0, 1)$ *, then* $p(\alpha t) < p(t)$ *,* $h(\alpha t) < h(t)$ *,* $\varphi(\alpha t) < \alpha^2 \varphi(t)$ *for* $t \in (0, s)$ *, where s is the smallest positive root of* $p(t)t - 1 = 0$ *.*

3 System of recurrence relations for the methods

For $n = 0$, the existence of Γ_0 implies the existence of u_0 , and furthermore, we obtain

$$
||u_0 - x_0|| = || -\frac{1}{2}\Gamma_0 F(x_0)|| \le \frac{1}{2}\eta_0.
$$
 (14)

This shows that $u_0 \in B(x_0, R\eta)$, where $R = \frac{p(c_0)}{1-d_0}$. Moreover, we have

$$
||G(x_0)|| \le ||\Gamma_0|| ||F''(u_0)|| ||\Gamma_0 F(x_0)|| \le M\beta_0\eta_0 = c_0,
$$
\n(15)

and

$$
\|z_0 - x_0\| = \left\| - \left[I + \frac{1}{2} G(x_0) + G(x_0)^2 Q(G(x_0)) \right] \Gamma_0 F(x_0) \right\|
$$

\n
$$
\leq \left[1 + \frac{1}{2} c_0 + c_0^2 \chi(c_0) \right] \|\Gamma_0 F(x_0)\|
$$

\n
$$
= g_1(c_0) \|\Gamma_0 F(x_0)\| \leq g_1(c_0)\eta_0.
$$
 (16)

Furthermore, we obtain

$$
||x_1 - z_0|| \le \left[1 + c_0 + \frac{3}{2}c_0^2 + \delta c_0^3\right] \beta_0 ||F(z_0)||. \tag{17}
$$

By Taylor expansion, we have

$$
F(z_n) = F(x_n) + F'(x_n)(z_n - x_n)
$$

+
$$
\int_0^1 \left[F'(x_n + t(z_n - x_n)) - F'(x_n) \right] (z_n - x_n) dt.
$$
 (18)

Since

$$
z_n - x_n = -\left[I + \frac{1}{2}G(x_n) + G(x_n)^2 Q(G(x_n))\right] \Gamma_n F(x_n),
$$

and

$$
G(x_n) = \Gamma_n F''(u_n) \Gamma_n F(x_n), \quad \Gamma_n = F'(x_n)^{-1},
$$

we obtain

$$
F(z_n) = F(x_n) - F'(x_n) \left[I + \frac{1}{2} G(x_n) + G(x_n)^2 Q(G(x_n)) \right] \Gamma_n F(x_n)
$$

+
$$
\int_0^1 \left[F'(x_n + t(z_n - x_n)) - F'(x_n) \right] (z_n - x_n) dt
$$

=
$$
- \frac{1}{2} F''(u_n) \left[\Gamma_n F(x_n) \right]^2 - F''(u_n) \Gamma_n F(x_n) G(x_n) Q(G(x_n)) \Gamma_n F(x_n)
$$

+
$$
\int_0^1 \left[F'(x_n + t(z_n - x_n)) - F'(x_n) \right] (z_n - x_n) dt.
$$
 (19)

It follows that

$$
||F(z_0)|| \le \frac{1}{2}M ||\Gamma_0 F(x_0)||^2 \left[1 + 2c_0 \chi(c_0) + g_1(c_0)^2\right],
$$
 (20)

and

$$
\beta_0 \|F(z_0)\| \le \frac{1}{2} c_0 \left[1 + 2c_0 \chi(c_0) + g_1(c_0)^2 \right] \|\Gamma_0 F(x_0)\|
$$

= $g_2(c_0) \|\Gamma_0 F(x_0)\| \le g_2(c_0) \eta_0.$ (21)

Then we have

$$
||x_1 - x_0|| \le ||x_1 - x_0|| + ||x_0 - x_0|| \le p(c_0) ||\Gamma_0 F(x_0)|| \le p(c_0)\eta_0. \tag{22}
$$

 $\underline{\textcircled{\tiny 2}}$ Springer

This means that $x_1 \in B(x_0, R\eta)$ since the assumption $d_0 < 1/h(a_0) < 1$. Notice that $a_0 < s$ and $p(a_0) < p(s)$, we have

$$
||I - \Gamma_0 F'(x_1)|| \le ||\Gamma_0|| ||F'(x_0) - F'(x_1)||
$$

\n
$$
\le M\beta_0 ||x_1 - x_0|| \le c_0 p(c_0) < 1.
$$

By the Banach lemma, we obtain that $\Gamma_1 = [F'(x_1)]^{-1}$ exists and

$$
\|\Gamma_1\| \le \frac{\|\Gamma_0\|}{1 - \|\Gamma_0\| \|F'(x_0) - F'(x_1)\|} \le \frac{\|\Gamma_0\|}{1 - c_0 p(c_0)} = h(c_0) \|\Gamma_0\| \le h(c_0)\beta_0 = \beta_1.
$$
\n(23)

So u_1 is well defined. In order to estimate the bound of $F(x_1)$, we now give the following lemma.

Lemma 4 *Let X and Y be two Banach spaces,* Ω *be an open set, the nonlinear operator* $F : \Omega \subset X \rightarrow Y$ *be continuously twice Fréchet differentiable. Then we obtain*

$$
F(x_{n+1}) = -F''(u_n)\Gamma_n F(x_n)\Gamma_n F(z_n) - F''(u_n)\Gamma_n F(x_n)G(x_n)\Gamma_n F(z_n)
$$

\n
$$
-\frac{1}{2}F''(u_n)G(x_n)\Gamma_n F(x_n)\Gamma_n F(z_n) - \delta F''(u_n)\Gamma_n F(x_n)G(x_n)^2\Gamma_n F(z_n)
$$

\n
$$
+\int_0^1 F''(x_n + t(z_n - x_n))(z_n - x_n)dt(x_{n+1} - z_n)
$$

\n
$$
+\int_0^1 \left[F'(z_n + t(x_{n+1} - z_n)) - F'(z_n) \right](x_{n+1} - z_n)dt,
$$
\n(24)

where x_{n+1} *,* z_n *are* given by [\(5\)](#page-1-1)*,* and the definitions of Γ_n *,* u_n *,* δ *,* $G(x_n)$ *are same to the ones of* (5) *.*

Proof 1 By Taylor expansion, we obtain

$$
F(x_{n+1}) = F(z_n) + F'(z_n)(x_{n+1} - z_n)
$$

+
$$
\int_0^1 \left[F'(z_n + t(x_{n+1} - z_n)) - F'(z_n) \right] (x_{n+1} - z_n) dt.
$$
 (25)

$$
F'(z_n) = F'(x_n) + \int_0^1 F''(x_n + t(z_n - x_n))(z_n - x_n)dt.
$$
 (26)

2 Springer

Then we have

$$
F(x_{n+1}) = F(z_n) + F'(x_n)(x_{n+1} - z_n)
$$

+ $\int_0^1 F''(x_n + t(z_n - x_n))(z_n - x_n)dt(x_{n+1} - z_n)$
+ $\int_0^1 [F'(z_n + t(x_{n+1} - z_n)) - F'(z_n)](x_{n+1} - z_n)dt.$

Since

$$
x_{n+1} - z_n = -\left[I + G(x_n) + G(x_n)^2 + \frac{1}{2}\Gamma_n F''(u_n)G(x_n)\Gamma_n F(x_n) + \delta G(x_n)^3\right]\Gamma_n F(z_n),
$$

and

$$
G(x_n) = \Gamma_n F''(u_n) \Gamma_n F(x_n), \quad \Gamma_n = F'(x_n)^{-1},
$$

we obtain

$$
F(x_{n+1}) = F(z_n) - F'(x_n) \left[I + G(x_n) + G(x_n)^2 \right] \Gamma_n F(z_n)
$$

\n
$$
-F'(x_n) \left[\frac{1}{2} \Gamma_n F''(u_n) G(x_n) \Gamma_n F(x_n) + \delta G(x_n)^3 \right] \Gamma_n F(z_n)
$$

\n
$$
+ \int_0^1 F''(x_n + t(z_n - x_n)) (z_n - x_n) dt (x_{n+1} - z_n)
$$

\n
$$
+ \int_0^1 \left[F'(z_n + t(x_{n+1} - z_n)) - F'(z_n) \right] (x_{n+1} - z_n) dt
$$

\n
$$
= -F''(u_n) \Gamma_n F(x_n) \Gamma_n F(z_n) - F''(u_n) \Gamma_n F(x_n) G(x_n) \Gamma_n F(z_n)
$$

\n
$$
- \frac{1}{2} F''(u_n) G(x_n) \Gamma_n F(x_n) \Gamma_n F(z_n) - \delta F''(u_n) \Gamma_n F(x_n) G(x_n)^2 \Gamma_n F(z_n)
$$

\n
$$
+ \int_0^1 F''(x_n + t(z_n - x_n)) (z_n - x_n) dt (x_{n+1} - z_n)
$$

\n
$$
+ \int_0^1 \left[F'(z_n + t(x_{n+1} - z_n)) - F'(z_n) \right] (x_{n+1} - z_n) dt.
$$

This ends the proof.

 $\underline{\textcircled{\tiny 2}}$ Springer

 \Box

From Lemma 4, we have

$$
||F(x_1)|| \leq M ||\Gamma_0 F(x_0)|| \left[1 + \frac{3}{2}c_0 + \delta c_0^2 \right] \beta_0 ||F(z_0)||
$$

+M ||z_0 - x_0|| ||x_1 - z_0|| + $\frac{1}{2}$ M ||x_1 - z_0||²

$$
\leq M \left[1 + \frac{3}{2}c_0 + \delta c_0^2 \right] g_2(c_0) ||\Gamma_0 F(x_0)||^2
$$

+M g_1(c_0) \left[1 + c_0 + \frac{3}{2}c_0^2 + \delta c_0^3 \right] g_2(c_0) ||\Gamma_0 F(x_0)||^2
+ \frac{1}{2}M \left[1 + c_0 + \frac{3}{2}c_0^2 + \delta c_0^3 \right]^2 g_2(c_0)^2 ||\Gamma_0 F(x_0)||^2 \qquad (27)

and

$$
\beta_0 \|F(x_1)\| \le c_0 \left[1 + \frac{3}{2} c_0 + \delta c_0^2 \right] g_2(c_0) \| \Gamma_0 F(x_0) \| \n+ c_0 g_1(c_0) \left[1 + c_0 + \frac{3}{2} c_0^2 + \delta c_0^3 \right] g_2(c_0) \| \Gamma_0 F(x_0) \| \n+ \frac{1}{2} c_0 \left[1 + c_0 + \frac{3}{2} c_0^2 + \delta c_0^3 \right]^2 g_2(c_0)^2 \| \Gamma_0 F(x_0) \| \n= \varphi(c_0) \| \Gamma_0 F(x_0) \| \n\le \varphi(c_0) \eta_0.
$$
\n(28)

From (23) and (28) , we have

$$
||u_1 - x_1|| = || -\frac{1}{2}\Gamma_1 F(x_1)|| \le ||\Gamma_1 F(x_1)|| \le ||\Gamma_1|| ||F(x_1)||
$$

\n
$$
\le h(c_0)\varphi(c_0) ||\Gamma_0 F(x_0)|| \le h(c_0)\varphi(c_0)\eta_0
$$

\n
$$
= d_0\eta_0 = \eta_1.
$$
 (29)

Since $p(c_0) > 1$, we obtain

$$
\|u_1 - x_0\| \le \|x_1 - x_0\| + \|u_1 - x_1\|
$$

< $(p(c_0) + d_0)\eta_0 < p(c_0)(1 + d_0)\eta_0 < R\eta,$ (30)

which means that $u_1 \in B(x_0, R\eta)$.

Besides, we have

$$
M\|\Gamma_1\|\|\Gamma_1F(x_1)\| \le h(c_0)d_0c_0 = c_1.
$$
\n(31)

Using induction, we can obtain the following items:

- (1) There exists $\Gamma_n = [F'(x_n)]^{-1}$ and $\|\Gamma_n\| \le h(c_{n-1})\|\Gamma_{n-1}\|$,
- (2) $\|\Gamma_n F(x_n)\| \le h(c_{n-1})\varphi(c_{n-1})\|\Gamma_{n-1} F(x_{n-1})\|,$
- (3) $M \| \Gamma_n \| \| \Gamma_n F(x_n) \| \leq c_n$,

(4) $\|z_n - x_n\| \leq g_1(c_n) \|\Gamma_n F(x_n)\|,$ (5) $\|x_{n+1} - x_n\| \leq p(c_n) \|\Gamma_n F(x_n)\|,$ where $n \geq 0$.

Moreover, we can get the following lemma.

Lemma 5 *Let the assumptions of Lemma 2 and the conditions (A1)-(A3) hold; then we have*

$$
||u_n - x_0|| \le R\eta, \quad ||z_n - x_0|| \le R\eta, \quad ||x_{n+1} - x_0|| \le R\eta,
$$
 (32)
where $R = \frac{p(c_0)}{1 - d_0}$.

To get the proof of Lemma 5, we now give the following lemma.

Lemma 6 *Under the assumptions of Lemma 2, let* $\gamma = h(c_0)d_0$ *and* $\lambda = 1/h(c_0)$ *; then we have*

$$
\prod_{i=0}^{n} d_i \le \lambda^{n+1} \gamma^{\frac{3^{n+1}-1}{2}},
$$
\n(33)

$$
\eta_n \le \eta \lambda^n \gamma^{\frac{3^n - 1}{2}}, \quad n \ge 0,
$$
\n(34)

.

$$
\sum_{i=n}^{n+m} \eta_i \le \eta \lambda^n \gamma^{\frac{3^n-1}{2}} \frac{1 - \lambda^{m+1} \gamma^{\frac{3^n (3^m+1)}{2}}}{1 - \lambda \gamma^{3^n}}, \quad n \ge 0, \ m \ge 1.
$$
 (35)

Proof 2 Since $c_1 = \gamma c_0$, by Lemma 3, we have

$$
d_1 = h(\gamma c_0)\varphi(\gamma c_0) < \gamma^2 d_0 = \gamma^{3^1 - 1} d_0 = \lambda \gamma^{3^1}.
$$

Suppose $d_k \leq \lambda \gamma^{3^k}$, $k \geq 1$. Then by Lemma 2, we have $c_{k+1} < c_k$ and $h(c_k)d_k < 1$. Then

$$
d_{k+1} < h(c_k)\varphi\left(h(c_k)d_kc_k\right) < h(c_k)^2d_k^3 < \lambda\gamma^{3^{k+1}}
$$

Therefore it holds that $d_n \leq \lambda \gamma^{3^n}$, $n \geq 0$. Moreover, we have

$$
\prod_{i=0}^{n} d_i \le \prod_{i=0}^{n} \lambda \gamma^{3^i} = \lambda^{n+1} \gamma^{\sum_{i=0}^{n} 3^i} = \lambda^{n+1} \gamma^{\frac{3^{n+1}-1}{2}}, n \ge 0.
$$

From (9) and (33) , we have

$$
\eta_n = d_{n-1}\eta_{n-1} = d_{n-1}d_{n-2}\eta_{n-2} = \cdots = \eta\left(\prod_{i=0}^{n-1} d_i\right) \leq \eta \lambda^n \gamma^{\frac{3^n-1}{2}}, n \geq 0.
$$

Let

$$
\rho = \sum_{i=n}^{n+m} \lambda^i \gamma^{\frac{3^i}{2}},
$$

 \Box

where $n \geq 0, m \geq 1$. Since

$$
\rho \leq \lambda^n \gamma^{\frac{3^n}{2}} + \gamma^{3^n} \left(\sum_{i=n+1}^{n+m} \lambda^i \gamma^{\frac{3^{i-1}}{2}} \right)
$$

= $\lambda^n \gamma^{\frac{3^n}{2}} + \lambda \gamma^{3^n} \left(\rho - \lambda^{n+m} \gamma^{\frac{3^{n+m}}{2}} \right),$

we have

$$
\rho \leq \lambda^n \gamma^{\frac{3^n}{2}} \frac{1 - \lambda^{m+1} \gamma^{\frac{3^n (3^m + 1)}{2}}}{1 - \lambda \gamma^{3^n}}.
$$

Moreover, we obtain

$$
\sum_{i=n}^{n+m} \eta_i \leq \eta \left(\sum_{i=n}^{n+m} \lambda^i \gamma^{\frac{3^i-1}{2}} \right) \leq \eta \lambda^n \gamma^{\frac{3^n-1}{2}} \frac{1-\lambda^{m+1} \gamma^{\frac{3^n(3^m+1)}{2}}}{1-\lambda \gamma^{3^n}}.
$$

Next we give a brief proof of Lemma 5.

Proof 3 From [\(14\)](#page-3-1), we know that $||u_0 - x_0|| < R\eta$. For $n \ge 1$, by [\(5\)](#page-1-1) and Lemma 6, we obtain

$$
||u_n - x_0|| \le ||u_n - x_n|| + ||x_n - x_0||
$$

\n
$$
\le ||u_n - x_n|| + \sum_{i=0}^{n-1} ||x_{i+1} - x_i||
$$

\n
$$
\le \eta_n + p(c_0) \sum_{i=0}^{n-1} \eta_i \le p(c_0) \sum_{i=0}^n \eta \lambda^i \gamma^{\frac{3^i - 1}{2}}
$$

\n
$$
\le p(c_0) \eta \frac{1 - \lambda^{n+1} \gamma^{\frac{3^n + 1}{2}}}{1 - d_0} < R\eta.
$$

From [\(16\)](#page-4-0), we know that $||z_0 - x_0|| \le g_1(c_0)\eta < p(c_0)\eta < R\eta$. For $n \ge 1$, by [\(4\)](#page-1-2), [\(5\)](#page-1-1) and Lemma 6, we obtain

$$
||z_n - x_0|| \le ||z_n - x_n|| + ||x_n - x_0||
$$

\n
$$
\le ||z_n - x_n|| + \sum_{i=0}^{n-1} ||x_{i+1} - x_i||
$$

\n
$$
\le g_1(c_n)\eta_n + p(c_0) \sum_{i=0}^{n-1} \eta_i \le p(c_0) \sum_{i=0}^n \eta \lambda^i \gamma^{\frac{3^i - 1}{2}} < R\eta.
$$

Similarly, for $n \geq 0$, By [\(5\)](#page-1-1) and Lemma 6, we have

$$
||x_{n+1} - x_0|| \le \sum_{i=0}^n ||x_{i+1} - x_i|| \le p(c_0) \sum_{i=0}^n \eta_i < R\eta.
$$

This ends the proof.

2 Springer

Lemma 7 *Let* $R = \frac{p(c_0)}{1-d_0}$, $If h(c_0)d_0 < 1$ and $c_0 < s$, where *s* is the smallest positive *root of* $p(t)t - 1 = 0$, then we have $R < \frac{1}{c_0}$.

4 Semilocal convergence

In this section, we prove the following theorem which shows the existence and uniqueness of the solution and gives a priori error bounds.

Theorem 1 *Let X and Y be two Banach spaces, the nonlinear operator* $F : \Omega \subset$ $X \rightarrow Y$ *be twice Fréchet differentiable in a non-empty open convex subset* Ω *. Assume that* $x_0 \in \Omega$ *and all conditions (A1)-(A3) hold. Let* $c_0 = M\beta\eta$ *and* $d_0 = h(c_0)\varphi(c_0)$ *satisfy* $c_0 < s$ *and* $h(c_0)d_0 < 1$ *, where s is the smallest positive root of* $p(t)t - 1 = 0$ *and p*, *h*, φ *are defined by* [\(6–](#page-2-0)[8\)](#page-2-1)*. Let* $\overline{B(x_0, R\eta)} \subseteq \Omega$ *where* $R = \frac{p(c_0)}{1-d_0}$ *, then starting from* x_0 *, the sequence* $\{x_n\}$ *generated by the method* [\(5\)](#page-1-1) *converges to a solution* x^* *of* $F(x) = 0$ *with* x_n , x^* *belong to* $\overline{B(x_0, R\eta)}$ *and* x^* *is the unique solution of* $F(x) = 0$ $\int \ln B(x_0, \frac{2}{M\beta} - R\eta) \bigcap \Omega.$

Furthermore, a priori error estimate is given by

$$
||x_n - x^*|| \le p(c_0)\eta \lambda^n \gamma^{\frac{3^n - 1}{2}} \frac{1}{1 - \lambda \gamma^{3^n}},
$$
\n(36)

where $\gamma = h(c_0)d_0$ *and* $\lambda = 1/h(c_0)$ *.*

Proof 4 From Lemma 5, we can obtain that the sequence $\{x_n\}$ is well-defined in $B(x_0, R\eta)$. Now we prove that $\{x_n\}$ is a Cauchy sequence. Since

$$
||x_{n+m} - x_n|| \le \sum_{i=n}^{n+m-1} ||x_{i+1} - x_i|| \le p(c_0) \sum_{i=n}^{n+m-1} \eta_i
$$

$$
\le p(c_0) \eta \lambda^n \gamma^{\frac{3^n-1}{2}} \frac{1 - \lambda^m \gamma^{\frac{3^n (3^{m-1}+1)}{2}}}{1 - \lambda \gamma^{3^n}}.
$$
 (37)

We have that there exists a x^* such that $\lim_{n\to\infty} x_n = x^*$.

Letting $n = 0, m \rightarrow \infty$ in [\(37\)](#page-10-0), we have

$$
\parallel x^* - x_0 \parallel \le R\eta,\tag{38}
$$

which means that $x^* \in B(x_0, R\eta)$.

From Lemma 4, we have

$$
||F(x_{n+1})|| \leq M \left[1 + \frac{3}{2}c_0 + \delta c_0^2 \right] g_2(c_0) \eta_n^2
$$

+
$$
+ Mg_1(c_0) \left[1 + c_0 + \frac{3}{2}c_0^2 + \delta c_0^3 \right] g_2(c_0) \eta_n^2
$$

+
$$
\frac{1}{2}M \left[1 + c_0 + \frac{3}{2}c_0^2 + \delta c_0^3 \right]^2 g_2(c_0)^2 \eta_n^2
$$
(39)

Let $n \to \infty$ in [\(39\)](#page-10-1), then we obtain that $||F(x_n)|| \to 0$ since $\eta_n \to 0$. By the continuity of $F(x)$ in Ω , we get that $F(x^*) = 0$.

Next we prove the uniqueness of x^* in $B(x_0, \frac{2}{M\beta} - R\eta) \bigcap \Omega$. By Lemma 7, we obtain

$$
\frac{2}{M\beta}-R\eta=\left(\frac{2}{c_0}-R\right)\eta>\frac{1}{c_0}\eta>R\eta,
$$

and then $\overline{B(x_0, R\eta)} \subseteq B(x_0, \frac{2}{M\beta} - R\eta) \bigcap \Omega$, thus $x^* \in B(x_0, \frac{2}{M\beta} - R\eta) \bigcap \Omega$.

Assume that $x^{**} \in B(x_0, \frac{2}{M\beta} - R\eta) \cap \Omega$ and x^{**} satisfies $F(x^{**}) = 0$, then we have that

$$
0 = F(x^{**}) - F(x^*) = \int_0^1 F'((1-t)x^* + tx^{**})dt(x^{**} - x^*).
$$
 (40)

Notice that

$$
\|\Gamma_0\| \left\| \int_0^1 [F'((1-t)x^* + tx^{**}) - F'(x_0)]dt \right\|
$$

\n
$$
\leq M\beta \int_0^1 [(1-t)\|x^* - x_0\| + t\|x^{**} - x_0\|]dt
$$

\n
$$
< \frac{M\beta}{2} \left[R\eta + \frac{2}{M\beta} - R\eta \right] = 1,
$$
 (41)

then by the Banach lemma, we have that $\int_0^1 F'((1-t)x^* + tx^{**})dt$ is invertible and hence $x^{**} = x^*$.

Finally, letting $m \to \infty$ in [\(37\)](#page-10-0), we obtain [\(36\)](#page-10-2).

Next we consider two examples, where the conditions of theorem 1 are satisfied, but the assumption (A4) can not be satisfied.

Example 4.1

$$
f(x) = x^3 \ln(x^2) + 3x^2 - 10x + 1.7 = 0,
$$

where $f(x)$ defines in $X = [-1, 1]$, $f(0) = 1.7$.

Here, we take $Q(G(x_n)) = 0, \delta = 1$ in the methods [\(5\)](#page-1-1). Let $\Omega = B(0, 1), x_0 = 0$, we obtain

$$
\lim_{x \to 0} x^3 \ln(x^2) = 0, \quad \lim_{x \to 0} x^2 \ln(x^2) = 0, \quad \lim_{x \to 0} x \ln(x^2) = 0.
$$

Note that $f'''(x)$ can not satisfy the assumption (A4). But we have

$$
|1/f'(0)| = 0.1, |f(0)/f'(0)| = 0.17, \sup_{x \in X} |f''(x)| = 16.
$$

Since $c_0 = 0.272$,

$$
p(c_0)c_0 = 0.427... < 1,
$$

then we get $c_0 < s$. Furthermore,

$$
h(c_0)d_0 = 0.875... < 1,
$$

Then the conditions of Theorem 1 are satisfied. The solution x^* belongs to $\overline{B(x_0, R\eta)} = \overline{B(0, 0.535...)} \subseteq \Omega$ and x^* is the unique solution of $f(x) = 0$ in $B(0, 0.714\dots) \bigcap \Omega$.

Example 4.2 Consider a nonlinear integral equation

$$
x(s) = 1 + \frac{9}{8} \int_0^1 G(s, t) x(t)^{5/2} dt, \quad s \in [0, 1],
$$

where $x \in C[0, 1]$, $t \in [0, 1]$, $G(s, t)$ is the Green function defined by

$$
G(s,t) = \begin{cases} (1-s)t, & t \leq s, \\ s(1-t), & s \leq t. \end{cases}
$$

To find the solution of this equation, we need to solve the equation $F(x) = 0$, where $F: \Omega \subseteq C[0, 1] \rightarrow C[0, 1],$

$$
[F(x)](s) = x(s) - 1 - \frac{9}{8} \int_0^1 G(s, t)x(t)^{5/2}dt, \quad s \in [0, 1].
$$

Here, we take $\Omega = B(0, 2)$. The Fréchet derivatives of F are given by

$$
F'(x)y(s) = y(s) - \frac{45}{16} \int_0^1 G(s, t)x(t)^{3/2}y(t)dt, \quad y \in \Omega,
$$

$$
F''(x)yz(s) = -\frac{135}{32} \int_0^1 G(s, t)x(t)^{1/2}y(t)z(t)dt, \quad y, \ z \in \Omega,
$$

$$
F'''(x)yzv(s) = -\frac{135}{64} \int_0^1 G(s, t)x(t)^{-1/2}y(t)z(t)v(t)dt, \quad y, \ z, \ v \in \Omega.
$$

Obviously, *F'''* can not satisfy the condition (A4). We take $Q(G(x_n)) = 0, \delta = 1$ in the methods [\(5\)](#page-1-1) and choose $x_0(t) = 1$ as the initial approximate solution. Then we obtain that

$$
||F(x_0)|| = \frac{9}{64}, \quad ||I - F'(x_0)|| = \frac{45}{128},
$$

$$
||\Gamma_0|| = ||F'(x_0)^{-1}|| \le \frac{1}{1 - ||I - F'(x_0)||} = \frac{128}{83} \equiv \beta,
$$

$$
||\Gamma_0 F(x_0)|| \le \frac{18}{83} \equiv \eta, \quad ||F''(x)|| \le \frac{135\sqrt{2}}{256} \equiv M.
$$

Here, the max norm is used. Since $c_0 = 0.249...$,

$$
p(c_0)c_0 = 0.376... < 1,
$$

then $c_0 < s$. Moreover,

$$
h(c_0)d_0 = 0.583\ldots < 1,
$$

Then the conditions of theorem 1 are satisfied. The solution x^* belongs to $\overline{B(x_0, R\eta)} = \overline{B(1, 0.514...)} \subseteq \Omega$ and x^* is the unique solution of $F(x) = 0$ in $B(1, 1.224...) \cap \Omega$.

5 Higher *R***-order convergence analysis**

(B) $||F'''(x) - F'''(y)|| \le \omega(||x - y||)$, $\forall x, y \in \Omega$, where $\omega(\mu)$ is a non-decreasing continuous real function for $\mu > 0$ and satisfies $\omega(0) \geq 0$, $\omega(t\mu) \leq t^q \omega(\mu)$ for $\mu > 0, t \in [0, 1]$ and $q \in [0, 1]$.

Define the function *ψ* as

$$
\psi(t, u, v) = \left[\frac{1}{4}tu + \frac{1}{q+1}\frac{1}{2^{(q+1)}}\left(1+\frac{3}{2}t\right)v + \left(\frac{1}{2}t + t^2\chi(t)\right)u\right]\phi(t, u) \n+ \left[\delta t^3 + t^3\chi(t) + \left(\frac{3}{2} + \delta t\right)t^3 + \frac{t^2}{2}\left(\frac{3}{2} + \delta t\right)u\right]\phi(t, u) \n+ \frac{1}{(q+1)(q+2)}\left(1 + t + \frac{3}{2}t^2 + \delta t^3\right)v\phi(t, u) \n+ t^3\left(\frac{1}{2} + t\chi(t)\right)\left(1 + \frac{3}{2}t + \delta t^2\right)\phi(t, u) \n+ \frac{t^2}{2}\left(\frac{1}{2} + t\chi(t)\right)^2\left(1 + t + \frac{3}{2}t^2 + \delta t^3\right)u\phi(t, u) \n+ \frac{t}{2}\left(1 + t + \frac{3}{2}t^2 + \delta t^3\right)^2\phi(t, u)^2,
$$
\n(42)

where

$$
\phi(t, u) = t^2 \chi(t) + \frac{5}{12} u + t^2 \left(\frac{1}{2} + t \chi(t) \right) + \frac{t}{2} \left(\frac{1}{2} + t \chi(t) \right) u + \frac{t^3}{2} \left(\frac{1}{2} + t \chi(t) \right)^2.
$$

Let the function ψ be defined by [\(42\)](#page-13-0), $\alpha \in (0, 1)$, then $\psi(\alpha t, \alpha^2 u, \alpha^{(2+p)}v)$ < $\alpha^{(4+p)}\psi(t, u, v)$ for $t \in (0, s)$, where *s* is the smallest positive root of $p(t)t - 1 = 0$, the function p is given in (6) .

Define the following sequences as

$$
\widetilde{\eta}_{n+1} = \widetilde{d}_n \widetilde{\eta}_n, \quad \widetilde{\beta}_{n+1} = h(\widetilde{c}_n)\widetilde{\beta}_n,\tag{43}
$$

$$
\widetilde{c}_{n+1} = M\widetilde{\beta}_{n+1}\widetilde{\eta}_{n+1}, \quad \widetilde{b}_{n+1} = N\widetilde{\beta}_{n+1}\widetilde{\eta}_{n+1}^2, \quad \widetilde{a}_{n+1} = \widetilde{\beta}_{n+1}\widetilde{\eta}_{n+1}^2 w(\widetilde{\eta}_{n+1}), \quad (44)
$$

$$
\widetilde{d}_{n+1} = h(\widetilde{c}_{n+1})\psi(\widetilde{c}_{n+1}, \widetilde{b}_{n+1}, \widetilde{a}_{n+1}),\tag{45}
$$

where $n \ge 0$. Here, we choose $\widetilde{\eta}_0 = \eta$, $\widetilde{\beta}_0 = \beta$, $\widetilde{c}_0 = M\beta\eta$, $\widetilde{b}_0 = N\beta\eta^2$, $\widetilde{a}_0 = \beta\eta^2\omega(n)$ and $\widetilde{d}_0 = h(\widetilde{c}_0)h(\widetilde{c}_0, \widetilde{b}_0, \widetilde{a}_0)$. From the definitions of $\widetilde{c}_0 \leftrightarrow \widetilde{b}_0 \leftrightarrow$ $\beta \eta^2 \omega(\eta)$ and $\tilde{d}_0 = h(\tilde{c}_0) \psi(\tilde{c}_0, \tilde{b}_0, \tilde{a}_0)$. From the definitions of $\tilde{c}_{n+1}, \tilde{b}_{n+1}, \tilde{a}_{n+1}$ and $F(a/43)$ we can obtain Eq (43) , we can obtain

$$
\widetilde{c}_{n+1} = h(\widetilde{c}_n)\widetilde{d}_n\widetilde{c}_n, \quad \widetilde{b}_{n+1} = h(\widetilde{c}_n)\widetilde{d}_n^2\widetilde{b}_n, \quad \widetilde{a}_{n+1} \le h(\widetilde{c}_n)\widetilde{d}_n^{2+q}\widetilde{a}_n. \tag{46}
$$

Similar to the derivation in Section [3](#page-3-2) and Section [4,](#page-10-3) we can establish the semilocal convergence of methods (5) under the conditions $(A1)-(A4)$, (B) . Moreover, we can get a priori error estimate

$$
||x_n - x^*|| \le \frac{p(\widetilde{c}_0)\eta}{\widetilde{\gamma}^{1/(4+q)}(1-\widetilde{d}_0)} \left(\widetilde{\gamma}^{1/(4+q)}\right)^{(5+q)^n},
$$
\n(47)

where $\tilde{\gamma} = h(\tilde{c}_0)d_0$ and $\lambda = 1/h(\tilde{c}_0)$. This error estimate shows that under the conditions (A1)-(A4) (B) the methods (5) has at least R -order 5 + a conditions (A1)-(A4), (B), the methods [\(5\)](#page-1-1) has, at least, *R*-order $5 + q$.

Acknowledgement

This work is supported by the Scientific and Technical Research Project of Hubei Provincial Department of Education (No. D20132701).

References

- 1. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equation in Several Variables. Academic Press, New York (1970)
- 2. Candela, V., Marquina, A.: Recurrence relations for rational cubic methods I: The Halley method. Comput. **44**, 169–184 (1990)
- 3. Gutiérrez, J.M., Hernández, M.A.: Recurrence relations for the super-Halley method, Comput. Math. Applic. **36**, 1-8 (1998)
- 4. Argyros, I.K., Chen, D.: Results on the Chebyshev method in banach spaces. Proyecciones **12**(2), 119–128 (1993)
- 5. Hernandez, M.A., Salanova, M.A.: Modification of the Kantorovich assumptions for semilocal ´ convergence of the Chebyshev method. J. Comput. Appl. Math. **126**, 131–143 (2000)
- 6. Hernandez, M.A.: Chebyshev's approximation algorithms and applications. Comput.Math. with Appl. ´ **41**, 433-445 (2001)
- 7. Candela, V., Marquina, A.: Recurrence relations for rational cubic methods II: The Chebyshev method. Comput. **45**, 355-367 (1990)
- 8. Amat, S., Busquier, S., Gutiérrez, J.M.: Geometric constructions of iterative functions to solve nonlinear equations. J. Comput. Appl. Math **157**, 197–205 (2003)
- 9. Argyros, I.K.: Quadratic equations and applications to Chandrasekhar's and related equations. Bull. Austral. Math. Soc **32**, 275–292 (1985)
- 10. Hernández, M.A.: Second-derivative-free variant of the Chebyshev method for nonlinear equations. J. Optim. Theory Appl. **104**(3), 501–515 (2000)
- 11. Wang, X., Kou, J.: Semilocal convergence and R-order for modified Chebyshev-Halley methods. Numer. Algoritm. **64**, 105–126 (2012)
- 12. Gutiérrez, J.M., Hernández, M.A.: Third-order iterative methods for operators with bounded second derivative. J. Comput. Appl. Math. **82**, 171–183 (1997)
- 13. Proinov, P.D.: New general convergence theory for iterative processes and its applications to Newton-Kantorovich type theorems. J. Complexity **26**, 3–42 (2010)
- 14. Argyros, I.K.: Improved generalized differentiability conditions for Newton-like methods. J.Complexity **26**, 316–333 (2010)
- 15. Gutiérrez, J.M., Magreñán, Á.A., Romero, N.: On the semilocal convergence of Newton-Kantorovich method under center-Lipschitz conditions. Appl. Math. Comput. **221**, 79–88 (2013)
- 16. Amat, S., Magreñán, Á.A., Romero, N.: On a two-step relaxed Newton-type method. Appl. Math. Comput. **219**(24), 11341–11347 (2013)