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Abstract In this paper, the semilocal convergence for a class of multi-point modified
Chebyshev-Halley methods in Banach spaces is studied. Different from the results in
reference Wang and Kou ( Numer. Algoritm. 64, 105-126, 2012), these methods are
more general and the convergence conditions are also relaxed. We derive a system
of recurrence relations for these methods and based on this, we prove a convergence
theorem to show the existence-uniqueness of the solution. A priori error bounds is
also given. The R-order of these methods is proved to be 5 + g with w—conditioned
third-order Fréchet derivative, where w (1) is a non-decreasing continuous real func-
tion for u > 0 and satisfies w(0) > 0, w(tu) < tfw(u) for w > 0,1 € [0, 1] and
g € [0, 1]. Finally, we give some numerical results to show our approach.
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1 Introduction

F(x)=0, (1)
where F' : Q@ € X — Y is a nonlinear operator on a non-empty open convex subset
Q2 of a Banach space X with values in a Banach space Y.

Newton’s method [1] is widely applied to find the solution of (1). It converges
quadratically under some suitable conditions. Recently, some papers about the third-
order methods have been developed since their higher convergence speed. For the
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classical Chebyshev-Halley methods, see references [2—7]. Though the classical
Chebyshev-Halley methods need to compute the second Fréchet derivative, they are
useful in some applications. Such as the integral equations [8] and the quadratic
equations [9], where for the integral equations, the second Fréchet derivative is easy
to compute; for the quadratic equations, the second Fréchet derivative is a constant.
Moreover, in some applications where a quick convergence speed is needed, such as
the stiff systems, the high-order methods are very useful [10]. So it is interesting to
study some high-order methods. In reference [11], we have considered the modified
Chebyshev-Halley methods given by

2 =20 — (14 3G 00 + $G(0)?) TF(xa),
Xt = 20 = |1+ Gn) + Gta)? + ST ) G () TuF (i) | T F (),
(2)
where I is the identity operator, ', = F/(x,) ™", G(xp) = T F" () D0 F(xp), up =
Xp — %FnF(xn), 81 is a parameter and 81 € [—1, 1].
By supposing that
(A1) There exists I'g = F'(xo)~! and || To|| < 8,
(A2) |ToF(xo)ll <,
(A3) [F'()lIl <M, xeQ,
(Ad) [[F"(x)| <N, x e,
(A5) |IF"(x)—F"| < o(lx—=yl), Yx,y € Q, where w(z) is a non-decreasing
continuous real function for z > 0 and satisfy w(0) > 0,
(A6) there exists a non-negative real function v € C[0, 1], with v(¢) < 1, such that
w(tz) < v(t)w(z), fort € [0, 1], z € (0, +00),
we have analyzed the semilocal convergence for the methods (2). Numerical results
show that the methods (2) can solve some non-linear integral equation of mixed
Hammerstein type successfully.
Note that under the conditions (A1)-(A6), we can not study the solution of some
equations, for example,

F) =x3In(x?) +3x2 = 10x + 1.7 =0, (3)

where f(x) defines in X = [—1, 1], f(0) = 1.7. Obviously, f”’(x) can not sat-
isfy the assumption (A4). In reference [12], under the assumptions (A1)-(A3), the
convergence for a family of methods are studied and the methods are given by

1
X0t = Xon — [1 + 5 Lr(onll = eLF<x9,n)]—1] F'(xg.0) ' F(xan), (4

where 6 € [0, 1], Lr(x,) = F'(x,)"'F"(x,) F'(x,) "' F(x,). This family contains
Chebyshev method (§ = 0), Halley method (¢ = 1/2) and super-Halley method
@ =1).

In this paper, we consider the semilocal convergence for a class of multi-point
modified Chebyshev-Halley methods in Banach spaces given by

i 2 =0 = [T+ 16 (0) + G Q(G (o) | TaF ),

St =20 = [T+ G+ G + 3T ) G (o) T Fn) + 8G (60)* | T F @),
)
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where I is the identity operator, I', = F'(x,) "}, G(x,) = T F” () D0 F(xp), tty =
Xp — %FnF(xn), 4 is a parameter and § € [0, 1]. In the methods (5), Q is an operator
which satisfies that there exists a real non-negative and non-decreasing function y (¢),
such that |Q(G(x,)|l < x(IG(xp)|) and x (¢) is bounded for t € (0, s), where s
will be defined in the latter developments. Obviously, the methods (5) is more general
than the methods (2). To relax the conditions considered in reference [11], we study
the semilocal convergence of the methods (5) under the conditions (A1)-(A3). Notice
that the conditions (A1)-(A3) which have been used in reference [12] are weaker
than the conditions (A1)-(A6), since F"” is not required in the former. Applying the
recurrence relations, a convergence theorem for methods (5) is proved to show the
existence-uniqueness of the solution and a priori error bounds is also given. Since the
importance for convergence of iterative methods, in references [2, 3, 7, 10-16], the
convergence of some methods are considered.

On the other hand, we give a brief proof to show that the R-order of methods
(5) is at least 5 4+ g with w—conditioned third-order Fréchet derivative, where w (i1)
is a non-decreasing continuous real function for © > 0 and satisfies w(0) > 0,
o(tp) < tlo(u) for uw > 0,¢t € [0,1] and g € [0, 1]. Obviously, the R-order of
methods (5) is higher than the one of the methods (4) under the same conditions.
Finally, some numerical results are given to show our approach.

2 Some preliminary results

Let X and Y be two Banach spaces, and let the nonlinear operator F': 2 C X — Y
be twice Fréchet differentiable in a non-empty open convex subset 2 and the con-
ditions (A1)-(A3) hold, xg € Q. Define B(x,r) = {y € X : ||y — x| < r} and
B(x,r) ={y € X : ||y — x|| < r}. Furthermore, we define the following functions:

p(t) = g1(t) + [1 +14 ;2 + 8t3:| 2(1), (6)

h(t) = (N

L—1p(t)

o) =t [1 + %t + 3:2} (1) + 181 (1) [1 +1+ %ﬂ + 8t3] g ()

1 3 2 3 ? 2
+§t 1+t~|—§t +6817 | ga(t)7,
(3)

where :
qi) =1+ 1 + 125 (1),

1
o) = 5t [1+2000) + 2107

The functions defined above will be used in the later developments, so next we
study some of their properties. Let f(t) = p(t)t — 1. Since f(0) = —1 < 0 and
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f(%) > 1203—214 > (0, then we can conclude that f(t) = O has at least a root inl(O, %).

Let s be the smallest positive root of p(¢)t — 1 = 0, then we obtain that s < 7.

Lemma 1 Let the functions p, h and ¢ be given in (6-8), s be the smallest positive
root of p(t)t — 1 = 0, then

(a) p(t) and h(t) are increasing and p(t) > 1, h(t) > 1 fort € (0, s),

(b) Fort € (0, s), ¢(¢) is increasing.

Define no = n, Bo = B, co = MpBn and dy = h(cy)¢(co). Furthermore, we define
the following sequences as

Nn1 = dnln, )
Bn+1 = h(cn)By, (10)
Cntl = MButinn+1, (11
dnt1 = h(cnr1)@(Cn1), (12)

where n > 0. Some important properties of the previous sequences are given by the
following lemma.

Lemma 2 If
co <s and h(co)dy < 1, (13)

where s is the smallest positive root of p(t)t — 1 = 0, then we have
(@) h(cy) > landd, < 1 forn > 0,

(b) the sequences {n,}, {c,} and {d,} are decreasing,

(©) p(cn)en < 1 and h(cy)d, < 1 forn > 0.

The proof of this lemma can be obtained by induction.
Lemma 3 Let the functions p, h and ¢ be given in (6-8). Let o € (0, 1), then

pat) < p(t), h(at) < h(@), p(at) < a’@(t) fort € (0, s), where s is the smallest
positive root of p(t)t — 1 = 0.

3 System of recurrence relations for the methods
For n = 0, the existence of I'g implies the existence of uq, and furthermore, we obtain

1 1
lluo = xoll = Il = SToF o)l = 570- (14)

This shows that ug € B(xg, Rn), where R = f(_—cdog. Moreover, we have

IGxo) Il < ITollll F” (o) 111 To F (x0) Il < MBono = co, (15)
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and

1
llzo — xoll H— [1 + EG(xo) + G(X0)2Q(G(XO))] Lo F (x0)

IA

1
|:1 + ECO + c(z))((co)j| IToF (xo)l

= g1(co) IToF (x0) |l < g1(co)no. (16)

Furthermore, we obtain
3
lx1 — zoll < [1 +co+ 50(2) + 308} Boll F (zo) |- (17)

By Taylor expansion, we have

F(zp) = F(xy) + F/(xn)(zn — Xn)

1
+ / [F oo+ 1en — x)) — F'G)] o —xaddt. (1)

0

Since |
in —Xn = — |:I+ EG(xn) + G(xn)zQ(G(xn)):| [ F(xy,),
and
G(xp) = FnF//(un)FnF(xn)v Iy = F/(xn)_la
we obtain
F(zp) = F(xp) — F'(xy) |:1 + %G(xn) + G(xn)zQ(G(xn))] Ly F(xn)

1
+/ [F/ (xn +1(zn — xn)) — F/(xn)] (zn — xp)dt
0
1
= _EF”(un) [FnF(xn)]z — F"(up)Tp F (x2) G (%) Q(G (X)) T F (x)
1
+/ [F/ (xn +1(zn — xn)) — F/(xn)] (zn — xp)dt. (19)
0

It follows that

1
IF(0)ll = 5M IToF (o)l [ 14 2cox(co) + g1(co)’ | (20)

and

1
AOlF GOl = 0|1+ 2c0x(co) + g1(co)? | IToF (o)
= g2(c0) IToF (o)1l < ga(cono- e

Then we have
lx1 — xoll < llx1 — zoll + llzo — xoll < p(co) IToF (x0) |l < p(co)no.  (22)
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This means that x; € B(xg, Rn) since the assumption dy < 1/h(ag) < 1.
Notice that agp < s and p(ag) < p(s), we have

11— ToF (x|l < ITollll F'(x0) — F'(x1)l

<
< MPBollx1 — xoll < cop(co) < 1.

By the Banach lemma, we obtain that I'; = [F'(x 1)]_1 exists and

Tl
Ty < , ,
1= [TollllF"(xo) — F' (x|
= 1=coplco) 00
< h(co)Bo = Bi. (23)

So u; is well defined. In order to estimate the bound of F(x{), we now give the
following lemma.

Lemma 4 Let X and Y be two Banach spaces, 2 be an open set, the nonlinear
operator F : Q C X — Y be continuously twice Fréchet differentiable. Then we
obtain

F(xpy1) = _F//(un)FnF(xn)FnF(Zn) - F//(un)rnF(xn)G(xn)FnF(Zn)
_%F//(un)G(xn)rnF(xn)FnF(Zn)_ (SFH(MH)FnF(xn)G(xn)zrnF(Zn)
1
+/ F" (X + t(zn — x4)) (zn — Xp)dt (Xp11 — Zn)
0

1
+A [F/ (zn +1(xn41 — 20)) — F/(Zn)] (Xn41 — zp)dt, (24)

where x,+1, z,, are given by (5), and the definitions of Ty, uy, 8, G(x,) are same to
the ones of (5).

Proof 1 By Taylor expansion, we obtain

Fxpi1) = F(zp) + F/(Zn)(xn-i-l — Zn)

1
+/0 [F' (zn + 1Ot = 20)) = F'(z0)] o1 = za)dt. (25)

1
F/(Zn) = F/(xn) +f F" (xp +1(zn — X)) (2n — xp)dt. (26)
0
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Then we have

Fxpy1) = F(zy) + F,(xn)(xn+l — Zn)

1
+/ F” (xXp +1(zn — x0)) (2 — Xp)dt (Xp41 — Zn)
0

1
+/0 [F' (zn + 1ot = 20)) = F'(20)] (ng1 = zn)dt.

Since

1
Xnpl —Zn = — [1 + G (xn) + Gxn)* + T F @) G Oo) T F () + aG(xn>3] T, F(z0),
and

G(xp) = Ty F" )Ty F(xn), Tn=F (xy)7",

we obtain
Finst) = F) = F'() [1+ G o) + G 0)?| TuF (2)
_F/(xn) [%FnFU(”n)G(xn)FnF(xn) + SG(xn)3] ' F(zy)
1
+/ F’ (Xp + (20 — x0)) (Zn — X0)dt (Xp41 — Zn)
0

1
+/0 [F' (zn + t Gng1 — 20)) — F'(z0)] (ng1 — zn)dt
= —F"(un)Tn F(x0)Tn F(z0) = F"(un) T F (x2) G (xp)T 0 F (21)
—%F//(un)G(xn)FnF()Cn)FnF(Zn)— (SF//(M,,)F”F(Xn)G(xn)ZFnF(Zn)

1
+/ F" (Xn + (20 — X)) (20 — Xn)dt (Xpt1 — 20)
0
1
+/O [F' (zn + 1 Gt — 20) = F'@n)] (g1 — z0)d.

This ends the proof. O
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From Lemma 4, we have

A

3
IF(x)ll = M|IToF (xo)ll [1 t5c0+ 30(2)} Boll F (zo)l

1
+Mlizo = xollllxr — zoll + 5 Mllx1 — 207

IA

3
M [1 + ¢0 + 36(2):| g2(co) ITo F (x0) 12
35 3 2
+Mgi(co) |1 +co+ 760 + 8cg | g2(co) ITo F (x0) |l

2
1 3, 3 2 2
M| 1+ co+ 3¢+ | g2(c0) ITo F (xo) I 27
and

Boll F (x|

IA

3
o |:1 + 760 + 50(2)1| 82(co) IToF (xo)l
3
+cog1(co) [1 +co+ EC% + 868} g2(co) ITo F (xo) l

2
+lc 1+ 324603 2 |ToF
5¢0 60+§c0+ ¢y | &2(co)” ITo F (x0)ll

= ¢(co) [IToF (xo)l
=< @(co)no- (28)
From (23) and (28), we have

1
Il — §F1F(X1)|I ST FG)N < ITHTF Gl
h(co)p(co) IToF (xo) |l < h(co)e(co)no
= dono = n1. (29)

Since p(co) > 1, we obtain

lug — x|l

IA

lur —xoll = llx1 —xoll + llur — x1]
< (p(co) +do)no < p(co)(1 +do)no < Ry, (30)
which means that u1 € B(xg, Rn).

Besides, we have

M|T1 T F &)l < h(co)doco = . (€1))

Using induction, we can obtain the following items:

(1) There exists Iy = [F'(x,)] ™" and [Ty || < A(caDIITn-11l
Q) 1T F )l < h(en—D@(en—DIT -1 F n—0D s

) MITAlITn F (x|l < cns
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@ Mzn —xall = g1 () ITn F )l
(5 Mxn+1 = xull < pe)ITh F (x|,
where n > 0.
Moreover, we can get the following lemma.

Lemma 5 Let the assumptions of Lemma 2 and the conditions (Al)-(A3) hold; then

we have
lun — xoll < Ry, llzu — xo0ll < Ry, llxn+1 — X0l < Ry, (32)
where R = ’;(_—633.

To get the proof of Lemma 5, we now give the following lemma.

Lemma 6 Under the assumptions of Lemma 2, let y = h(co)dy and » = 1/h(co);
then we have

n 3ntl g
[Jdi=»tty =, (33)
i=0
-1
ni’l S n V 2 L) n 2 k)
A" 0 (34)
n+m o | — Am+1y73"(321“)
Zﬂifﬂknl’T I , n>0,m>1. (35)
‘ —AY
=n

Proof 2 Since ¢ = ycp, by Lemma 3, we have

1_ 1
di = h(yco)p(yco) < yidy =y> ~ldy = ry> .

Suppose di, < Ay3k, k > 1. Then by Lemma 2, we have cx41 < c; and h(cy)dy < 1.
Then

3k+1

dis1 < h(c)e (h(ci)dicr) < h(c)*d; < Ay

Therefore it holds that d,, < Ay3n, n > 0. Moreover, we have

[T < [T¥ =ty Eied <oty ™5 s o)
i =0 i=0
From (9) and (33), we have
n—1 .
M = dp—1Mp—1 = dp—1dp—20p—2="---=1 (1_[ dl) < 77)»")/37_', n>0.
i=0

Let

n+m

p= Zk")/%
i=n
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where n > 0, m > 1. Since

ko)
A
>
3
<
9|
+
<
w2
>
<
9|

we have

Moreover, we obtain

33" +1)
y— 2

n+m n+m . m+1
- P a -1l —A
Zﬂ:sn(%kyz)snky2 YD

i=n

Next we give a brief proof of Lemma 5.

Proof 3 From (14), we know that |lug — xo|| < Rn. Forn > 1, by (5) and Lemma 6,
we obtain

lun = xoll < llun — xnll + lxn — xoll
n—1
< lwn = xall + D lxigs — xill
i=0
n—1 n i
<+ pleo) Y mi < pleo) Y mA'y T
i=0 i=0
1— )Ln+lyL2+l
= p(co)n < Rm.

1—dy
From (16), we know that ||zo — xo|| < g1(co)n < p(co)n < Rn.Forn > 1, by (4),
(5) and Lemma 6, we obtain

lzn = xoll < llzn = Xl 4 [1%2 — xol|

n—1
< llzn = Xl + ) lxigr — xi
i=0
n—1 n 4l
< gi(ca)nn + plco) Y_mi < plco) Y Ay T <Ry,
i=0 i=0

Similarly, for n > 0, By (5) and Lemma 6, we have

n n
Ittt —xoll < D llxigs — xill < plco) Y mi < Ry
i=0 i=0

This ends the proof. O
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Lemma7 Let R = 117823 If h(co)dy < 1 and co < s, where s is the smallest positive

root of p(t)t — 1 = 0, then we have R < %

4 Semilocal convergence

In this section, we prove the following theorem which shows the existence and
uniqueness of the solution and gives a priori error bounds.

Theorem 1 Let X and Y be two Banach spaces, the nonlinear operator F : Q C
X — Y be twice Fréchet differentiable in a non-empty open convex subset Q2. Assume
that xo € Q2 and all conditions (Al)-(A3) hold. Let co = MBn and dy = h(co)p(co)
satisfy co < s and h(co)dy < 1, where s is the smallest positive root of p(t)t —1 =0
and p, h, ¢ are defined by (6-8). Let B(xg, Rn) € Q where R = 'l’icgg then starting
from x, the sequence {x,} generated by the method (5) converges to a solution x* of
F(x) = 0 with x,,, x* belong to B(xo, Rn) and x* is the unique solution of F(x) =0
in B(xy, ML/S — Rnp) (2
Furthermore, a priori error estimate is given by

1

_—, 36
e (36)

-1
lxn — x*|l < plco)niy 2
where y = h(co)dy and . = 1/ h(cp).

Proof 4 From Lemma 5, we can obtain that the sequence {x,} is well-defined in
B(x0, Rn). Now we prove that {x,} is a Cauchy sequence. Since

n+m—1 n+m—1
Pntm = Xall < D lxip —xill < pleo) Y, mi
i=n i=n
3n(3m71+1)
ol =AMy 2
= plomy T — (37)
We have that there exists a x* such that lim,,_, o0 x,, = x*.
Letting n = 0, m — oo in (37), we have
| x* —xo I< Ry, (33)
which means that x* € B(xg, Rn).
From Lemma 4, we have
3
|F Dl = M [1 + 5¢0 + 8c(%:| g2(co)n;
3, 3 2
+Mgi(co) |1 +co+ 50 + 8¢y | g2(com;,
1 35 3 2 2.2
+§M 14+co+ ECO +dcy | g2(co)m; (39)
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Let n — oo in (39), then we obtain that | F(x,)| — O since n, — 0. By the
continuity of F(x) in , we get that F(x*) = 0.

Next we prove the uniqueness of x* in B(xy, ML,S — Rn) (. By Lemma 7, we
obtain

2 Rn = 2 R ! R
_ = = _— > — > s
MpB g co 7 C()]7 g

and then B(xq, Rn) € B(xo, Miﬂ — Rp) N L, thus x* € B(xo, Miﬂ —RpNO Q.

Assume that x™* € B(xo, Miﬁ — Rn) () Q2 and x** satisfies F(x**) = 0, then we
have that
1
0=Fx™) — F(x*) = / F'((1 — H)x™* 4+ tx™)dt (™ — x™). (40)
0
Notice that

[IToll

1
‘/ [F'((1 — )x* + tx™) — F'(x0)1dt
0

1
< Mﬂ/ [(1 — D) lx* — xoll + 1™ — xollds
0

Mp R 2 Rn| =1 41
<T|:77+M—/3— T)]—v 41)

then by the Banach lemma, we have that fol F/((1 — H)x* + tx**)dt is invertible and
hence x** = x*.

Finally, letting m — oo in (37), we obtain (36).

Next we consider two examples, where the conditions of theorem 1 are satisfied,
but the assumption (A4) can not be satisfied.

Example 4.1
F(x) = x3In(x?) +3x> = 10x 4+ 1.7 = 0,

where f(x) definesin X = [—1, 1], f(0) = 1.7.
Here, we take Q(G(x,)) = 0, = 1 in the methods (5). Let 2 = B(0, 1), xo = 0,
we obtain

lim x*In(x?) =0, limx?In(x?) =0, lim xIn(x?) = 0.
x—0 x—0 x—0

Note that f”(x) can not satisfy the assumption (A4). But we have
1/ (O] =0.1, [fO)/f'(O)]=0.17, sup|f"(x)| = 16.

xeX
Since ¢g = 0.272,
p(co)co =0.427... < 1,

then we get cp < s. Furthermore,

h(co)dy = 0.875... < 1,
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Then the conditions of Theorem 1 are satisfied. The solution x* belongs to
B(xp, Rn) = B(0,0.535...) € Q and x™* is the unique solution of f(x) = 0 in
B(0,0.714..) ) .

Example 4.2 Consider a nonlinear integral equation

1
x(s)=1+§/ G(s, Hx(t)/?dt, s e[0,1],
0

where x € C[0, 1], t € [0, 1], G(s, t) is the Green function defined by

(1 —s)t, t <s,

s(1—1), s <t.

G(s,t) = {

To find the solution of this equation, we need to solve the equation F(x) = 0,
where F : Q C C[0, 1] — C[O0, 1],

1
[F(x)](s) = x(s) — 1 — g/ G(s, Hx(1)>?dt, s €]0,1].
0

Here, we take 2 = B(0, 2). The Fréchet derivatives of F are given by

/ 45 ! 3/2
Fl(0y(s) = y(s) = o¢ i G(s,)x(0)*ydt, y e Q,

135 (!
F"(x)yz(s) = -5 G(s, Hx()'?y()z()de, v, z € R,
0

1

F" (x)yzv(s) = _16%5 i G(s, Hx() V2 yzv@)de, y, z, v e Q.

Obviously, F"” can not satisfy the condition (A4). We take Q(G(x,)) = 0,8 = 1 in
the methods (5) and choose xo(¢#) = 1 as the initial approximate solution. Then we
obtain that

| F (xo) | 4 11 — F'(xo)l 45
x0) || = —, — F'(x)|| = —,
0 64 0 128

1 128

Toll = | F'(xo) "l < “ 83
IToll = NF'Go) ™l < ¢ = = 53 = F

13542
256

M.

18 y
IToF(xo)|l < =" IF7 ()| <
Here, the max norm is used. Since cg = 0.249 .. .,
p(co)co =0.376... < 1,

then ¢y < 5. Moreover,
h(co)do =0.583... < 1,
Then the conditions of theorem 1 are satisfied. The solution x* belongs to

B(xp, Rn) = B(1,0.514...) € Q and x* is the unique solution of F(x) = 0 in
B(1,1.224.. ) .
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5 Higher R-order convergence analysis

B) |F"x)=F"»)| <w(lx—yl), Yx,y € Q, where w() is a non-decreasing
continuous real function for u > 0 and satisfies w(0) > 0, w(tn) < tfw(u) for
u=>0,tel0,1]and g € [0, 1].

Define the function i as

_[1 1 1 i 3 1 ’
v(t,u,v) = Z”H_mm +§t v+ §t+t)((t) u| ¢, u)

+ |83 + 13 (t)+<§+3t>t3+f(§+3t) (t, u)
X 2 2 \2 wl o u

(q+1)(q+2) (1+t+—t + 6t )vqb(t,u)

+t ( +tx(1) < %+5t>¢(r u)
(1 tx (1) ’ 1+1¢ gt2 8t3> tou)
+2(2+x )<++2 +80% ) ud(t, u

3 2
+ <1+t+§t2+3t3> ot u)?, (42)

N~

where
t, =1 t > t ! tx(t ! ! tx(t t3 ! tx(t ’
o, u) X()+ M+ (5‘1‘ x( )>+§<§+ X ( )>u+5<§+ X ( )) .

Let the function i be defined by (42), « € (0, 1), then v («t, a2u,a(2+p)v) <
a(4+1’)1p(t, u,v) fort € (0, s), where s is the smallest positive root of p(¢)t —1 = 0,
the function p is given in (6).

Define the following sequences as

’ﬁn-i-l - n’ﬁn’ ﬂn—i—] - h(gn)ﬂna (43)
Cnt1 = MBut1tns1, bug1 = Nﬂn+1ﬁ%+1, Any1 = ﬂn+lﬁ%+]w(ﬁn+l)’ (44)

dut1 = h@us DV @ty but1, Gug1), (45)

where n > 0. Here, we choose no = n, ,30 = B,c = MBn, bo = N,Br; ap =
,Br] w(n) and do = h(co) Y (co, bo, dp). From the definitions of ¢, 1, bn+1 ayy1 and
Eq (43), we can obtain

gn+1 = h(gn)gngny Zn+1 = h(gn)gzgm En+1 < h(gn)grzl-‘rqan (46)

Similar to the derivation in Section 3 and Section 4, we can establish the semilocal
convergence of methods (5) under the conditions (A1)-(A4), (B). Moreover, we can
get a priori error estimate

[ES P@)1 <~1/(4+q>)(5+q)n : (47)

— ¥ = S (1 — do)
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where ¥ = h(?o)go and & = 1/h(cp). This error estimate shows that under the
conditions (A1)-(A4), (B), the methods (5) has, at least, R-order 5 + q.
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