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Abstract In this paper, the semilocal convergence for a class of multi-point modified
Chebyshev-Halley methods in Banach spaces is studied. Different from the results in
reference Wang and Kou ( Numer. Algoritm. 64, 105–126, 2012), these methods are
more general and the convergence conditions are also relaxed. We derive a system
of recurrence relations for these methods and based on this, we prove a convergence
theorem to show the existence-uniqueness of the solution. A priori error bounds is
also given. The R-order of these methods is proved to be 5 + q with ω−conditioned
third-order Fréchet derivative, where ω(μ) is a non-decreasing continuous real func-
tion for μ > 0 and satisfies ω(0) ≥ 0, ω(tμ) ≤ tqω(μ) for μ > 0, t ∈ [0, 1] and
q ∈ [0, 1]. Finally, we give some numerical results to show our approach.
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1 Introduction

F(x) = 0, (1)
where F : � ⊆ X → Y is a nonlinear operator on a non-empty open convex subset
� of a Banach space X with values in a Banach space Y .

Newton’s method [1] is widely applied to find the solution of (1). It converges
quadratically under some suitable conditions. Recently, some papers about the third-
order methods have been developed since their higher convergence speed. For the

X. Wang · J. Kou (�)
School of Mathematics and Statistics, Hubei Engineering University, Xiaogan 432000, Hubei, China
e-mail: kjsfine@aliyun.com

mailto:kjsfine@aliyun.com


570 Numer Algor (2015) 68:569–583

classical Chebyshev-Halley methods, see references [2–7]. Though the classical
Chebyshev-Halley methods need to compute the second Fréchet derivative, they are
useful in some applications. Such as the integral equations [8] and the quadratic
equations [9], where for the integral equations, the second Fréchet derivative is easy
to compute; for the quadratic equations, the second Fréchet derivative is a constant.
Moreover, in some applications where a quick convergence speed is needed, such as
the stiff systems, the high-order methods are very useful [10]. So it is interesting to
study some high-order methods. In reference [11], we have considered the modified
Chebyshev-Halley methods given by

⎧
⎨

⎩

zn = xn −
(

I + 1
2G(xn) + δ1

2 G(xn)
2
)

�nF(xn),

xn+1 = zn −
[
I + G(xn) + G(xn)

2 + 1
2�nF

′′(un)G(xn)�nF(xn)
]
�nF(zn),

(2)
where I is the identity operator, �n = F ′(xn)

−1, G(xn) = �nF
′′(un)�nF(xn), un =

xn − 1
2�nF(xn), δ1 is a parameter and δ1 ∈ [−1, 1].

By supposing that
(A1) There exists �0 = F ′(x0)

−1 and ‖�0‖ ≤ β,
(A2) ‖�0F(x0)‖ ≤ η,
(A3) ‖F ′′(x)‖ ≤ M, x ∈ �,
(A4) ‖F ′′′(x)‖ ≤ N, x ∈ �,
(A5) ‖F ′′′(x)−F ′′′(y)‖ ≤ ω(‖x−y‖), ∀x, y ∈ �, where ω(z) is a non-decreasing
continuous real function for z > 0 and satisfy ω(0) ≥ 0,
(A6) there exists a non-negative real function ν ∈ C[0, 1], with ν(t) ≤ 1, such that
ω(tz) ≤ ν(t)ω(z), for t ∈ [0, 1], z ∈ (0, +∞),
we have analyzed the semilocal convergence for the methods (2). Numerical results
show that the methods (2) can solve some non-linear integral equation of mixed
Hammerstein type successfully.

Note that under the conditions (A1)-(A6), we can not study the solution of some
equations, for example,

f (x) = x3 ln(x2) + 3x2 − 10x + 1.7 = 0, (3)

where f (x) defines in X = [−1, 1], f (0) = 1.7. Obviously, f ′′′(x) can not sat-
isfy the assumption (A4). In reference [12], under the assumptions (A1)-(A3), the
convergence for a family of methods are studied and the methods are given by

xθ,n+1 = xθ,n −
[

I + 1

2
LF (xθ,n)[I − θLF (xθ,n)]−1

]

F ′(xθ,n)
−1F(xθ,n), (4)

where θ ∈ [0, 1], LF (xn) = F ′(xn)
−1F′′(xn)F

′(xn)
−1F(xn). This family contains

Chebyshev method (θ = 0), Halley method (θ = 1/2) and super-Halley method
(θ = 1).

In this paper, we consider the semilocal convergence for a class of multi-point
modified Chebyshev-Halley methods in Banach spaces given by

⎧
⎨

⎩

zn = xn −
[
I + 1

2 G(xn) + G(xn)
2Q(G(xn))

]
�nF(xn),

xn+1 = zn −
[
I + G(xn) + G(xn)

2 + 1
2 �nF

′′(un)G(xn)�nF(xn) + δG(xn)
3
]
�nF(zn),

(5)
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where I is the identity operator, �n = F ′(xn)
−1, G(xn) = �nF

′′(un)�nF(xn), un =
xn − 1

2�nF(xn), δ is a parameter and δ ∈ [0, 1]. In the methods (5), Q is an operator
which satisfies that there exists a real non-negative and non-decreasing function χ(t),
such that ‖Q(G(xn))‖ ≤ χ(‖G(xn)‖) and χ(t) is bounded for t ∈ (0, s), where s

will be defined in the latter developments. Obviously, the methods (5) is more general
than the methods (2). To relax the conditions considered in reference [11], we study
the semilocal convergence of the methods (5) under the conditions (A1)-(A3). Notice
that the conditions (A1)-(A3) which have been used in reference [12] are weaker
than the conditions (A1)-(A6), since F ′′′ is not required in the former. Applying the
recurrence relations, a convergence theorem for methods (5) is proved to show the
existence-uniqueness of the solution and a priori error bounds is also given. Since the
importance for convergence of iterative methods, in references [2, 3, 7, 10–16], the
convergence of some methods are considered.

On the other hand, we give a brief proof to show that the R-order of methods
(5) is at least 5 + q with ω−conditioned third-order Fréchet derivative, where ω(μ)

is a non-decreasing continuous real function for μ > 0 and satisfies ω(0) ≥ 0,
ω(tμ) ≤ tqω(μ) for μ > 0, t ∈ [0, 1] and q ∈ [0, 1]. Obviously, the R-order of
methods (5) is higher than the one of the methods (4) under the same conditions.
Finally, some numerical results are given to show our approach.

2 Some preliminary results

Let X and Y be two Banach spaces, and let the nonlinear operator F : � ⊂ X → Y

be twice Fréchet differentiable in a non-empty open convex subset � and the con-
ditions (A1)-(A3) hold, x0 ∈ �. Define B(x, r) = {y ∈ X : ‖y − x‖ < r} and
B(x, r) = {y ∈ X : ‖y − x‖ ≤ r}. Furthermore, we define the following functions:

p(t) = g1(t) +
[

1 + t + 3

2
t2 + δt3

]

g2(t), (6)

h(t) = 1

1 − tp(t)
, (7)

ϕ(t) = t

[

1 + 3

2
t + δt2

]

g2(t) + tg1(t)

[

1 + t + 3

2
t2 + δt3

]

g2(t)

+1

2
t

[

1 + t + 3

2
t2 + δt3

]2

g2(t)
2,

(8)

where

g1(t) = 1 + 1

2
t + t2χ(t),

g2(t) = 1

2
t
[
1 + 2tχ(t) + g1(t)

2
]
.

The functions defined above will be used in the later developments, so next we
study some of their properties. Let f (t) = p(t)t − 1. Since f (0) = −1 < 0 and
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f ( 1
2 ) > 231

1024 > 0, then we can conclude that f (t) = 0 has at least a root in (0, 1
2 ).

Let s be the smallest positive root of p(t)t − 1 = 0, then we obtain that s < 1
2 .

Lemma 1 Let the functions p, h and ϕ be given in (6–8), s be the smallest positive
root of p(t)t − 1 = 0; then
(a) p(t) and h(t) are increasing and p(t) > 1, h(t) > 1 for t ∈ (0, s),
(b) For t ∈ (0, s), ϕ(t) is increasing.

Define η0 = η, β0 = β, c0 = Mβη and d0 = h(c0)ϕ(c0). Furthermore, we define
the following sequences as

ηn+1 = dnηn, (9)

βn+1 = h(cn)βn, (10)

cn+1 = Mβn+1ηn+1, (11)

dn+1 = h(cn+1)ϕ(cn+1), (12)

where n ≥ 0. Some important properties of the previous sequences are given by the
following lemma.

Lemma 2 If

c0 < s and h(c0)d0 < 1, (13)

where s is the smallest positive root of p(t)t − 1 = 0, then we have
(a) h(cn) > 1 and dn < 1 for n ≥ 0,
(b) the sequences {ηn}, {cn} and {dn} are decreasing,
(c) p(cn)cn < 1 and h(cn)dn < 1 for n ≥ 0.

The proof of this lemma can be obtained by induction.

Lemma 3 Let the functions p, h and ϕ be given in (6–8). Let α ∈ (0, 1), then
p(αt) < p(t), h(αt) < h(t), ϕ(αt) < α2ϕ(t) for t ∈ (0, s), where s is the smallest
positive root of p(t)t − 1 = 0.

3 System of recurrence relations for the methods

For n = 0, the existence of �0 implies the existence of u0, and furthermore, we obtain

‖u0 − x0‖ = ‖ − 1

2
�0F(x0)‖ ≤ 1

2
η0. (14)

This shows that u0 ∈ B(x0, Rη), where R = p(c0)
1−d0

. Moreover, we have

‖G(x0)‖ ≤ ‖�0‖‖F ′′(u0)‖‖�0F(x0)‖ ≤ Mβ0η0 = c0, (15)
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and

‖z0 − x0‖ =
∥
∥
∥
∥−

[

I + 1

2
G(x0) + G(x0)

2Q(G(x0))

]

�0F(x0)

∥
∥
∥
∥

≤
[

1 + 1

2
c0 + c2

0χ(c0)

]

‖�0F(x0)‖
= g1(c0) ‖�0F(x0)‖ ≤ g1(c0)η0. (16)

Furthermore, we obtain

‖x1 − z0‖ ≤
[

1 + c0 + 3

2
c2

0 + δc3
0

]

β0‖F(z0)‖. (17)

By Taylor expansion, we have

F(zn) = F(xn) + F ′(xn)(zn − xn)

+
∫ 1

0

[
F ′ (xn + t (zn − xn)) − F ′(xn)

]
(zn − xn)dt. (18)

Since

zn − xn = −
[

I + 1

2
G(xn) + G(xn)

2Q(G(xn))

]

�nF(xn),

and

G(xn) = �nF
′′(un)�nF(xn), �n = F ′(xn)

−1,

we obtain

F(zn) = F(xn) − F ′(xn)

[

I + 1

2
G(xn) + G(xn)

2Q(G(xn))

]

�nF(xn)

+
∫ 1

0

[
F ′ (xn + t (zn − xn)) − F ′(xn)

]
(zn − xn)dt

= −1

2
F ′′(un) [�nF(xn)]

2 − F ′′(un)�nF (xn)G(xn)Q(G(xn))�nF (xn)

+
∫ 1

0

[
F ′ (xn + t (zn − xn)) − F ′(xn)

]
(zn − xn)dt. (19)

It follows that

‖F(z0)‖ ≤ 1

2
M ‖�0F(x0)‖2

[
1 + 2c0χ(c0) + g1(c0)

2
]
, (20)

and

β0‖F(z0)‖ ≤ 1

2
c0

[
1 + 2c0χ(c0) + g1(c0)

2
]
‖�0F(x0)‖

= g2(c0) ‖�0F(x0)‖ ≤ g2(c0)η0. (21)

Then we have

‖x1 − x0‖ ≤ ‖x1 − z0‖ + ‖z0 − x0‖ ≤ p(c0) ‖�0F(x0)‖ ≤ p(c0)η0. (22)
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This means that x1 ∈ B(x0, Rη) since the assumption d0 < 1/h(a0) < 1.
Notice that a0 < s and p(a0) < p(s), we have

‖I − �0F
′(x1)‖ ≤ ‖�0‖‖F ′(x0) − F ′(x1)‖

≤ Mβ0‖x1 − x0‖ ≤ c0p(c0) < 1.

By the Banach lemma, we obtain that �1 = [F ′(x1)]−1 exists and

‖�1‖ ≤ ‖�0‖
1 − ‖�0‖‖F ′(x0) − F ′(x1)‖

≤ ‖�0‖
1 − c0p(c0)

= h(c0)‖�0‖
≤ h(c0)β0 = β1. (23)

So u1 is well defined. In order to estimate the bound of F(x1), we now give the
following lemma.

Lemma 4 Let X and Y be two Banach spaces, � be an open set, the nonlinear
operator F : � ⊂ X → Y be continuously twice Fréchet differentiable. Then we
obtain

F(xn+1) = −F ′′(un)�nF (xn)�nF (zn) − F ′′(un)�nF (xn)G(xn)�nF (zn)

−1

2
F ′′(un)G(xn)�nF (xn)�nF (zn)− δF ′′(un)�nF (xn)G(xn)

2�nF(zn)

+
∫ 1

0
F ′′ (xn + t (zn − xn)) (zn − xn)dt (xn+1 − zn)

+
∫ 1

0

[
F ′ (zn + t (xn+1 − zn)) − F ′(zn)

]
(xn+1 − zn)dt, (24)

where xn+1, zn are given by (5), and the definitions of �n, un, δ, G(xn) are same to
the ones of (5).

Proof 1 By Taylor expansion, we obtain

F(xn+1) = F(zn) + F ′(zn)(xn+1 − zn)

+
∫ 1

0

[
F ′ (zn + t (xn+1 − zn)) − F ′(zn)

]
(xn+1 − zn)dt. (25)

F ′(zn) = F ′(xn) +
∫ 1

0
F ′′ (xn + t (zn − xn)) (zn − xn)dt. (26)
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Then we have

F(xn+1) = F(zn) + F ′(xn)(xn+1 − zn)

+
∫ 1

0
F ′′ (xn + t (zn − xn)) (zn − xn)dt (xn+1 − zn)

+
∫ 1

0

[
F ′ (zn + t (xn+1 − zn)) − F ′(zn)

]
(xn+1 − zn)dt.

Since

xn+1 − zn = −
[

I + G(xn) + G(xn)
2 + 1

2
�nF

′′(un)G(xn)�nF(xn) + δG(xn)
3
]

�nF(zn),

and

G(xn) = �nF
′′(un)�nF(xn), �n = F ′(xn)

−1,

we obtain

F(xn+1) = F(zn) − F ′(xn)
[
I + G(xn) + G(xn)

2
]
�nF(zn)

−F ′(xn)

[
1

2
�nF

′′(un)G(xn)�nF(xn) + δG(xn)
3
]

�nF(zn)

+
∫ 1

0
F ′′ (xn + t (zn − xn)) (zn − xn)dt (xn+1 − zn)

+
∫ 1

0

[
F ′ (zn + t (xn+1 − zn)) − F ′(zn)

]
(xn+1 − zn)dt

= −F ′′(un)�nF (xn)�nF (zn) − F ′′(un)�nF (xn)G(xn)�nF (zn)

−1

2
F ′′(un)G(xn)�nF (xn)�nF (zn)− δF ′′(un)�nF (xn)G(xn)

2�nF(zn)

+
∫ 1

0
F ′′ (xn + t (zn − xn)) (zn − xn)dt (xn+1 − zn)

+
∫ 1

0

[
F ′ (zn + t (xn+1 − zn)) − F ′(zn)

]
(xn+1 − zn)dt.

This ends the proof.
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From Lemma 4, we have

‖F(x1)‖ ≤ M ‖�0F(x0)‖
[

1 + 3

2
c0 + δc2

0

]

β0‖F(z0)‖

+M‖z0 − x0‖‖x1 − z0‖ + 1

2
M‖x1 − z0‖2

≤ M

[

1 + 3

2
c0 + δc2

0

]

g2(c0) ‖�0F(x0)‖2

+Mg1(c0)

[

1 + c0 + 3

2
c2

0 + δc3
0

]

g2(c0) ‖�0F(x0)‖2

+1

2
M

[

1 + c0 + 3

2
c2

0 + δc3
0

]2

g2(c0)
2 ‖�0F(x0)‖2 (27)

and

β0‖F(x1)‖ ≤ c0

[

1 + 3

2
c0 + δc2

0

]

g2(c0) ‖�0F(x0)‖

+c0g1(c0)

[

1 + c0 + 3

2
c2

0 + δc3
0

]

g2(c0) ‖�0F(x0)‖

+1

2
c0

[

1 + c0 + 3

2
c2

0 + δc3
0

]2

g2(c0)
2 ‖�0F(x0)‖

= ϕ(c0) ‖�0F(x0)‖
≤ ϕ(c0)η0. (28)

From (23) and (28), we have

‖u1 − x1‖ = ‖ − 1

2
�1F(x1)‖ ≤ ‖�1F(x1)‖ ≤ ‖�1‖‖F(x1)‖

≤ h(c0)ϕ(c0) ‖�0F(x0)‖ ≤ h(c0)ϕ(c0)η0

= d0η0 = η1. (29)

Since p(c0) > 1, we obtain

‖u1 − x0‖ ≤ ‖x1 − x0‖ + ‖u1 − x1‖
< (p(c0) + d0)η0 < p(c0)(1 + d0)η0 < Rη, (30)

which means that u1 ∈ B(x0, Rη).

Besides, we have

M‖�1‖‖�1F(x1)‖ ≤ h(c0)d0c0 = c1. (31)

Using induction, we can obtain the following items:
(1) There exists �n = [F ′(xn)]−1 and ‖�n‖ ≤ h(cn−1)‖�n−1‖,
(2) ‖�nF(xn)‖ ≤ h(cn−1)ϕ(cn−1)‖�n−1F(xn−1)‖,
(3) M‖�n‖‖�nF(xn)‖ ≤ cn,
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(4) ‖zn − xn‖ ≤ g1(cn)‖�nF(xn)‖,
(5) ‖xn+1 − xn‖ ≤ p(cn)‖�nF(xn)‖,
where n ≥ 0.

Moreover, we can get the following lemma.

Lemma 5 Let the assumptions of Lemma 2 and the conditions (A1)-(A3) hold; then
we have

‖un − x0‖ ≤ Rη, ‖zn − x0‖ ≤ Rη, ‖xn+1 − x0‖ ≤ Rη, (32)

where R = p(c0)
1−d0

.

To get the proof of Lemma 5, we now give the following lemma.

Lemma 6 Under the assumptions of Lemma 2, let γ = h(c0)d0 and λ = 1/h(c0);
then we have

n∏

i=0

di ≤ λn+1γ
3n+1−1

2 , (33)

ηn ≤ ηλnγ
3n−1

2 , n ≥ 0, (34)

n+m∑

i=n

ηi ≤ ηλnγ
3n−1

2
1 − λm+1γ

3n(3m+1)
2

1 − λγ 3n , n ≥ 0, m ≥ 1. (35)

Proof 2 Since c1 = γ c0, by Lemma 3, we have

d1 = h(γ c0)ϕ(γ c0) < γ 2d0 = γ 31−1d0 = λγ 31
.

Suppose dk ≤ λγ 3k
, k ≥ 1. Then by Lemma 2, we have ck+1 < ck and h(ck)dk < 1.

Then

dk+1 < h(ck)ϕ (h(ck)dkck) < h(ck)
2d3

k < λγ 3k+1
.

Therefore it holds that dn ≤ λγ 3n
, n ≥ 0. Moreover, we have

n∏

i=0

di ≤
n∏

i=0

λγ 3i = λn+1γ
∑n

i=0 3i = λn+1γ
3n+1−1

2 , n ≥ 0.

From (9) and (33), we have

ηn = dn−1ηn−1 = dn−1dn−2ηn−2 = · · · = η

(
n−1∏

i=0

di

)

≤ ηλnγ
3n−1

2 , n ≥ 0.

Let

ρ =
n+m∑

i=n

λiγ
3i

2 ,



578 Numer Algor (2015) 68:569–583

where n ≥ 0, m ≥ 1. Since

ρ ≤ λnγ
3n

2 + γ 3n

⎛

⎝
n+m∑

i=n+1

λiγ
3i−1

2

⎞

⎠

= λnγ
3n

2 + λγ 3n

(

ρ − λn+mγ
3n+m

2

)

,

we have

ρ ≤ λnγ
3n

2
1 − λm+1γ

3n(3m+1)
2

1 − λγ 3n .

Moreover, we obtain

n+m∑

i=n

ηi ≤ η

(
n+m∑

i=n

λiγ
3i−1

2

)

≤ ηλnγ
3n−1

2
1 − λm+1γ

3n(3m+1)
2

1 − λγ 3n .

Next we give a brief proof of Lemma 5.

Proof 3 From (14), we know that ‖u0 − x0‖ < Rη. For n ≥ 1, by (5) and Lemma 6,
we obtain

‖un − x0‖ ≤ ‖un − xn‖ + ‖xn − x0‖

≤ ‖un − xn‖ +
n−1∑

i=0

‖xi+1 − xi‖

≤ ηn + p(c0)

n−1∑

i=0

ηi ≤ p(c0)

n∑

i=0

ηλiγ
3i−1

2

≤ p(c0)η
1 − λn+1γ

3n+1
2

1 − d0
< Rη.

From (16), we know that ‖z0 − x0‖ ≤ g1(c0)η < p(c0)η < Rη. For n ≥ 1, by (4),
(5) and Lemma 6, we obtain

‖zn − x0‖ ≤ ‖zn − xn‖ + ‖xn − x0‖

≤ ‖zn − xn‖ +
n−1∑

i=0

‖xi+1 − xi‖

≤ g1(cn)ηn + p(c0)

n−1∑

i=0

ηi ≤ p(c0)

n∑

i=0

ηλiγ
3i−1

2 < Rη.

Similarly, for n ≥ 0, By (5) and Lemma 6, we have

‖xn+1 − x0‖ ≤
n∑

i=0

‖xi+1 − xi‖ ≤ p(c0)

n∑

i=0

ηi < Rη.

This ends the proof.
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Lemma 7 Let R = p(c0)
1−d0

, If h(c0)d0 < 1 and c0 < s, where s is the smallest positive

root of p(t)t − 1 = 0, then we have R < 1
c0

.

4 Semilocal convergence

In this section, we prove the following theorem which shows the existence and
uniqueness of the solution and gives a priori error bounds.

Theorem 1 Let X and Y be two Banach spaces, the nonlinear operator F : � ⊂
X → Y be twice Fréchet differentiable in a non-empty open convex subset �. Assume
that x0 ∈ � and all conditions (A1)-(A3) hold. Let c0 = Mβη and d0 = h(c0)ϕ(c0)

satisfy c0 < s and h(c0)d0 < 1, where s is the smallest positive root of p(t)t − 1 = 0
and p, h, ϕ are defined by (6–8). Let B(x0, Rη) ⊆ � where R = p(c0)

1−d0
, then starting

from x0, the sequence {xn} generated by the method (5) converges to a solution x∗ of
F(x) = 0 with xn, x

∗ belong to B(x0, Rη) and x∗ is the unique solution of F(x) = 0
in B(x0,

2
Mβ

− Rη)
⋂

�.
Furthermore, a priori error estimate is given by

‖xn − x∗‖ ≤ p(c0)ηλnγ
3n−1

2
1

1 − λγ 3n , (36)

where γ = h(c0)d0 and λ = 1/h(c0).

Proof 4 From Lemma 5, we can obtain that the sequence {xn} is well-defined in
B(x0, Rη). Now we prove that {xn} is a Cauchy sequence. Since

‖xn+m − xn‖ ≤
n+m−1∑

i=n

‖xi+1 − xi‖ ≤ p(c0)

n+m−1∑

i=n

ηi

≤ p(c0)ηλnγ
3n−1

2
1 − λmγ

3n(3m−1+1)
2

1 − λγ 3n . (37)

We have that there exists a x∗ such that limn→∞ xn = x∗.
Letting n = 0, m → ∞ in (37), we have

‖ x∗ − x0 ‖≤ Rη, (38)

which means that x∗ ∈ B(x0, Rη).
From Lemma 4, we have

‖F(xn+1)‖ ≤ M

[

1 + 3

2
c0 + δc2

0

]

g2(c0)η
2
n

+Mg1(c0)

[

1 + c0 + 3

2
c2

0 + δc3
0

]

g2(c0)η
2
n

+1

2
M

[

1 + c0 + 3

2
c2

0 + δc3
0

]2

g2(c0)
2η2

n (39)
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Let n → ∞ in (39), then we obtain that ‖F(xn)‖ → 0 since ηn → 0. By the
continuity of F(x) in �, we get that F(x∗) = 0.

Next we prove the uniqueness of x∗ in B(x0,
2

Mβ
− Rη)

⋂
�. By Lemma 7, we

obtain

2

Mβ
− Rη =

(
2

c0
− R

)

η >
1

c0
η > Rη,

and then B(x0, Rη) ⊆ B(x0,
2

Mβ
− Rη)

⋂
�, thus x∗ ∈ B(x0,

2
Mβ

− Rη)
⋂

�.

Assume that x∗∗ ∈ B(x0,
2

Mβ
− Rη)

⋂
� and x∗∗ satisfies F(x∗∗) = 0, then we

have that

0 = F(x∗∗) − F(x∗) =
∫ 1

0
F ′((1 − t)x∗ + tx∗∗)dt (x∗∗ − x∗). (40)

Notice that

‖�0‖
∥
∥
∥
∥
∥

∫ 1

0
[F ′((1 − t)x∗ + tx∗∗) − F ′(x0)]dt

∥
∥
∥
∥
∥

≤ Mβ

∫ 1

0
[(1 − t)‖x∗ − x0‖ + t‖x∗∗ − x0‖]dt

<
Mβ

2

[

Rη + 2

Mβ
− Rη

]

= 1, (41)

then by the Banach lemma, we have that
∫ 1

0 F ′((1 − t)x∗ + tx∗∗)dt is invertible and
hence x∗∗ = x∗.

Finally, letting m → ∞ in (37), we obtain (36).
Next we consider two examples, where the conditions of theorem 1 are satisfied,

but the assumption (A4) can not be satisfied.

Example 4.1

f (x) = x3 ln(x2) + 3x2 − 10x + 1.7 = 0,

where f (x) defines in X = [−1, 1], f (0) = 1.7.
Here, we take Q(G(xn)) = 0, δ = 1 in the methods (5). Let � = B(0, 1), x0 = 0,

we obtain

lim
x→0

x3 ln(x2) = 0, lim
x→0

x2 ln(x2) = 0, lim
x→0

x ln(x2) = 0.

Note that f ′′′(x) can not satisfy the assumption (A4). But we have

|1/f ′(0)| = 0.1, |f (0)/f ′(0)| = 0.17, sup
x∈X

|f ′′(x)| = 16.

Since c0 = 0.272,

p(c0)c0 = 0.427 . . . < 1,

then we get c0 < s. Furthermore,

h(c0)d0 = 0.875 . . . < 1,
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Then the conditions of Theorem 1 are satisfied. The solution x∗ belongs to
B(x0, Rη) = B(0, 0.535 . . .) ⊆ � and x∗ is the unique solution of f (x) = 0 in
B(0, 0.714 . . .)

⋂
�.

Example 4.2 Consider a nonlinear integral equation

x(s) = 1 + 9

8

∫ 1

0
G(s, t)x(t)5/2dt, s ∈ [0, 1],

where x ∈ C[0, 1], t ∈ [0, 1], G(s, t) is the Green function defined by

G(s, t) =
{

(1 − s)t, t ≤ s,

s(1 − t), s ≤ t.

To find the solution of this equation, we need to solve the equation F(x) = 0,
where F : � ⊆ C[0, 1] → C[0, 1],

[F(x)](s) = x(s) − 1 − 9

8

∫ 1

0
G(s, t)x(t)5/2dt, s ∈ [0, 1].

Here, we take � = B(0, 2). The Fréchet derivatives of F are given by

F ′(x)y(s) = y(s) − 45

16

∫ 1

0
G(s, t)x(t)3/2y(t)dt, y ∈ �,

F ′′(x)yz(s) = −135

32

∫ 1

0
G(s, t)x(t)1/2y(t)z(t)dt, y, z ∈ �,

F ′′′(x)yzv(s) = −135

64

∫ 1

0
G(s, t)x(t)−1/2y(t)z(t)v(t)dt, y, z, v ∈ �.

Obviously, F ′′′ can not satisfy the condition (A4). We take Q(G(xn)) = 0, δ = 1 in
the methods (5) and choose x0(t) = 1 as the initial approximate solution. Then we
obtain that

‖F(x0)‖ = 9

64
, ‖I − F ′(x0)‖ = 45

128
,

‖�0‖ = ‖F ′(x0)
−1‖ ≤ 1

1 − ‖I − F ′(x0)‖ = 128

83
≡ β,

‖�0F(x0)‖ ≤ 18

83
≡ η, ‖F ′′(x)‖ ≤ 135

√
2

256
≡ M.

Here, the max norm is used. Since c0 = 0.249 . . .,

p(c0)c0 = 0.376 . . . < 1,

then c0 < s. Moreover,

h(c0)d0 = 0.583 . . . < 1,

Then the conditions of theorem 1 are satisfied. The solution x∗ belongs to
B(x0, Rη) = B(1, 0.514 . . .) ⊆ � and x∗ is the unique solution of F(x) = 0 in
B(1, 1.224 . . .)

⋂
�.
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5 Higher R-order convergence analysis

(B) ‖F ′′′(x)−F ′′′(y)‖ ≤ ω(‖x−y‖), ∀x, y ∈ �, where ω(μ) is a non-decreasing
continuous real function for μ > 0 and satisfies ω(0) ≥ 0, ω(tμ) ≤ tqω(μ) for
μ > 0, t ∈ [0, 1] and q ∈ [0, 1].

Define the function ψ as

ψ(t, u, v) =
[

1

4
tu + 1

q + 1

1

2(q+1)

(

1 + 3

2
t

)

v +
(

1

2
t + t2χ(t)

)

u

]

φ(t, u)

+
[

δt3 + t3χ(t) +
(

3

2
+ δt

)

t3 + t2

2

(
3

2
+ δt

)

u

]

φ(t, u)

+ 1

(q + 1)(q + 2)

(

1 + t + 3

2
t2 + δt3

)

vφ(t, u)

+t3
(

1

2
+ tχ(t)

) (

1 + 3

2
t + δt2

)

φ(t, u)

+ t2

2

(
1

2
+ tχ(t)

)2 (

1 + t + 3

2
t2 + δt3

)

uφ(t, u)

+ t

2

(

1 + t + 3

2
t2 + δt3

)2

φ(t, u)2, (42)

where

φ(t, u) = t2χ(t)+ 5

12
u+ t2

(
1

2
+ tχ(t)

)

+ t

2

(
1

2
+ tχ(t)

)

u+ t3

2

(
1

2
+ tχ(t)

)2

.

Let the function ψ be defined by (42), α ∈ (0, 1), then ψ(αt, α2u, α(2+p)v) <

α(4+p)ψ(t, u, v) for t ∈ (0, s), where s is the smallest positive root of p(t)t −1 = 0,
the function p is given in (6).
Define the following sequences as

η̃n+1 = d̃nη̃n, β̃n+1 = h(̃cn)β̃n, (43)

c̃n+1 = Mβ̃n+1η̃n+1, b̃n+1 = Nβ̃n+1η̃
2
n+1, ãn+1 = β̃n+1η̃

2
n+1w(̃ηn+1), (44)

d̃n+1 = h(̃cn+1)ψ(̃cn+1, b̃n+1, ãn+1), (45)

where n ≥ 0. Here, we choose η̃0 = η, β̃0 = β, c̃0 = Mβη, b̃0 = Nβη2, ã0 =
βη2ω(η) and d̃0 = h(̃c0)ψ(̃c0, b̃0, ã0). From the definitions of c̃n+1, b̃n+1, ãn+1 and
Eq (43), we can obtain

c̃n+1 = h(̃cn)d̃nc̃n, b̃n+1 = h(̃cn)d̃
2
nb̃n, ãn+1 ≤ h(̃cn)d̃

2+q
n ãn. (46)

Similar to the derivation in Section 3 and Section 4, we can establish the semilocal
convergence of methods (5) under the conditions (A1)-(A4), (B). Moreover, we can
get a priori error estimate

‖xn − x∗‖ ≤ p(̃c0)η

γ̃ 1/(4+q)(1 − d̃0)

(
γ̃ 1/(4+q)

)(5+q)n

, (47)
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where γ̃ = h(̃c0)d̃0 and λ̃ = 1/h(̃c0). This error estimate shows that under the
conditions (A1)-(A4), (B), the methods (5) has, at least, R-order 5 + q.
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