ORIGINAL PAPER

Some results on certain generalized circulant matrices

Chengbo Lu

Received: 3 December 2013 / Accepted: 26 March 2014 / Published online: 15 May 2014 © Springer Science+Business Media New York 2014

Abstract In this paper a particular partition on blocks of generalized (h, r)-circulant matrices is determined. We obtain a characterization of generalized (h, r)-circulant matrices and get some results on the values of the permanent and also on the determination of the eigenvalues of *r*-circulant matrices. At last, a lower bound for the permanent of these matrices is achieved.

Keywords *h*-circulant matrices \cdot *r*-circulant matrices \cdot (*h*, *r*)-generalized circulant matrices \cdot Permanent \cdot Direct sums

Mathematics Subject Classifications (2010) 15A18 · 65F05 · 65F10

1 Introduction

A matrix $A = [a_{i,j}]$ of type $m \times n$ $(m \le n)$ is called (h, r)-circulant if it is of the form

$$\begin{cases} a_{1,j} = \alpha_j, \ j = 1, \cdots, n, \\ a_{i,j} = \begin{cases} a_{i-1,j-h}, \ j > h \\ ra_{i-1,j-h+n}, \ j \le h \end{cases}, \ i = 2, \cdots, m, \ j = 1, \cdots, n, \end{cases}$$

the above equation can be rewritten as

$$\begin{cases} a_{1,j} = \alpha_j, \ j = 1, \cdots, n, \\ a_{i,j} = r^{\theta_1} a_{i-1,(j-h+n) \mod n}, \ i = 2, \cdots, m, \ j = 1, \cdots, n, \end{cases}$$
(1.1)

C. Lu (🖂)

Department of Mathematics, Lishui University, Lishui, 323000, People's Republic of China e-mail: lu.chengbo@aliyun.com

This research was supported by Natural Science Foundation of China under Grant No. 11171137 and Zhejiang Provincial Natural Science Foundation of China under Grant No. LY13A010008.

where $\theta_1 = \begin{cases} 0, & \text{if } j > h, \\ 1, & \text{if } j \le h, \end{cases} h$ is a positive integer which satisfies h < n, and r is a parameter [1]. Obviously, each row other than the first one, is obtained from the preceding row by shifting the elements cyclically h positions to the right and multiplying the last h elements of the preceding row by r.

When h = 1, the matrix A is called r-circulant [1, 2]. When r = 1, the matrix A is called h-circulant [3].

Let $P_n(r)$ be the *r*-circulant matrix of order *n* with first row $(0, 1, 0, \dots, 0)$ as follows

$$P_n(r) = \begin{vmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ r & 0 & 0 & \cdots & 0 \end{vmatrix};$$

obviously, $P_n^n(r) = r I_n$. If there is not possibility of ambiguity we often drop the subscript *n* and simply write $P_n(r)$ as P(r).

If $(a_0, a_1, \dots, a_{n-1})$ is the first row of a *r*-circulant matrix *A* of order *n*, then $A = \sum_{i=0}^{n-1} a_i P^i(r)$.

Lemma 1 Let m, n, h be positive integers, where $m \le n$, h < n and $mh \equiv 0 \pmod{n}$, a matrix of type $m \times n$ is (h, r)-circulant if and only if it is satisfied relation

$$AP_n^h(r) = P_m(r^\theta)A$$

where $\theta = \frac{mh}{n}$.

Proof Assume A is (h, r)-circulant. Let $a_{1,j} = \alpha_j$ $(j = 1, \dots, n)$, and $B = (b_{i,j})_{m \times n} = AP_n^h(r)$, it follows

$$b_{1,j} = r^{\theta_1} \alpha_{(j-h+n) \bmod n}, \qquad (1.2)$$

and

$$b_{i,j} = r^{\theta_1 + \theta_2} a_{i-1, [(j-h+n)-h+n] \mod n}, \ i = 2, \cdots, m, \ \theta_2 = \begin{cases} 0, \ if \ (j-h+n) \mod n > h, \\ 1, \ if \ (j-h+n) \mod n \le h. \end{cases}$$
(1.3)

Hence

$$b_{m,j} = r^{\theta_1 + \theta_2} a_{m-1,(j-2h+2n) \mod n} = \cdots = r^{\theta_1 + \theta_2 + \cdots + \theta_m} a_{m-1-(m-2),[(j-2h+2n)-(m-2)h+(m-2)n] \mod n}$$

= $r^{\theta_1 + \theta_2 + \cdots + \theta_m} a_{1,(j-mh+mn) \mod n},$ (1.4)

where $\theta_i = \begin{cases} 0, & if \ [j - (i - 1)h + (i - 1)n] \ mod \ n > h, \\ 1, & if \ [j - (i - 1)h + (i - 1)n] \ mod \ n \le h, \end{cases}$ $i = 1, \cdots, m.$ Now consider $C = (c_{i,j})_{m \times n} = P_m(r^\theta)A$, here $\theta = \frac{mh}{n}$.

$$C = \{P_m(r^{\theta}) \times [r^{\theta_1}a_{i-1,(j-h+n) \mod n}]_{m \times n}\}_{m \times n}$$

therefore

$$c_{i,j} = r^{\theta_1} a_{i,(j-h+n) \mod n} = r^{\theta_1 + \theta_2} a_{i-1,(j-2h+2n) \mod n}, \ i = 2, \cdots, m-1, \ (1.5)$$

and

$$c_{1,j} = r^{\theta_1} a_{1,(j-h+n) \mod n} = r^{\theta_1} \alpha_{(j-h+n) \mod n},$$
(1.6)

$$c_{m,j} = r^{\theta} a_{1,j} = r^{\theta} \alpha_j. \tag{1.7}$$

Since n|mh and n > m, then $j = (j - mh + mn) \mod n$. From the definition of θ_i , there holds $j = j - mh + (\theta_1 + \theta_2 + \cdots, \theta_m)n$, then we have $\theta_1 + \theta_2 + \cdots + \theta_m = \frac{mh}{n}$, that means $b_{m,j} = c_{m,j}$. By (1.2)–(1.7), we can obtain $AP_n^h(r) = P_m(r^\theta)A$.

If a matrix A of type $m \times n$ is satisfied the relation $AP_n^h(r) = P_m(r^\theta)A$, let $a_{1,j} = \alpha_j$ $(j = 1, \dots, n)$, then

$$b_{i,j} = (AP_n^h(r))_{i,j} = r^{\theta_1} a_{i,(j-h+n) \mod n},$$

$$c_{i,j} = (P_m(r^{\theta})A)_{i,j} = \begin{cases} a_{i+1,j}, \ i = 1, \cdots, m-1, \\ r^{\theta}a_{1,j}, \ i = m. \end{cases}$$

Since $b_{i,j} = c_{i,j}$, then

$$a_{i+1,j} = r^{\theta_1} a_{i,(j-h+n) \mod n}.$$

It follows that A is (h, r)-circulant.

This completes the proof of the lemma.

Let $A = [a_{i,j}]$ be a matrix of order *n*. We denote by d(1,m), where $1 \le m \le n$, the diagonal starting in $a_{1,m}$, that is, the sequence of elements $a_{1,m}, a_{2,m+1}, \dots, a_{n-m+1,n}$ and by d(m, 1) the sequence $a_{m,1}, a_{m+1,2}, \dots, a_{n,n-m+1}$ ([4]).

Let k and n_i $(i = \overline{1, k})$ be positive integers, A_i $(i = \overline{1, k})$ be square matrices of order n_i , the block diagonal square matrix

$$A = \begin{bmatrix} A_1 & 0 & \cdots & 0 \\ 0 & A_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & A_k \end{bmatrix}$$

of order $n_1 + n_2 + \cdots + n_k$ is called the direct sum of the matrices $A_1, A_2, \cdots A_k$. It is denoted as $A = diag(A_1, A_2, \cdots, A_k)$.

Definition 1 Let h, n be positive integers, where $1 \le h < n, k = (n, h), n = km$ and h = kh'. A matrix A of order n is said (h, r)-generalized circulant when it is partitioned into k submatrices of type $m \times n$, which are (h, r)-circulant.

In other words a matrix A of order n is (h, r)-generalized circulant when it can be partitioned into (h, r)-circulant submatrices A_j $(1 \le j \le k)$ of type $m \times n$ as follows

$$A = \begin{bmatrix} A_1 \\ A_2 \\ \vdots \\ A_k \end{bmatrix}.$$
 (1.8)

Since $mh = nh' \equiv 0 \pmod{n}$, then we obtain $A_j P_n^h(r) = P_m(r^\theta) A_j$ $(j = \overline{1, k}, \theta = \frac{mh}{n})$ by Lemma 1.

Recall that the permanent of a $n \times n$ matrix $A = [a_{i,j}]$, denoted per A, is defined as

per
$$A = \sum_{\sigma \in S_n} \prod_{i=1}^n a_{i,\sigma(i)},$$

where the sum extends over all permutations σ of S_n .

The computation of the permanent of generic matrices seems to be a very hard task. It has been shown [5] that the computation of the permanent is \ddagger P-complete and therefore a polynomial time algorithm is unlikely to exist. Recently, a lot of people have tried to study the permanent of some special matrices such as circulant matrices (see [4, 6–8]), sparse positive matrices (see [9]), Toeplitz matrices (see [10, 11]), Bernoulli matrices (see [12]) etc.

This paper is organized as follows. In next section, we prove a characterization of the (h, r)-generalized circulant matrices. By using this result we are able to prove that the matrix $A = \sum_{j=0}^{\lfloor \frac{n}{h} \rfloor} a_j P_n^{jh}(r)$ is similar to the matrix B =diag $\left\{ \sum_{j=0}^{\lfloor \frac{n}{h} \rfloor} a_j P_m^j(r^\theta), \dots, \sum_{j=0}^{\lfloor \frac{n}{h} \rfloor} a_j P_m^j(r^\theta) \right\}$, the direct sum of k matrices coinciding with $\sum_{j=0}^{\lfloor \frac{n}{h} \rfloor} a_j P_m^j(r^\theta)$. This implies new results on the values of the permanent

and also on the determination of the eigenvalues of *r*-circulant matrices.

In Section 3, we consider the problem of studying the *r*-circulant matrix $A = a_0I + a_iP^i(r) + a_jP^j(r)$, and determine a lower bound for the values of the permanent of these matrices.

2 Characterization

Consider a generalized (h, r)-circulant matrix A of order n = km, where h, n, k, m are positive integers and (n, h) = k, let A_j $(1 \le j \le k)$ be the submatrix of A of type $m \times n$ formed by the rows of A

$$1 + (j-1)m, 2 + (j-1)m, \cdots, jm.$$

Theorem 1 A matrix A of order n is generalized (h, r)-circulant, where (n, h) = k and n = km, if and only if it is satisfied the relation

$$AP^{h}(r) = P'(r^{\theta})A \tag{2.1}$$

where $P'(r^{\theta})$ is direct sum of k matrices coinciding with $P_m(r^{\theta})$ and $\theta = \frac{h}{k}$.

Proof Assume that a matrix A of order n is satisfied (2.1). The matrix $AP^{h}(r)$ is obtained by multiplying elements of last h columns of A by r and shifting each column h positions to the right cyclicaly. Taking into account the partitioned form of A, we have

$$AP^{h}(r) = \begin{bmatrix} A_{1} \\ A_{2} \\ \vdots \\ A_{k} \end{bmatrix} P^{h}(r) = \begin{bmatrix} A_{1}P^{h}(r) \\ A_{2}P^{h}(r) \\ \vdots \\ A_{k}P^{h}(r) \end{bmatrix}.$$
 (2.2)

Hence $(AP^{h}(r))_{j} = A_{j}P^{h}(r)$, for $1 \le j \le k$.

Now consider the product $P'(r^{\theta})A$. From the definition of $P'(r^{\theta})$ and the partitioned of A we have

$$\begin{bmatrix} P_m(r^{\theta}) & & \\ P_m(r^{\theta}) & & \\ & \ddots & \\ & & P_m(r^{\theta}) \end{bmatrix} \begin{bmatrix} A_1 \\ A_2 \\ \vdots \\ A_k \end{bmatrix} = \begin{bmatrix} P_m(r^{\theta})A_1 \\ P_m(r^{\theta})A_2 \\ \vdots \\ P_m(r^{\theta})A_k \end{bmatrix}$$
(2.3)

From the equalities (2.1), (2.2) and (2.3) it follows $A_j P^h(r) = P_m(r^\theta) A_j$ $(1 \le j \le k)$, that is to say, the submatrices A_j $(1 \le j \le k)$ are (h, r)-circulant matrices of type $m \times n$. By Definition 1, A is generalized (h, r)-circulant.

Conversely, assume that A is generalized (h, r)-circulant, then each A_j $(1 \le j \le k)$ is (h, r)-circulant. That means $A_j P^h(r) = P_m(r^\theta)A_j$ $(1 \le j \le k)$. Since $(AP^h(r))_j = A_j P^h(r)$ and $(P'(r^\theta)A)_j = P'(r^\theta)A_j$, then $(AP^h(r))_j = (P'(r^\theta)A)_j$ $(1 \le j \le k)$. It follows that $AP^h(r) = P'(r^\theta)A$.

When k = 1 a matrix A which satisfies (2.1) turns out to be a (h, r)-circulant matrix; thus (h, r)-generalized circulant matrix turns out to be a generalization of the notion of (h, r)-circulant matrix.

Definition 2 A matrix $Q(r) = [q_{i,j}]$ of order *n* with $q_{1,1} = 1$ and $q_{1,j} = 0$ $(j = \overline{2, n})$ is said (h, r)-regular, when it can be partitioned into (h, r)-circulant submatrices $Q_j(r)$ of type $m \times n$ $(1 \le j \le k, n = km)$, such that every submatrix, distinct from the first, is obtained from the preceding by shifting every column one position to the right.

The definition implies that also $q_{1+(i-1)m,i} = 1$ $(i = \overline{1,k})$.

It is easy to get that $Q^{-1}(r) = \left[Q(\frac{1}{r})\right]^{T}$, and for an arbitrary matrix A of order n, there holds per $(Q(r)AQ^{-1}(r)) = \text{per }(A)$.

Notice that a (h, r)-regular matrix of order n is uniquely determined.

Theorem 2 Let $A = a_0I + a_1P^h(r) + \dots + a_tP^{th}(r)$ be a matrix of order *n*, where 1 < h < n, (n, h) = k, n = km, $t = \left\lfloor \frac{n}{h} \right\rfloor$ and a_i $(1 \le i \le t)$ be real numbers;

moreover let Q(r) be the (h, r)-regular generalized permutation matrix of order n. Then A is similar to the direct sum of k matrices coinciding with $\sum_{i=0}^{t} a_i P_m^i(r^\theta)$, here $\theta = \frac{h}{k}$.

Proof By Theorem 1, it satisfies the relation

$$Q(r)P^{h}(r) = P'(r^{\theta})Q(r)$$

where $P'(r^{\theta})$ is the direct sum of k matrices coinciding with $P_m(r^{\theta})$. Then $P^h(r) = Q^{-1}(r)P'(r^{\theta})Q(r)$, it follows

$$A = a_0 I + a_1 Q^{-1}(r) P'(r^{\theta}) Q(r) + \dots + a_t Q^{-1}(r) \left[P'(r^{\theta}) \right]^t Q(r)$$

then

$$Q(r)AQ^{-1}(r) = a_0I + a_1P'(r^{\theta}) + \dots + a_t\left[P'(r^{\theta})\right]^t = \bigoplus \sum_{i=0}^t a_iP_m^i(r^{\theta}).$$

This completes the proof of the theorem.

In the case of h = 1, an immediate consequence is that the *r*-circulant matrix $A = a_0 + a_1 P^h(r) + \dots + a_s P^{sh}(r)$ where $s \leq \lfloor \frac{n}{h} \rfloor$, is similar to the *r*-circulant matrix $B = a_0 I + a_1 P(r) + \dots + P^s(r)$. Another consequence is the following

Corollary 1 Let $A = \sum_{i=0}^{s} a_i P^{ih}(r)$ be a *r*-circulant matrix of *n*, where 1 < h < n, (n,h)=k, n=km, $t = \lfloor \frac{n}{h} \rfloor$, $\theta = \frac{h}{k}$ and $0 \le s \le t$. Then we have

$$Per\left(\sum_{i=0}^{s} a_i P^{ih}(r)\right) = \left(Per\left(\sum_{i=0}^{s} a_i P_m^i(r^\theta)\right)\right)^k.$$

Proof It is well known that for an arbitrary matrix A of n and a (h, r)-regular generalized permutation matrix Q(r) of order n, the relation $Per(A) = Per(QAQ^{-1})$ always holds. Then by Theorem 2, it follows the result.

Example As an example of (6,2)-regular generalized permutation matrix of order 9, we consider the following matrix

Then consider the 9×9 matrix $A = I + P^6$, we obtain

$$Q(2)AQ^{-1}(2) = \begin{bmatrix} 1 & 1 & 0 & & \\ 0 & 1 & 1 & & \\ 4 & 0 & 1 & & \\ & 1 & 1 & 0 & \\ & 0 & 1 & 1 & \\ & 4 & 0 & 1 & \\ & & 0 & 1 & 1 \\ & & & 4 & 0 & 1 \end{bmatrix}.$$

Recall that if A is a r-circulant matrix with first row $[a_0, a_1, \dots, a_{n-1}]$, the polynomial $p(\lambda) = \sum_{\substack{i=0 \ 2\pi i}}^{n} a_i \lambda^i$ is said the Hall polynomial of the matrix A.

Denote by $\omega_k = \rho e^{\frac{2\pi i}{n}k}$ $(k = \overline{0, n-1})$, where

$$\rho = \begin{cases} \sqrt[n]{r}, \quad r > 0\\ \sqrt[n]{|r|} \left(\cos \frac{\pi}{n} + i \sin \frac{\pi}{n} \right), \ r < 0 \end{cases}$$

Then the eigenvalues of *r*-circulant matrix *A* are $p(\omega_0)$, $p(\omega_1)$, \cdots , $p(\omega_{n-1})$. Denote by $\overline{\omega}_k = \varrho e^{\frac{2\pi i}{m}k}$ ($k = \overline{0, m-1}$), where

$$\varrho = \begin{cases} \sqrt[m]{r}, & r > 0 \\ \sqrt[m]{r} \left(\cos \frac{\pi}{m} + i \sin \frac{\pi}{m} \right), & r < 0 \end{cases}$$

By Theorem 2, we can get the following

Corollary 2 Let the *r*-circulant matrix $A = a_0I + a_1P^h(r) + \cdots + a_sP^{sh}(r)$, and $q(\lambda)$ be the Hall polynomial of the *r*-circulant matrix $B = a_0I + a_1P_m(r^\theta) + \cdots + a_sP_m^s(r^\theta)$, where $1 \le h < n$, k = (n, h), n = km, $\theta = \frac{h}{k}$, and $1 \le s \le \lfloor \frac{n}{h} \rfloor$.

Then the sets of eigenvalues of A and B coincide for k = 1. In the case of k > 1, the set of eigenvalues of A is the union of k sets coinciding with $\{q(\varpi_0), q(\varpi_1), \dots, q(\varpi_{m-1})\}$.

A consequence is that, when k > 1, each eigenvalue of A has multiplicity at leat k.

3 Sparse *r*-circulant matrices

In this section, we consider the *r*-circulant matrix of order *n*

$$A = a_0 I + a_i P^i(r) + a_i P^j(r),$$

where *i*, *j*, *n* are positive integers and $1 \le i < j \le n$.

Lemma 2 Let Q(r) be the (h, r)-regular matrix of order n, where 1 < h < n, (n, h) = k > 1, n = km and h = kh'. Then the nonzero element in the n-th column

of Q(r) is in one of the last m rows; and the nonzero element in the n-th row of $Q^{-1}(r)$ is in one of the last m columns.

Proof For the last *m* rows of Q(r), let i = (k - 1)m + q $(1 \le q \le m)$, then $\sigma(i) = k + (q - 1)h$ (σ is defined in following (3.2)). The nonzero element of Q(r) which is in position (i, n) means $n | \sigma(i)$. For the *m* integers: $1 + h', 1 + 2h', \dots, 1 + (m - 1)h'$, by the pigeonhole principle, there exists $q \in \{1, 2, \dots, m\}$ such that $1 + (q - 1)h' \equiv 0 \pmod{m}$, which is equivalent to $k + (q - 1)h \equiv 0 \pmod{n}$. Since there is one and only one nonzero element in each row and column of Q(r), Then the nonzero element in the *n*-th column of Q(r) must be in one of the last *m* rows.

Similarly, we can proof another result of lemma.

Lemma 3 Let Q(r) be the (h, r)-regular generalized permutation matrix of order n, where 1 < h < n, (n, h) = k > 1, n = km and h = kh'. The matrix $Q(r)P(r)Q^{-1}(r)$ may be partitioned into the following superdiagonal $k \times k$ block form:

$$B = Q(r) \cdot P(r) \cdot Q^{-1}(r) = \begin{bmatrix} 0 & I_m & 0 & \cdots & 0 \\ 0 & 0 & I_m & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & I_m \\ \Delta_m^s & 0 & 0 & \cdots & 0 \end{bmatrix},$$
(3.1)

where $\Delta_m = diag(\underbrace{r^{-\alpha}, \cdots, r^{-\alpha}}_{number: m-s}, \underbrace{r^{\beta}, \cdots, r^{\beta}}_{number: s}) \times P_m(1)$, s is the inverse of h' modulo m, and $\alpha = \lfloor \frac{sh-k+1}{n} \rfloor$, $\beta = \lfloor \frac{k-1-sh+mh}{n} \rfloor + 1$.

Proof Notice that the (h, r)-regular matrix $Q(r) = [q_{i,j}]$ of order n can be written in the form

$$q_{i,j} = \begin{cases} r^{\left\lfloor \frac{\sigma(i)}{n} \right\rfloor}, & \text{if } \sigma(i) \equiv j \pmod{n} \text{ and } n \nmid \sigma(i) \\ r^{\left\lfloor \frac{\sigma(i)}{n} \right\rfloor - 1}, & \text{if } \sigma(i) \equiv j \pmod{n} \text{ and } n \mid \sigma(i) \\ 0, & \text{otherwise} \end{cases}$$

where σ is a permutation of *n* elements be represented by the following array:

$$\begin{pmatrix} 1 \cdots & m & m+1 \cdots & 2m & \cdots & (k-1)m+1 \cdots & km \\ 1 \cdots & 1 + (m-1)h & 2 & \cdots & 2 + (m-1)h & \cdots & k & \cdots & k + (m-1)h \end{pmatrix}.$$
(3.2)

Similarly, the circulant matrix P(1) represents a permutation π . Firstly, let us consider the simple case of r = 1, then

$$\sigma \pi \sigma^{-1} = \begin{pmatrix} 1 & 2 & \cdots & (k-1)m & (k-1)m + 1 & \cdots & km \\ m+1 & m+2 & \cdots & km & s+1 & \cdots & s \end{pmatrix},$$
(3.3)

where the integers are taken modulo n and $k + 1 \equiv 1 + sh \pmod{n}$; then s is the inverse of h' modulo m. As a consequence, the corresponding

,

permutation matrix may be partitioned into blocks of order m in the following form:

it is just the result in [4].

Now let us consider the case of $r \neq 1$.

It is evident that two matrices $Q(r)P(r)Q^{-1}(r)$ and $Q(1)P(1)Q^{-1}(1)$ have the same sparse structure and only different in nonzero elements.

For the first (k-1)m rows of the matrix $Q(r)P(r)Q^{-1}(r)$, let i = (t-1)m + q, where $1 \le t \le k-1$, $1 \le q \le m$ and t, q are integers. Using (3.2), $\sigma(i) = t + (q-1)h$. Then by Lemma 2, we can get $n \nmid \sigma(i)$ for $1 \le i \le (k-1)m$.

From the structure of (h, r)-regular matrices, the nonzero element in the *i*-th row of Q(r) is r^{μ} , where $\mu = \left\lfloor \frac{t+(q-1)h}{n} \right\rfloor$.

By (3.3), $j = \sigma \pi \sigma^{-1}(i) = tm + q$, then the nonzero element in the *j*-th column of $Q^{-1}(r)$ is $r^{-\nu}$, where

$$\nu = \begin{cases} \left\lfloor \frac{t+1+(q-1)h}{n} \right\rfloor, & \text{if } n \nmid (t+1+(q-1)h) \\ \left\lfloor \frac{t+1+(q-1)h}{n} \right\rfloor - 1, & \text{if } n \mid (t+1+(q-1)h) \end{cases}$$

If $n \nmid (t+1+(q-1)h)$, then $\left\lfloor \frac{t+(q-1)h}{n} \right\rfloor = \left\lfloor \frac{t+1+(q-1)h}{n} \right\rfloor$; if $n \mid (t+1+(q-1)h)$, then $\left\lfloor \frac{t+(q-1)h}{n} \right\rfloor = \left\lfloor \frac{t+1+(q-1)h}{n} \right\rfloor - 1$, it follows $\mu = \nu$ and $B(i, \sigma(i)) = r^{\mu} \times 1 \times r^{-\nu} = 1$.

Then we can conclude that all the nonzero elements in the first (k - 1)m rows of the matrix $Q(r)P(r)Q^{-1}(r)$ are 1.

Now we turn to consider the nonzero elements in the last *m* rows of the matrix $Q(r)P(r)Q^{-1}(r)$.

Let i = (k-1)m + q $(1 \le q \le m)$. By (3.2), $\sigma(i) = k + (q-1)h$, then the nonzero element in the *i*-th row of Q(r) is r^{μ} , where

$$\mu = \begin{cases} \left\lfloor \frac{k + (q-1)h}{n} \right\rfloor, & \text{if } n \nmid (k + (q-1)h) \\ \\ \left\lfloor \frac{k + (q-1)h}{n} \right\rfloor - 1, & \text{if } n \mid (k + (q-1)h) \end{cases}$$

By (3.3), $j = \sigma \pi \sigma^{-1}(i) = s + q$. Then using Lemma 2 again, we can get $n \nmid (1 + (q - 1 + s)h)$, it follows $n \nmid (1 + (q - 1 + s - m)h)$.

Notice that for the matrix P(r), its element in position (n, 1) is r, and other nonzero elements are 1. Then the nonzero element in the *j*-th column of $Q^{-1}(r)$ is $r^{-\nu}$, where

$$\nu = \begin{cases} \left\lfloor \frac{1 + (q - 1 + s)h}{n} \right\rfloor, & \text{if } q \le m - s \\ \\ \left\lfloor \frac{1 + (q - 1 + s - m)h}{n} \right\rfloor, & \text{if } q > m - s \end{cases}$$

By $sh' \equiv 1 \pmod{m}$, we can get

$$(1 + (q - 1 + s)h) - (k + (q - 1)h) \equiv 1 \pmod{n},$$
(3.4)

and

$$(k + (q - 1)h) - (1 + (q - 1 + s - m)h) \equiv n - 1 \pmod{n}.$$
 (3.5)

Therefore, for $q \le m-s$, if $n \nmid (k+(q-1)h)$, then $B(i, \sigma(i)) = r^{\mu} \times 1 \times r^{-\nu} = r^{-(\nu-\mu)} = r^{-\left(\left\lfloor\frac{(1+(q-1+s)h)}{n}\right\rfloor - \left\lfloor\frac{k+(q-1)h}{n}\right\rfloor\right)}$; if $n \mid (k+(q-1)h)$, then $B(i, \sigma(i)) = r^{\mu} \times r \times r^{-\nu} = r^{-\left(\left\lfloor\frac{(1+(q-1+s)h)}{n}\right\rfloor - 1 - \left\lfloor\frac{k+(q-1)h}{n}\right\rfloor + 1\right)}$. By (3.4), we can get $B(i, \sigma(i)) = r^{-\left\lfloor\frac{sh-k+1}{n}\right\rfloor}$. For q > m-s, by (3.5), similarly, we can obtain $B(i, \sigma(i)) = r^{\left\lfloor\frac{k-1-sh+mh}{n}\right\rfloor + 1}$.

At last, set $\alpha = \left\lfloor \frac{sh-k+1}{n} \right\rfloor$, $\beta = \left\lfloor \frac{k-1-sh+mh}{n} \right\rfloor + 1$, we complete the proof of the lemma.

Example Let Q(3) be the (6, 3)-regular matrix of order 8, and P(3) be the 3-circulant matrix of order 8 with first row $(0, 1, 0, \dots, 0)$. They are of the following forms

and

$$P(3) = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix},$$

then

Now, let us consider the $n \times n$ sparse *r*-circulant matrix

$$A = a_0 I + a_i P^i(r) + a_j P^j(r),$$

where *i*, *j*, *n* are positive integers such that $1 \le i < j \le n$.

Theorem 3 If the positive integers *i*, *j*, *n* have a non-trivial common factor, say *h*, n=hm, i = hi', j = hj' and $\theta = 1$, then *A* is similar to the direct sum of *h* matrices coinciding with $a_0I_m + a_iP_m^{i'}(r^{\theta}) + a_iP_m^{j'}(r^{\theta})$.

It is the special case of Theorem 2.

Now assume that i, j, n have not a common factor. In particular, as first case, assume that n and i are coprime.

Theorem 4 Let $A = a_0I + a_iP^i(r) + a_jP^j(r)$ be a *r*-circulant matrix of order *n*, where $1 \le i < j \le n - 1$. (n, i) = 1, j = iq + t, $0 \le t < i$. Then A is similar to $a_0I + a_iP(r^{\theta}) + a_jr^{-at}P^{q+st}(r^{\theta})$, where *s* is the inverse of *i* modulo *n*, $a = \frac{si-1}{n}$, and $\theta = i$.

Proof Let Q(r) be the (i, r)-regular matrix of order n. Then $P^i(r) = Q^{-1}(r)P(r^{\theta})Q(r)$ and

$$A = a_0 I + a_i Q^{-1}(r) P(r^{\theta}) Q(r) + a_j \left(Q^{-1}(r) P(r^{\theta}) Q(r) \right)^q P^t(r),$$

it follows $Q(r)AQ^{-1}(r) = a_0I + a_iP(r^{\theta}) + a_jP^q(r^{\theta})(Q(r)P(r)Q^{-1}(r))^t$. Since $P^s(r^{\theta}) = (Q(r)P^i(r)Q^{-1}(r))^s = r^aQ(r)P(r)Q^{-1}(r)$, then

$$Q(r)AQ^{-1}(r) = a_0I + a_iP(r^{\theta}) + a_jr^{-at}P^{q+st}(r^{\theta}).$$

Theorem 5 Let $A = a_0I + a_iP^i(r) + a_jP^j(r)$ be a *r*-circulant matrix of order *n*, where $1 \le i < j < n$, (n, i) = k > 1, n = km, i = ki', j = iq + t, 0 < t < i and *i*, *j*, *n* have not a non-trivial common factor.

Then A is similar to a $k \times k$ block matrix whose elements on the main diagonal coincide with $a_0I + a_i P_m(r^{\theta})$ (here $\theta = i'$), while other elements are 0, but on the diagonals d(1, t + 1) and d(n - t, 1), where they coincide with $a_i P_m^q(r^{\theta})$ and

 $a_j P_m^q(r^{\theta}) \times \Delta_m^s$, respectively, where s is the inverse of i' modulo m, Δ_m is in the form of which in (3.1).

Proof Denote by Q(r) the (i, r)-regular matrix of order n. By Theorem 1

$$P^{i}(r) = Q^{-1}(r)P'(r^{\theta})Q(r),$$

where $P'(r^{\theta})$ is direct sum of k matrices coinciding with $P_m(r^{\theta})$. By Lemma 3 we have that

$$\left(Q(r)P(r)Q^{-1}(r)\right)^{t} = \begin{bmatrix} 0 & \cdots & 0 & I_{m} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & 0 & 0 & \cdots & I_{m} \\ \Delta_{m}^{s} & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \Delta_{m}^{s} & 0 & \cdots & 0 \end{bmatrix},$$

where in the first row the matrix I_m is in position (1, t + 1) and in the first column Δ_m^s is in position (n - t, 1). As $\left(P'(r^{\theta})\right)^q$ is direct sum of k matrices coinciding with $P_m^q(r^\theta)$, it follows that $\left(P'(r^\theta)\right)^q \cdot \left(Q(r) \cdot P(r) \cdot Q^{-1}(r)\right)^t$ is a block matrix of order k having the same structure as the preceding one, but in which I_m and Δ_m^s are replaced by $P_m^q(r^\theta)$ and $P_m^q(r^\theta) \times \Delta_m^s$, respectively.

Then

$$Q(r)AQ^{-1}(r) = \begin{bmatrix} a_0 I_m + a_i P_m(r^{\theta}) & \cdots & 0 & a_j P_m^q(r^{\theta}) & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & a_0 I_m + a_i P_m(r^{\theta}) & 0 & \cdots & a_j P_m^q(r^{\theta}) \\ a_j P_m^q(r^{\theta}) \times \Delta_m^s & \cdots & 0 & a_0 I_m + a_i P_m(r^{\theta}) & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & a_j P_m^q(r^{\theta}) \times \Delta_m^s & 0 & \cdots & a_0 I_m + a_i P_m(r^{\theta}) \end{bmatrix},$$
and the result holds.

and the result holds.

Now we consider a lower bound for the sparse *r*-circulant matrices.

Lemma 4 Let $A = a_0 I + a_i P^i(r)$ be a r-circulant matrix of order n, where a_0, a_i are real numbers, (n, i) = k and n = km, i = ki'. Then per $(A) = (a_0^m + a_i^m r^{\theta})^k$, here $\theta = i'$.

Proof Let Q(r) be the (i, r)-regular matrix of order n. By Theorem 1 we have that $P^{i}(r) = Q^{-1}(r)P'(r^{\theta})Q(r)$, where $P'(r^{\theta})$ is a direct sum of k matrices coinciding with $P_m(r^\theta)$. Then $Q(r)AQ^{-1}(r) = \bigoplus (a_0I_m + a_iP_m(r^\theta))$ and per $(A) = (\text{per}(a_0I_m + a_iP_m(r^\theta)))^k$. Obviously, $\text{per}(a_0I_m + a_iP_m(r^\theta)) = a_0^m + a_i^m r^\theta$. It follows $\operatorname{per}\left(A\right) = (a_{0}^{m} + a_{i}^{m}r^{\theta})^{k}.$

Now let us consider the case that *i*, *j*, *n* have not a non-trivial common factor.

Theorem 6 Let $A = a_0I + a_iP^i(r) + a_jP^j(r)$ be a *r*-circulant matrix of order *n*, where a_0, a_i, a_j are real numbers, $1 \le i < j \le n - 1$, (n, i) = k, n = km, i = ki', j = kq + t, $0 \le t < k$. Then

$$per(A) \ge (a_0^m + a_i^m r^{\theta})^k + a_i^n r^{\theta qk} \times r^{s^2 \alpha + s^2 \beta - ms\alpha},$$

where $s, \alpha, \beta, \Delta_m, \theta$ are in the forms of which in Theorem 5.

Proof By Theorem 5, A is similar to a $k \times k$ block matrix, which coincide with $a_0I + a_i P_m(r^\theta)$ on the main diagonal, while other elements are 0, but on the diagonals d(1, t+1) and d(n-t, 1), where they coincide with $a_j P_m^q(r^\theta)$ and $a_j P_m^q(r^\theta) \times \Delta_m^s$, respectively. Then

This completes the proof of the theorem.

Acknowledgments The author wishes to thank the anonymous referees for their careful reading of the manuscript and their fruitful suggestions.

References

- 1. Davis, P.J.: Circulant Matrices, 2nd end. Chelsea Publishing, New York (1994)
- 2. Mei, Y.: Computing the square roots of a class of circulant matrices. J. Appl. Math., 1-15 (2012)
- Dedò, E., Marini, A., Salvi, N.Z.: On certain generalized circulant matrices. Mathematica Pannonica 14(2), 273–281 (2003)
- 4. Salvi, R., Salvi, N.Z.: On very sparse circulant (0,1) matrices. Linear Algebra Appl. 418, 565–575 (2006)
- 5. Valiant, L.G.: The complexity of computing the permanent. Theoret. Comput. Sci. 8, 189–201 (1979)
- Cummings, L.J., Wallis, J.S.: An algorithm for the permanent of circulant matrices. Canad Math. Bull. 20(1), 67–70 (1977)
- Sburlati, G.: On the parity of permanents of circulant matrices. Linear Algebra Appl. 428, 1949–1955 (2008)
- Codenotti, B., Resta, G.: Computation of sparse circulant permanents via determinants. Linear Algebra Appl. 355, 15–34 (2002)
- Forbert, H., Marx, D.: Calculation of the permanent of a sparse positive matrix. Comput. Phys. Commun. 150, 267–273 (2003)
- Codenotti, B., Crespi, V., Resta, G.: On the permanent of certain (0, 1) Toeplitz matrices. Linear Algebra Appl. 267, 65–100 (1997)
- Schwartz, M.: Efficiently computing the permanent and Hafnian of some banded Toeplitz matrices. Linear Algebra Appl. 430, 1364–1374 (2009)
- 12. Tao, T., Van, V.: On the permanent of random Bernoulli matrices. Adv. Math. 220, 657–669 (2009)