ORIGINAL PAPER

Some results on certain generalized circulant matrices

Chengbo Lu

Received: 3 December 2013 / Accepted: 26 March 2014 / Published online: 15 May 2014 © Springer Science+Business Media New York 2014

Abstract In this paper a particular partition on blocks of generalized *(h, r)*-circulant matrices is determined. We obtain a characterization of generalized *(h, r)*-circulant matrices and get some results on the values of the permanent and also on the determination of the eigenvalues of *r*-circulant matrices. At last, a lower bound for the permanent of these matrices is achieved.

Keywords *h*-circulant matrices \cdot *r*-circulant matrices \cdot *(h, r)*-generalized circulant matrices · Permanent · Direct sums

Mathematics Subject Classifications (2010) 15A18 · 65F05 · 65F10

1 Introduction

A matrix $A = [a_{i,j}]$ of type $m \times n$ ($m \leq n$) is called (h, r) -circulant if it is of the form

$$
\begin{cases} a_{1,j} = \alpha_j, \ j = 1, \cdots, n, \\ a_{i,j} = \begin{cases} a_{i-1,j-h}, \ j > h \\ ra_{i-1,j-h+n}, \ j \le h \end{cases}, \ i = 2, \cdots, m, \ j = 1, \cdots, n, \end{cases}
$$

the above equation can be rewritten as

$$
\begin{cases} a_{1,j} = \alpha_j, \ j = 1, \cdots, n, \\ a_{i,j} = r^{\theta_1} a_{i-1, (j-h+n) \bmod n}, \ i = 2, \cdots, m, \ j = 1, \cdots, n, \end{cases} (1.1)
$$

 $C.$ Lu (\boxtimes)

Department of Mathematics, Lishui University, Lishui, 323000, People's Republic of China e-mail: lu.chengbo@aliyun.com

This research was supported by Natural Science Foundation of China under Grant No. 11171137 and Zhejiang Provincial Natural Science Foundation of China under Grant No. LY13A010008.

where $\theta_1 = \begin{cases} 0, & \text{if } j > h, \\ 1, & \text{if } j \le h, \end{cases}$ *h* is a positive integer which satisfies $h < n$, and *r* is a parameter [\[1\]](#page-12-0). Obviously, each row other than the first one, is obtained from the preceding row by shifting the elements cyclically *h* positions to the right and multiplying the last *h* elements of the preceding row by *r*.

When $h = 1$, the matrix A is called r-circulant [\[1,](#page-12-0) [2\]](#page-12-1). When $r = 1$, the matrix A is called *h*-circulant [\[3\]](#page-12-2).

Let $P_n(r)$ be the *r*-circulant matrix of order *n* with first row $(0, 1, 0, \dots, 0)$ as follows

$$
P_n(r) = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ r & 0 & 0 & \cdots & 0 \end{bmatrix};
$$

obviously, $P_n^n(r) = rI_n$. If there is not possibility of ambiguity we often drop the subscript *n* and simply write $P_n(r)$ as $P(r)$.

If $(a_0, a_1, \dots, a_{n-1})$ is the first row of a *r*-circulant matrix *A* of order *n*, then $A = \sum_{i=0}^{n-1} a_i P^i(r)$.

Lemma 1 *Let m*, *n*, *h be positive integers, where* $m \leq n$, $h < n$ *and* $mh \equiv$ 0 *(mod n), a matrix of type m* \times *n is (h, r)-circulant if and only if it is satisfied relation*

$$
AP_n^h(r) = P_m(r^\theta)A,
$$

where $\theta = \frac{mh}{n}$.

Proof Assume *A* is (h, r) -circulant. Let $a_{1,j} = \alpha_j$ $(j = 1, \dots, n)$, and $B =$ $(b_{i,j})_{m \times n} = AP_n^h(r)$, it follows

$$
b_{1,j} = r^{\theta_1} \alpha_{(j-h+n) \bmod n}, \qquad (1.2)
$$

and

$$
b_{i,j} = r^{\theta_1 + \theta_2} a_{i-1, [(j-h+n)-h+n] \mod n}, \ i = 2, \cdots, m, \ \theta_2 = \begin{cases} 0, & \text{if } (j-h+n) \mod n > h, \\ 1, & \text{if } (j-h+n) \mod n \le h. \\ 1. & \text{if } (j-h+n) \mod n \le h. \end{cases} \tag{1.3}
$$

Hence

$$
b_{m,j} = r^{\theta_1 + \theta_2} a_{m-1, (j-2h+2n) \mod n} = \cdots
$$

\n
$$
= r^{\theta_1 + \theta_2 + \cdots + \theta_m} a_{m-1 - (m-2), [(j-2h+2n) - (m-2)h + (m-2)n] \mod n}
$$

\n
$$
= r^{\theta_1 + \theta_2 + \cdots + \theta_m} a_{1, (j-mh+mn) \mod n},
$$
\n(1.4)

where $\theta_i = \begin{cases} 0, & \text{if } [j - (i - 1)h + (i - 1)n] \text{ mod } n > h, \\ 1, & \text{if } [j - (i - 1)h + (i - 1)n] \text{ mod } n \le h, \end{cases} i = 1, \dots, m.$ Now consider $C = (c_{i,j})_{m \times n} = P_m(r^{\theta})A$, here $\theta = \frac{mh}{n}$.

$$
C = \{P_m(r^{\theta}) \times [r^{\theta_1} a_{i-1,(j-h+n) \bmod n}]_{m \times n}\}_{m \times n},
$$

therefore

$$
c_{i,j} = r^{\theta_1} a_{i,(j-h+n) \mod n} = r^{\theta_1 + \theta_2} a_{i-1,(j-2h+2n) \mod n}, \quad i = 2, \cdots, m-1, \quad (1.5)
$$

and

$$
c_{1,j} = r^{\theta_1} a_{1,(j-h+n) \mod n} = r^{\theta_1} \alpha_{(j-h+n) \mod n},
$$
 (1.6)

$$
c_{m,j} = r^{\theta} a_{1,j} = r^{\theta} \alpha_j. \tag{1.7}
$$

Since $n | mh$ and $n > m$, then $j = (j - mh + mn) mod n$. From the definition of θ_i , there holds $j = j - mh + (\theta_1 + \theta_2 + \cdots, \theta_m)n$, then we have $\theta_1 + \theta_2 + \cdots + \theta_m = \frac{mh}{n}$, that means $b_{m,j} = c_{m,j}$. By [\(1.2\)](#page-1-0)–[\(1.7\)](#page-2-0), we can obtain $AP_n^h(r) = P_m(r^{\theta})A$.

If a matrix *A* of type $m \times n$ is satisfied the relation $AP_n^h(r) = P_m(r^{\theta})A$, let $a_{1,j} = \alpha_j$ ($j = 1, \dots, n$), then

$$
b_{i,j} = (AP_n^h(r))_{i,j} = r^{\theta_1} a_{i,(j-h+n) \mod n},
$$

$$
c_{i,j} = (P_m(r^{\theta})A)_{i,j} = \begin{cases} a_{i+1,j}, & i = 1, \cdots, m-1, \\ r^{\theta}a_{1,j}, & i = m. \end{cases}
$$

Since $b_{i,j} = c_{i,j}$, then

$$
a_{i+1,j} = r^{\theta_1} a_{i,(j-h+n) \bmod n}.
$$

It follows that *A* is *(h, r)*-circulant.

This completes the proof of the lemma.

Let $A = [a_{i,j}]$ be a matrix of order *n*. We denote by $d(1, m)$, where $1 \leq m \leq n$, the diagonal starting in $a_{1,m}$, that is, the sequence of elements $a_{1,m}, a_{2,m+1}, \cdots, a_{n-m+1,n}$ and by $d(m, 1)$ the sequence $a_{m,1}, a_{m+1,2}, \cdots$ *an,n*−*m*+¹ ([\[4\]](#page-12-3)).

Let *k* and n_i ($i = 1, k$) be positive integers, A_i ($i = \overline{1, k}$) be square matrices of order n_i , the block diagonal square matrix

$$
A = \begin{bmatrix} A_1 & 0 & \cdots & 0 \\ 0 & A_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & A_k \end{bmatrix}
$$

of order $n_1 + n_2 + \cdots + n_k$ is called the direct sum of the matrices $A_1, A_2, \cdots A_k$. It is denoted as $A = diag(A_1, A_2, \cdots, A_k)$.

Definition 1 Let *h*, *n* be positive integers, where $1 \leq h \leq n$, $k = (n, h)$, $n = km$ and $h = kh'$. A matrix *A* of order *n* is said (h, r) -generalized circulant when it is partitioned into *k* submatrices of type $m \times n$, which are (h, r) -circulant.

 $\textcircled{2}$ Springer

In other words a matrix *A* of order *n* is *(h, r)*-generalized circulant when it can be partitioned into (h, r) -circulant submatrices A_j $(1 \le j \le k)$ of type $m \times n$ as follows

$$
A = \begin{bmatrix} A_1 \\ A_2 \\ \vdots \\ A_k \end{bmatrix} .
$$
 (1.8)

Since $mh = nh' \equiv 0 \pmod{n}$, then we obtain $A_j P_n^h(r) = P_m(r^{\theta}) A_j$ ($j = \overline{1, k}$, $\theta = \frac{mh}{n}$) by Lemma 1.

Recall that the permanent of a $n \times n$ matrix $A = [a_{i,j}]$, denoted per *A*, is defined as

$$
\text{per } A = \sum_{\sigma \in S_n} \prod_{i=1}^n a_{i,\sigma(i)},
$$

where the sum extends over all permutations σ of S_n .

The computation of the permanent of generic matrices seems to be a very hard task. It has been shown [\[5\]](#page-12-4) that the computation of the permanent is \sharp P-complete and therefore a polynomial time algorithm is unlikely to exist. Recently, a lot of people have tried to study the permanent of some special matrices such as circulant matrices (see $[4, 6-8]$ $[4, 6-8]$ $[4, 6-8]$ $[4, 6-8]$), sparse positive matrices (see $[9]$), Toeplitz matrices (see $[10, 11]$ $[10, 11]$ $[10, 11]$), Bernoulli matrices (see [\[12\]](#page-12-10)) etc.

This paper is organized as follows. In next section, we prove a characterization of the (h, r) -generalized circulant matrices. By using this result we are able to prove that the matrix $A = \sum_{j=0}^{\lfloor \frac{n}{h} \rfloor} a_j P_n^{j h}(r)$ is similar to the matrix $B =$ diag $\left\{\sum_{j=0}^{\lfloor \frac{n}{h} \rfloor} a_j P_m^j(r^\theta), \cdots, \sum_{j=0}^{\lfloor \frac{n}{h} \rfloor} a_j P_m^j(r^\theta) \right\}$, the direct sum of k matrices coinciding with $\sum_{j=0}^{\lfloor \frac{n}{h} \rfloor} a_j P_m^j(r^{\theta})$. This implies new results on the values of the permanent

and also on the determination of the eigenvalues of *r*-circulant matrices.

In Section [3,](#page-6-0) we consider the problem of studying the *r*-circulant matrix $A =$ $a_0I + a_iP^i(r) + a_jP^j(r)$, and determine a lower bound for the values of the permanent of these matrices.

2 Characterization

Consider a generalized (h, r) -circulant matrix A of order $n = km$, where h, n, k, m are positive integers and $(n, h) = k$, let A_j $(1 \le j \le k)$ be the submatrix of A of type $m \times n$ formed by the rows of A

$$
1 + (j - 1)m, 2 + (j - 1)m, \cdots, jm.
$$

Theorem 1 *A matrix A of order n is generalized* (h, r) *-circulant, where* $(n, h) = k$ *and n* = *km, if and only if it is satisfied the relation*

$$
APh(r) = P'(r\theta)A
$$
 (2.1)

where $P'(r^{\theta})$ *is direct sum of k matrices coinciding with* $P_m(r^{\theta})$ *and* $\theta = \frac{h}{k}$ *.*

Proof Assume that a matrix *A* of order *n* is satisfied [\(2.1\)](#page-3-0). The matrix $AP^h(r)$ is obtained by multiplying elements of last *h* columns of *A* by *r* and shifting each column *h* positions to the right cyclicaly. Taking into account the partitioned form of *A*, we have

$$
AP^{h}(r) = \begin{bmatrix} A_1 \\ A_2 \\ \vdots \\ A_k \end{bmatrix} P^{h}(r) = \begin{bmatrix} A_1 P^{h}(r) \\ A_2 P^{h}(r) \\ \vdots \\ A_k P^{h}(r) \end{bmatrix}.
$$
 (2.2)

Hence $(AP^{h}(r))_{j} = A_{j}P^{h}(r)$, for $1 \leq j \leq k$.

Now consider the product $P'(r^{\theta})A$. From the definition of $P'(r^{\theta})$ and the partitioned of *A* we have

$$
\begin{bmatrix}\nP_m(r^\theta) \\
P_m(r^\theta) \\
\vdots \\
P_m(r^\theta)\n\end{bmatrix}\n\begin{bmatrix}\nA_1 \\
A_2 \\
\vdots \\
A_k\n\end{bmatrix}\n=\n\begin{bmatrix}\nP_m(r^\theta)A_1 \\
P_m(r^\theta)A_2 \\
\vdots \\
P_m(r^\theta)A_k\n\end{bmatrix}
$$
\n(2.3)

From the equalities [\(2.1\)](#page-3-0), [\(2.2\)](#page-4-0) and [\(2.3\)](#page-4-1) it follows $A_j P^h(r) = P_m(r^\theta)A_j$ ($1 \le j \le n$) *k*), that is to say, the submatrices A_j ($1 \le j \le k$) are (h, r) -circulant matrices of type $m \times n$. By Definition 1, A is generalized (h, r) -circulant.

Conversely, assume that *A* is generalized (h, r) -circulant, then each A_i (1 \leq *j* $\leq k$) is (h, r) -circulant. That means $A_j P^h(r) = P_m(r^{\theta}) A_j$ $(1 \leq j \leq k)$. Since $(AP^h(r))_j = A_j P^h(r)$ and $(P^{'}(r^{\theta})A)_j = P^{'}(r^{\theta})A_j$, then $(AP^h(r))_j =$ $(P'(r^{\theta})A)_j$ (1 ≤ *j* ≤ *k*). It follows that $AP^h(r) = P'(r^{\theta})A$.

When $k = 1$ a matrix A which satisfies [\(2.1\)](#page-3-0) turns out to be a (h, r) -circulant matrix; thus (h, r) -generalized circulant matrix turns out to be a generalization of the notion of *(h, r)*-circulant matrix.

Definition 2 A matrix $Q(r) = [q_{i,j}]$ of order *n* with $q_{1,1} = 1$ and $q_{1,j} = 0$ (j = $\overline{2,n}$) is said (*h, r*)-regular, when it can be partitioned into (*h, r*)-circulant submatrices $Q_i(r)$ of type $m \times n$ ($1 \leq j \leq k$, $n = km$), such that every submatrix, distinct from the first, is obtained from the preceding by shifting every column one position to the right.

The definition implies that also $q_{1+(i-1)m,i} = 1$ $(i = \overline{1,k})$.

It is easy to get that $Q^{-1}(r) = \left[Q(\frac{1}{r})\right]^T$, and for an arbitrary matrix *A* of order *n*, there holds per $(Q(r)AQ^{-1}(r)) =$ per (A) .

Notice that a *(h, r)*-regular matrix of order *n* is uniquely determined.

Theorem 2 Let $A = a_0I + a_1P^h(r) + \cdots + a_tP^{th}(r)$ be a matrix of order *n, where* $1 < h < n$, $(n, h) = k, n = km, t = \left\lfloor \frac{n}{h} \right\rfloor$ and a_i $(1 \le i \le t)$ be real numbers;

 \Box

moreover let Q(r) be the (h, r)-regular generalized permutation matrix of order n. Then A is similar to the direct sum of <i>k matrices coinciding with $\sum_{i=0}^{t} a_i P_m^i(r^{\theta})$, $here \theta = \frac{h}{k}$.

Proof By Theorem 1, it satisfies the relation

$$
Q(r)Ph(r) = P^{'}(r\theta)Q(r),
$$

where $P'(r^{\theta})$ is the direct sum of *k* matrices coinciding with $P_m(r^{\theta})$. Then $P^h(r) = Q^{-1}(r)P^{r}(r^{\theta})Q(r)$, it follows

$$
A = a_0 I + a_1 Q^{-1}(r) P^{'}(r^{\theta}) Q(r) + \dots + a_t Q^{-1}(r) \left[P^{'}(r^{\theta}) \right]^t Q(r)
$$

then

$$
Q(r)AQ^{-1}(r) = a_0I + a_1P^{'}(r^{\theta}) + \cdots + a_t\left[P^{'}(r^{\theta})\right]^t = \bigoplus \sum_{i=0}^t a_i P_m^i(r^{\theta}).
$$

This completes the proof of the theorem.

In the case of $h = 1$, an immediate consequence is that the *r*-circulant matrix $A = a_0 + a_1 P^h(r) + \cdots + a_s P^{sh}(r)$ where $s \leq \lfloor \frac{n}{h} \rfloor$, is similar to the *r*-circulant matrix $B = a_0I + a_1P(r) + \cdots + P^s(r)$. Another consequence is the following

Corollary 1 Let $A = \sum_{i=1}^{s} a_i P^{ih}(r)$ be a *r*-circulant matrix of *n*, where $1 < h < n$, $(n,h)=k$, $n=km$, $t=\lfloor \frac{n}{h} \rfloor$, $\theta=\frac{h}{k}$ and $0 \leq s \leq t$. Then we have

$$
Per\left(\sum_{i=0}^s a_i P^{ih}(r)\right) = \left(Per\left(\sum_{i=0}^s a_i P^i_m(r^\theta)\right)\right)^k.
$$

Proof It is well known that for an arbitrary matrix *A* of *n* and a *(h, r)*-regular generalized permutation matrix $Q(r)$ of order *n*, the relation Per (A) = Per (QAQ^{-1}) always holds. Then by Theorem 2, it follows the result. always holds. Then by Theorem 2, it follows the result.

Example As an example of (6,2)-regular generalized permutation matrix of order 9, we consider the following matrix

$$
Q(2) = \left[\begin{array}{rrrr} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 \end{array}\right]
$$

.

Then consider the 9 \times 9 matrix $A = I + P^6$, we obtain

$$
Q(2)AQ^{-1}(2) = \begin{bmatrix} 1 & 1 & 0 & & & \\ 0 & 1 & 1 & & & \\ 4 & 0 & 1 & & & \\ & & & 1 & 1 & 0 & \\ & & & 0 & 1 & 1 & \\ & & & & 4 & 0 & 1 & \\ & & & & & 1 & 1 & 0 \\ & & & & & 0 & 1 & 1 \\ & & & & & 4 & 0 & 1 \end{bmatrix}.
$$

Recall that if *A* is a *r*-circulant matrix with first row $[a_0, a_1, \dots, a_{n-1}]$, the polynomial $p(\lambda) = \sum_{\substack{i=0 \ i \neq i}}^n a_i \lambda^i$ is said the Hall polynomial of the matrix *A*.

Denote by $\omega_k = \rho e^{\frac{2\pi i}{n}k}$ $(k = \overline{0, n-1})$, where

$$
\rho = \begin{cases} \sqrt[n]{r}, & r > 0 \\ \sqrt[n]{|r|} \left(\cos \frac{\pi}{n} + i \sin \frac{\pi}{n} \right), & r < 0 \end{cases}.
$$

Then the eigenvalues of *r*-circulant matrix *A* are $p(\omega_0)$, $p(\omega_1)$, ···, $p(\omega_{n-1})$. Denote by $\varpi_k = \varrho e^{\frac{2\pi i}{m}k}$ $(k = \overline{0, m-1})$, where

$$
\varrho = \begin{cases} \sqrt[m]{r}, & r > 0 \\ \sqrt[m]{|r|} \left(\cos \frac{\pi}{m} + i \sin \frac{\pi}{m} \right), & r < 0 \end{cases}.
$$

By Theorem 2, we can get the following

Corollary 2 Let the *r*-circulant matrix $A = a_0I + a_1P^h(r) + \cdots + a_sP^{sh}(r)$ *, and* $q(\lambda)$ *be the Hall polynomial of the r-circulant matrix* $B = a_0 I + a_1 P_m(r^{\theta}) + \cdots$ $a_s P_m^s(r^{\theta})$, where $1 \leq h < n$, $k = (n, h)$, $n = km$, $\theta = \frac{h}{k}$, and $1 \leq s \leq \lfloor \frac{n}{h} \rfloor$.

Then the sets of eigenvalues of A and B coincide for $k = 1$ *. In the case of k >* 1*, the set of eigenvalues of A is the union of k sets coinciding with* $\{q(\varpi_0), q(\varpi_1), \cdots, q(\varpi_{m-1})\}.$

A consequence is that, when *k >* 1, each eigenvalue of *A* has multiplicity at leat *k*.

3 Sparse *r***-circulant matrices**

In this section, we consider the *r*-circulant matrix of order *n*

$$
A = a_0 I + a_i P^i(r) + a_j P^j(r),
$$

where *i*, *j*, *n* are positive integers and $1 \le i \le j \le n$.

Lemma 2 Let $Q(r)$ be the (h, r) -regular matrix of order n, where $1 < h < n$, $(n, h) = k > 1$, $n = km$ and $h = kh'$. Then the nonzero element in the *n*-th column

of Q(r) is in one of the last m rows; and the nonzero element in the n-th row of $Q^{-1}(r)$ *is in one of the last m columns.*

Proof For the last *m* rows of $Q(r)$, let $i = (k-1)m + q$ $(1 \le q \le m)$, then $\sigma(i) = k + (q - 1)h$ (σ is defined in following [\(3.2\)](#page-7-0)). The nonzero element of $Q(r)$ which is in position (i, n) means $n | \sigma(i)$. For the *m* integers: $1 + h^{\prime}, 1 + 2h^{\prime}, \cdots, 1 +$ $(m - 1)h'$, by the pigeonhole principle, there exists $q \in \{1, 2, \dots, m\}$ such that 1 + $(q - 1)h'$ ≡ 0(mod *m*),which is equivalent to $k + (q - 1)h$ ≡ 0(mod *n*). Since there is one and only one nonzero element in each row and column of $Q(r)$, Then the nonzero element in the *n*-th column of $Q(r)$ must be in one of the last *m* rows.

Similarly, we can proof another result of lemma.

Lemma 3 *Let Q(r) be the (h, r)-regular generalized permutation matrix of order n, where* $1 \leq h \leq n$, $(n, h) = k > 1$, $n = km$ and $h = kh'$. The matrix $Q(r)P(r)Q^{-1}(r)$ *may be partitioned into the following superdiagonal* $k \times k$ *block form:*

$$
B = Q(r) \cdot P(r) \cdot Q^{-1}(r) = \begin{bmatrix} 0 & I_m & 0 & \cdots & 0 \\ 0 & 0 & I_m & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & I_m \\ \Delta_m^s & 0 & 0 & \cdots & 0 \end{bmatrix},
$$
(3.1)

where $\Delta_m = diag(r^{-\alpha}, \dots, r^{-\alpha})$ *number*: *^m*−*^s , rβ,* ··· *, r^β number*: *^s* $($ \rangle \times $P_m(1)$ *, s is the inverse of h['] modulo m*, and $\alpha = \left| \frac{sh-k+1}{n} \right|, \beta = \left| \frac{k-1-sh+mh}{n} \right| + 1.$

Proof Notice that the (h, r) -regular matrix $Q(r) = [q_{i,j}]$ of order *n* can be written in the form

$$
q_{i,j} = \begin{cases} r^{\left\lfloor \frac{\sigma(i)}{n} \right\rfloor}, & \text{if } \sigma(i) \equiv j \text{ (mod } n \text{) and } n \nmid \sigma(i) \\ r^{\left\lfloor \frac{\sigma(i)}{n} \right\rfloor - 1}, & \text{if } \sigma(i) \equiv j \text{ (mod } n \text{) and } n | \sigma(i) \\ 0, & \text{otherwise} \end{cases}.
$$

where σ is a permutation of *n* elements be represented by the following array:

$$
\left(\begin{matrix} 1 & \cdots & m & m+1 & \cdots & 2m & \cdots & (k-1)m+1 & \cdots & km \\ 1 & \cdots & 1 + (m-1)h & 2 & \cdots & 2 + (m-1)h & \cdots & k & \cdots & k + (m-1)h \end{matrix}\right).
$$
\n(3.2)

Similarly, the circulant matrix $P(1)$ represents a permutation π . Firstly, let us consider the simple case of $r = 1$, then

$$
\sigma \pi \sigma^{-1} = \begin{pmatrix} 1 & 2 & \cdots (k-1)m & (k-1)m+1 & \cdots & km \\ m+1 & m+2 & \cdots & km & s+1 & \cdots & s \end{pmatrix},
$$
 (3.3)

where the integers are taken modulo *n* and $k + 1 \equiv 1 + sh \pmod{n}$; then *s* is the inverse of h' modulo m . As a consequence, the corresponding

permutation matrix may be partitioned into blocks of order *m* in the following form:

$$
\left[\begin{array}{ccccc} 0 & I_m & 0 & \cdots & 0 \\ 0 & 0 & I_m & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & I_m \\ (P_m(1))^s & 0 & 0 & \cdots & 0 \end{array}\right],
$$

it is just the result in [\[4\]](#page-12-3).

Now let us consider the case of $r \neq 1$.

It is evident that two matrices $Q(r)P(r)Q^{-1}(r)$ and $Q(1)P(1)Q^{-1}(1)$ have the same sparse structure and only different in nonzero elements.

For the first $(k-1)m$ rows of the matrix $Q(r)P(r)Q^{-1}(r)$, let $i = (t-1)m + q$, where $1 \le t \le k - 1$, $1 \le q \le m$ and t, q are integers. Using [\(3.2\)](#page-7-0), $\sigma(i) =$ *t* + $(q - 1)h$. Then by Lemma 2, we can get *n* $\dagger \sigma(i)$ for $1 \le i \le (k - 1)m$.

From the structure of *(h, r)*-regular matrices, the nonzero element in the *i*-th row of $Q(r)$ is r^{μ} , where $\mu = \frac{t + (q-1)h}{n}$.

By [\(3.3\)](#page-7-1), $j = \sigma \pi \sigma^{-1}(i) = t m + q$, then the nonzero element in the *j*-th column of $Q^{-1}(r)$ is $r^{-\nu}$, where

$$
v = \begin{cases} \left\lfloor \frac{t+1+(q-1)h}{n} \right\rfloor, & \text{if } n \nmid (t+1+(q-1)h) \\ \left\lfloor \frac{t+1+(q-1)h}{n} \right\rfloor - 1, & \text{if } n \mid (t+1+(q-1)h) \end{cases}
$$

If $n \nmid (t+1+(q-1)h)$, then $\left| \frac{t+(q-1)h}{n} \right| = \left| \frac{t+1+(q-1)h}{n} \right|$; if $n \mid (t+1+(q-1)h)$, then $\left| \frac{t+(q-1)h}{n} \right| = \left| \frac{t+1+(q-1)h}{n} \right| - 1$, it follows $\mu = \nu$ and $B(i, \sigma(i)) = r^{\mu} \times 1 \times$ $r^{-\nu} = 1$.

Then we can conclude that all the nonzero elements in the first $(k - 1)m$ rows of the matrix $Q(r)P(r)Q^{-1}(r)$ are 1.

Now we turn to consider the nonzero elements in the last *m* rows of the matrix $Q(r)P(r)Q^{-1}(r)$.

Let $i = (k - 1)m + q$ $(1 \le q \le m)$. By (3.2) , $\sigma(i) = k + (q - 1)h$, then the nonzero element in the *i*-th row of $Q(r)$ is r^{μ} , where

$$
\mu = \begin{cases} \left\lfloor \frac{k + (q-1)h}{n} \right\rfloor, & \text{if } n \nmid (k + (q-1)h) \\ \left\lfloor \frac{k + (q-1)h}{n} \right\rfloor - 1, & \text{if } n | (k + (q-1)h) \end{cases}
$$

By [\(3.3\)](#page-7-1), $j = \sigma \pi \sigma^{-1}(i) = s + q$. Then using Lemma 2 again, we can get *n* \dagger $(1 + (q - 1 + s)h)$, it follows $n \nmid (1 + (q - 1 + s - m)h)$.

.

.

.

Notice that for the matrix $P(r)$, its element in position $(n, 1)$ is r, and other nonzero elements are 1. Then the nonzero element in the *j*-th column of $Q^{-1}(r)$ is *r*−*^ν* , where

$$
\nu = \begin{cases} \left\lfloor \frac{1 + (q - 1 + s)h}{n} \right\rfloor, & \text{if } q \le m - s \\ \left\lfloor \frac{1 + (q - 1 + s - m)h}{n} \right\rfloor, & \text{if } q > m - s \end{cases}
$$

By $sh' \equiv 1 \pmod{m}$, we can get

$$
(1 + (q - 1 + s)h) - (k + (q - 1)h) \equiv 1 \pmod{n},\tag{3.4}
$$

and

$$
(k + (q - 1)h) - (1 + (q - 1 + s - m)h) \equiv n - 1 \pmod{n}.
$$
 (3.5)

Therefore, for $q \leq m - s$, if $n \nmid (k + (q - 1)h)$, then $B(i, \sigma(i)) = r^{\mu} \times 1 \times r^{-\nu} =$ $r^{-(\nu-\mu)} = r^{-\left(\left[\frac{(1+(q-1+s)h)}{n}\right]-\left[\frac{k+(q-1)h}{n}\right]\right)}$; if $n|(k+(q-1)h)$, then $B(i,\sigma(i)) = r^{\mu} \times$ $r \times r^{-\nu} = r^{-\left(\left\lfloor \frac{(1+(q-1+s)h)}{n} \right\rfloor - 1 - \left\lfloor \frac{k+(q-1)h}{n} \right\rfloor + 1\right)}$ By [\(3.4\)](#page-9-0), we can get $B(i, \sigma(i)) = r^{-\left\lfloor \frac{sh-k+1}{n} \right\rfloor}$. For $q > m - s$, by [\(3.5\)](#page-9-1), similarly, we can obtain $B(i, \sigma(i)) = r^{\left\lfloor \frac{k-1-sh+mh}{n} \right\rfloor + 1}$.

At last, set $\alpha = \left| \frac{sh-k+1}{n} \right|$, $\beta = \left| \frac{k-1-sh+mh}{n} \right| + 1$, we complete the proof of the lemma. \Box

Example Let $Q(3)$ be the $(6, 3)$ -regular matrix of order 8, and $P(3)$ be the 3circulant matrix of order 8 with first row $(0, 1, 0, \dots, 0)$. They are of the following forms

$$
Q(3) = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & 9 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}, Q^{-1}(3) = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{9} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{3} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{3} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix},
$$

and

$$
P(3) = \left[\begin{array}{rrrr} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 3 & 0 & 0 & 0 & 0 & 0 & 0 \end{array}\right],
$$

then

$$
Q(3) \cdot P(3) \cdot Q^{-1}(3) = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & \frac{1}{9} & 0 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}.
$$

Now, let us consider the $n \times n$ sparse *r*-circulant matrix

$$
A = a_0 I + a_i P^i(r) + a_j P^j(r),
$$

where *i*, *j*, *n* are positive integers such that $1 \le i \le j \le n$.

Theorem 3 *If the positive integers i, j, n have a non-trivial common factor, say h, n*=*hm,* $i = h i'$, $j = h j'$ and $\theta = 1$, then *A* is similar to the direct sum of *h* matrices *coinciding with* $a_0I_m + a_iP_m^{i'}(r^{\theta}) + a_jP_m^{j'}(r^{\theta}).$

It is the special case of Theorem 2.

Now assume that *i, j, n* have not a common factor. In particular, as first case, assume that *n* and *i* are coprime.

Theorem 4 *Let* $A = a_0I + a_iP^i(r) + a_jP^j(r)$ *be a r-circulant matrix of order n, where* $1 \leq i < j \leq n-1$ *.* $(n, i) = 1, j = iq + t$, $0 \leq t < i$ *. Then A is similar to* $a_0I + a_iP(r^{\theta}) + a_jr^{-at}P^{q+st}(r^{\theta})$, where s is the inverse of i modulo n, $a = \frac{si-1}{n}$, $and \theta = i$.

Proof Let $Q(r)$ be the (i, r) -regular matrix of order *n*. Then $P^i(r)$ = $Q^{-1}(r)P(r^{\theta})Q(r)$ and

$$
A = a_0 I + a_i Q^{-1}(r) P(r^{\theta}) Q(r) + a_j \left(Q^{-1}(r) P(r^{\theta}) Q(r) \right)^q P^t(r),
$$

it follows $Q(r)AQ^{-1}(r) = a_0I + a_iP(r^{\theta}) + a_jP^{q}(r^{\theta})(Q(r)P(r)Q^{-1}(r))$ ^t. Since $P^{s}(r^{\theta}) = (Q(r)P^{i}(r)Q^{-1}(r))^{s} = r^{a}Q(r)P(r)Q^{-1}(r)$, then

$$
Q(r)AQ^{-1}(r) = a_0I + a_iP(r^{\theta}) + a_jr^{-at}P^{q+st}(r^{\theta}).
$$

Theorem 5 *Let* $A = a_0I + a_iP^i(r) + a_jP^j(r)$ *be a r-circulant matrix of order n, where* $1 \le i < j < n$, $(n, i) = k > 1$, $n = km$, $i = ki'$, $j = iq + t$, $0 < t < i$ and *i, j, n have not a non-trivial common factor.*

Then A *is similar to a* $k \times k$ *block matrix whose elements on the main diagonal coincide with* $a_0I + a_iP_m(r^{\theta})$ (here $\theta = i'$), while other elements are 0, but on *the diagonals* $d(1, t + 1)$ *and* $d(n - t, 1)$ *, where they coincide with* $a_j P_m^q(r^\theta)$ *and*

 $a_j P_m^q(r^{\theta}) \times \Delta_m^s$, respectively, where *s* is the inverse of *i*['] modulo m, Δ_m is in the *form of which in* [\(3.1\)](#page-7-2)*.*

Proof Denote by *Q(r)* the *(i, r)*-regular matrix of order *n*. By Theorem 1

$$
P^{i}(r) = Q^{-1}(r)P^{'}(r^{\theta})Q(r),
$$

where $P'(r^{\theta})$ is direct sum of *k* matrices coinciding with $P_m(r^{\theta})$. By Lemma 3 we have that

$$
\left(Q(r)P(r)Q^{-1}(r)\right)^{t} = \left[\begin{array}{cccccc} 0 & \cdots & 0 & I_{m} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & 0 & 0 & \cdots & I_{m} \\ \Delta_{m}^{s} & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \Delta_{m}^{s} & 0 & \cdots & 0 \end{array}\right],
$$

where in the first row the matrix I_m is in position $(1, t + 1)$ and in the first column Δ_m^s is in position $(n - t, 1)$. As $\left(P'(r^\theta)\right)^q$ is direct sum of *k* matrices coinciding with $P_m^q(r^{\theta})$, it follows that $(P'(r^{\theta}))^q \cdot (Q(r) \cdot P(r) \cdot Q^{-1}(r))^t$ is a block matrix of order *k* having the same structure as the preceding one, but in which I_m and Δ_m^s are replaced by $P_m^q(r^{\theta})$ and $P_m^q(r^{\theta}) \times \Delta_m^s$, respectively.

Then

$$
Q(r)AQ^{-1}(r) = \begin{bmatrix} a_0I_m + a_iP_m(r^{\theta}) & \cdots & 0 & a_jP_m^q(r^{\theta}) & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & a_0I_m + a_iP_m(r^{\theta}) & 0 & \cdots & a_jP_m^q(r^{\theta}) \\ a_jP_m^q(r^{\theta}) \times \Delta_m^s & \cdots & 0 & a_0I_m + a_iP_m(r^{\theta}) & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & a_jP_m^q(r^{\theta}) \times \Delta_m^s & 0 & \cdots & a_0I_m + a_iP_m(r^{\theta}) \end{bmatrix},
$$
 and the result holds.

and the result holds.

Now we consider a lower bound for the sparse *r*-circulant matrices.

Lemma 4 *Let* $A = a_0I + a_iP^i(r)$ *be a r-circulant matrix of order n, where* a_0 *, a_i are real numbers,* $(n, i) = k$ *and* $n = km$, $i = ki'$. *Then per* $(A) = (a_0^m + a_i^m r^{\theta})^k$, $here \theta = i$ ['].

Proof Let $Q(r)$ be the (i, r) -regular matrix of order *n*. By Theorem 1 we have that $P^i(r) = Q^{-1}(r)P^i(r^{\theta})Q(r)$, where $P^i(r^{\theta})$ is a direct sum of *k* matrices coinciding with $P_m(r^{\theta})$. Then $Q(r)AQ^{-1}(r) = \bigoplus (a_0I_m + a_iP_m(r^{\theta})$ and per $(A) =$ $(\text{per } (a_0 I_m + a_i P_m(r^\theta)))^k$. Obviously, per $(a_0 I_m + a_i P_m(r^\theta)) = a_0^m + a_i^m r^\theta$. It follows per $(A) = (a_0^m + a_i^m r^{\theta})^k$. \Box

Now let us consider the case that *i, j, n* have not a non-trivial common factor.

Theorem 6 *Let* $A = a_0I + a_iP^i(r) + a_jP^j(r)$ *be a r-circulant matrix of order n*_{*i*} *where* a_0 , a_i , a_j *are real numbers*, $1 \le i < j \le n - 1$, $(n, i) = k$, $n = km$, $i = ki'$ $, j = kq + t, 0 \le t < k$. Then

$$
per (A) \ge (a_0^m + a_i^m r^{\theta})^k + a_j^n r^{\theta q k} \times r^{s^2 \alpha + s^2 \beta - m s \alpha},
$$

where s, α , β , Δ_m , θ *are in the forms of which in Theorem 5.*

Proof By Theorem 5, A is similar to a $k \times k$ block matrix, which coincide with $a_0I + a_iP_m(r^\theta)$ on the main diagonal, while other elements are 0, but on the diagonals $d(1, t + 1)$ and $d(n - t, 1)$, where they coincide with $a_j P_m^q(r^\theta)$ and $a_j P_m^q(r^\theta) \times \Delta_m^s$, respectively. Then

per (A) =per
$$
(Q(r)AQ^{-1}(r)) \geq
$$
 (per $(a_0I + a_iP_m(r^{\theta})))^k + a_j^n$ per $(P_m^{qk}(r^{\theta})\Delta_m^{st})$
\n $\geq (a_0^m + a_i^mr^{\theta})^k + a_j^nr^{\theta qk} \times r^{s^2t\alpha + s^2t\beta - mst\alpha}$
\n $= (a_0^m + a_i^mr^{\theta})^k + a_j^nr^{\theta qk + s^2t(\alpha + \beta) - mst\alpha}.$

This completes the proof of the theorem.

 \Box

Acknowledgments The author wishes to thank the anonymous referees for their careful reading of the manuscript and their fruitful suggestions.

References

- 1. Davis, P.J.: Circulant Matrices, 2nd end. Chelsea Publishing, New York (1994)
- 2. Mei, Y.: Computing the square roots of a class of circulant matrices. J. Appl. Math., 1–15 (2012)
- 3. Dedo, E., Marini, A., Salvi, N.Z.: On certain generalized circulant matrices. Mathematica Pannonica ` **14**(2), 273–281 (2003)
- 4. Salvi, R., Salvi, N.Z.: On very sparse circulant (0,1) matrices. Linear Algebra Appl. **418**, 565–575 (2006)
- 5. Valiant, L.G.: The complexity of computing the permanent. Theoret. Comput. Sci. **8**, 189–201 (1979)
- 6. Cummings, L.J., Wallis, J.S.: An algorithm for the permanent of circulant matrices. Canad Math. Bull. **20**(1), 67–70 (1977)
- 7. Sburlati, G.: On the parity of permanents of circulant matrices. Linear Algebra Appl. **428**, 1949–1955 (2008)
- 8. Codenotti, B., Resta, G.: Computation of sparse circulant permanents via determinants. Linear Algebra Appl. **355**, 15–34 (2002)
- 9. Forbert, H., Marx, D.: Calculation of the permanent of a sparse positive matrix. Comput. Phys. Commun. **150**, 267–273 (2003)
- 10. Codenotti, B., Crespi, V., Resta, G.: On the permanent of certain (0, 1) Toeplitz matrices. Linear Algebra Appl. **267**, 65–100 (1997)
- 11. Schwartz, M.: Efficiently computing the permanent and Hafnian of some banded Toeplitz matrices. Linear Algebra Appl. **430**, 1364–1374 (2009)
- 12. Tao, T., Van, V.: On the permanent of random Bernoulli matrices. Adv. Math. **220**, 657–669 (2009)