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Abstract In this paper a particular partition on blocks of generalized (h, r)-circulant
matrices is determined. We obtain a characterization of generalized (h, r)-circulant
matrices and get some results on the values of the permanent and also on the deter-
mination of the eigenvalues of r-circulant matrices. At last, a lower bound for the
permanent of these matrices is achieved.
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1 Introduction

A matrix A = [ai,j ] of type m×n (m ≤ n) is called (h, r)-circulant if it is of the form
⎧
⎨

⎩

a1,j = αj , j = 1, · · · , n,

ai,j =
{

ai−1,j−h, j > h

rai−1,j−h+n, j ≤ h
, i = 2, · · · , m, j = 1, · · · , n,

the above equation can be rewritten as
{

a1,j = αj , j = 1, · · · , n,

ai,j = rθ1ai−1,(j−h+n) mod n, i = 2, · · · , m, j = 1, · · · , n,
(1.1)
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where θ1 =
{

0, if j > h,

1, if j ≤ h,
h is a positive integer which satisfies h < n, and r

is a parameter [1]. Obviously, each row other than the first one, is obtained from
the preceding row by shifting the elements cyclically h positions to the right and
multiplying the last h elements of the preceding row by r .

When h = 1, the matrix A is called r-circulant [1, 2]. When r = 1, the matrix A

is called h-circulant [3].
Let Pn(r) be the r-circulant matrix of order n with first row (0, 1, 0, · · · , 0) as

follows

Pn(r) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1
r 0 0 . . . 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

;

obviously, P n
n (r) = rIn. If there is not possibility of ambiguity we often drop the

subscript n and simply write Pn(r) as P(r).
If (a0, a1, · · · , an−1) is the first row of a r-circulant matrix A of order n, then

A =∑n−1
i=0 aiP

i(r).

Lemma 1 Let m, n, h be positive integers, where m ≤ n, h < n and mh ≡
0 (mod n), a matrix of type m × n is (h, r)-circulant if and only if it is satisfied
relation

AP h
n (r) = Pm(rθ )A,

where θ = mh
n

.

Proof Assume A is (h, r)-circulant. Let a1,j = αj (j = 1, · · · , n), and B =
(bi,j )m×n = AP h

n (r), it follows

b1,j = rθ1α(j−h+n) mod n, (1.2)

and

bi,j = rθ1+θ2ai−1,[(j−h+n)−h+n] mod n, i = 2, · · · ,m, θ2 =
{

0, if (j − h + n) mod n > h,

1, if (j − h + n) mod n ≤ h.

(1.3)
Hence

bm,j =rθ1+θ2am−1,(j−2h+2n) mod n = · · · · · ·
=rθ1+θ2+···+θmam−1−(m−2),[(j−2h+2n)−(m−2)h+(m−2)n] mod n

=rθ1+θ2+···+θma1,(j−mh+mn) mod n, (1.4)

where θi =
{

0, if [j − (i − 1)h + (i − 1)n] mod n > h,

1, if [j − (i − 1)h + (i − 1)n] mod n ≤ h,
i = 1, · · · , m.

Now consider C = (ci,j )m×n = Pm(rθ )A, here θ = mh
n

.

C = {Pm(rθ ) × [rθ1ai−1,(j−h+n) mod n]m×n}m×n,
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therefore

ci,j = rθ1ai,(j−h+n) mod n = rθ1+θ2ai−1,(j−2h+2n) mod n, i = 2, · · · , m − 1, (1.5)

and

c1,j = rθ1a1,(j−h+n) mod n = rθ1α(j−h+n) mod n, (1.6)

cm,j = rθa1,j = rθαj . (1.7)

Since n|mh and n > m, then j = (j −mh+mn) mod n. From the definition of θi ,
there holds j = j −mh+(θ1 +θ2 +· · · , θm)n, then we have θ1 +θ2 +· · ·+θm = mh

n
,

that means bm,j = cm,j . By (1.2)–(1.7), we can obtain AP h
n (r) = Pm(rθ )A.

If a matrix A of type m × n is satisfied the relation AP h
n (r) = Pm(rθ )A, let

a1,j = αj (j = 1, · · · , n), then

bi,j = (AP h
n (r))i,j = rθ1ai,(j−h+n) mod n,

ci,j = (Pm(rθ )A)i,j =
{

ai+1,j , i = 1, · · · , m − 1,

rθa1,j , i = m.

Since bi,j = ci,j , then

ai+1,j = rθ1ai,(j−h+n) mod n.

It follows that A is (h, r)-circulant.
This completes the proof of the lemma.

Let A = [ai,j ] be a matrix of order n. We denote by d(1, m), where
1 ≤ m ≤ n, the diagonal starting in a1,m, that is, the sequence of elements
a1,m, a2,m+1, · · · , an−m+1,n and by d(m, 1) the sequence am,1, am+1,2, · · · ,

an,n−m+1 ([4]).
Let k and ni (i = 1, k) be positive integers, Ai (i = 1, k) be square matrices of

order ni , the block diagonal square matrix

A =

⎡

⎢
⎢
⎢
⎣

A1 0 · · · 0
0 A2 · · · 0
...

...
...

...

0 0 · · · Ak

⎤

⎥
⎥
⎥
⎦

of order n1 + n2 + · · · + nk is called the direct sum of the matrices A1, A2, · · · Ak . It
is denoted as A = diag(A1, A2, · · · , Ak).

Definition 1 Let h, n be positive integers, where 1 ≤ h < n, k = (n, h), n = km

and h = kh
′
. A matrix A of order n is said (h, r)-generalized circulant when it is

partitioned into k submatrices of type m × n, which are (h, r)-circulant.
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In other words a matrix A of order n is (h, r)-generalized circulant when it can be
partitioned into (h, r)-circulant submatrices Aj (1 ≤ j ≤ k) of type m×n as follows

A =

⎡

⎢
⎢
⎢
⎣

A1
A2
...

Ak

⎤

⎥
⎥
⎥
⎦

. (1.8)

Since mh = nh
′ ≡ 0(mod n), then we obtain AjP

h
n (r) = Pm(rθ )Aj (j = 1, k,

θ = mh
n

) by Lemma 1.
Recall that the permanent of a n×n matrix A = [ai,j ], denoted per A, is defined as

per A =
∑

σ∈Sn

n∏

i=1

ai,σ (i),

where the sum extends over all permutations σ of Sn .
The computation of the permanent of generic matrices seems to be a very hard

task. It has been shown [5] that the computation of the permanent is � P-complete and
therefore a polynomial time algorithm is unlikely to exist. Recently, a lot of people
have tried to study the permanent of some special matrices such as circulant matrices
(see [4, 6–8]), sparse positive matrices (see [9]), Toeplitz matrices (see [10, 11]),
Bernoulli matrices (see [12]) etc.

This paper is organized as follows. In next section, we prove a characteriza-
tion of the (h, r)-generalized circulant matrices. By using this result we are able

to prove that the matrix A = ∑� n
h�

j=0 ajP
jh
n (r) is similar to the matrix B =

diag

{
∑� n

h�
j=0 ajP

j
m(rθ ), · · · ,

∑� n
h�

j=0 ajP
j
m(rθ )

}

, the direct sum of k matrices coincid-

ing with
∑� n

h�
j=0 ajP

j
m(rθ ). This implies new results on the values of the permanent

and also on the determination of the eigenvalues of r-circulant matrices.
In Section 3, we consider the problem of studying the r-circulant matrix A =

a0I + aiP
i(r) + ajP

j (r), and determine a lower bound for the values of the
permanent of these matrices.

2 Characterization

Consider a generalized (h, r)-circulant matrix A of order n = km, where h, n, k, m

are positive integers and (n, h) = k, let Aj (1 ≤ j ≤ k) be the submatrix of A of
type m × n formed by the rows of A

1 + (j − 1)m, 2 + (j − 1)m, · · · , jm.

Theorem 1 A matrix A of order n is generalized (h, r)-circulant, where (n, h) = k

and n = km, if and only if it is satisfied the relation

AP h(r) = P
′
(rθ )A (2.1)
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where P
′
(rθ ) is direct sum of k matrices coinciding with Pm(rθ ) and θ = h

k
.

Proof Assume that a matrix A of order n is satisfied (2.1). The matrix AP h(r)

is obtained by multiplying elements of last h columns of A by r and shifting each
column h positions to the right cyclicaly. Taking into account the partitioned form of
A, we have

AP h(r) =

⎡

⎢
⎢
⎢
⎣

A1
A2
...

Ak

⎤

⎥
⎥
⎥
⎦

P h(r) =

⎡

⎢
⎢
⎢
⎣

A1P
h(r)

A2P
h(r)
...

AkP
h(r)

⎤

⎥
⎥
⎥
⎦

. (2.2)

Hence (AP h(r))j = AjP
h(r), for 1 ≤ j ≤ k.

Now consider the product P
′
(rθ )A. From the definition of P

′
(rθ ) and the

partitioned of A we have
⎡

⎢
⎢
⎢
⎣

Pm(rθ )

Pm(rθ )

. . .

Pm(rθ )

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

A1
A2
...

Ak

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

Pm(rθ )A1

Pm(rθ )A2
...

Pm(rθ )Ak

⎤

⎥
⎥
⎥
⎦

(2.3)

From the equalities (2.1), (2.2) and (2.3) it follows AjP
h(r) = Pm(rθ )Aj (1 ≤ j ≤

k), that is to say, the submatrices Aj (1 ≤ j ≤ k) are (h, r)-circulant matrices of
type m × n . By Definition 1, A is generalized (h, r)-circulant.

Conversely, assume that A is generalized (h, r)-circulant, then each Aj (1 ≤
j ≤ k) is (h, r)-circulant. That means AjP

h(r) = Pm(rθ )Aj (1 ≤ j ≤ k).
Since (AP h(r))j = AjP

h(r) and (P
′
(rθ )A)j = P

′
(rθ )Aj , then (AP h(r))j =

(P
′
(rθ )A)j (1 ≤ j ≤ k). It follows that AP h(r) = P

′
(rθ )A.

When k = 1 a matrix A which satisfies (2.1) turns out to be a (h, r)-circulant
matrix; thus (h, r)-generalized circulant matrix turns out to be a generalization of the
notion of (h, r)-circulant matrix.

Definition 2 A matrix Q(r) = [qi,j ] of order n with q1,1 = 1 and q1,j = 0 (j =
2, n) is said (h, r)-regular, when it can be partitioned into (h, r)-circulant submatri-
ces Qj(r) of type m × n (1 ≤ j ≤ k, n = km), such that every submatrix, distinct
from the first, is obtained from the preceding by shifting every column one position
to the right.

The definition implies that also q1+(i−1)m,i = 1 (i = 1, k).

It is easy to get that Q−1(r) =
[
Q( 1

r
)
]T

, and for an arbitrary matrix A of order n,

there holds per (Q(r)AQ−1(r)) = per (A).
Notice that a (h, r)-regular matrix of order n is uniquely determined.

Theorem 2 Let A = a0I + a1P
h(r) + · · · + atP

th(r) be a matrix of order n, where
1 < h < n, (n, h) = k, n = km, t = ⌊

n
h

⌋
and ai (1 ≤ i ≤ t) be real numbers;
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moreover let Q(r) be the (h, r)-regular generalized permutation matrix of order n.
Then A is similar to the direct sum of k matrices coinciding with

∑t
i=0 aiP

i
m(rθ ),

here θ = h
k

.

Proof By Theorem 1, it satisfies the relation

Q(r)P h(r) = P
′
(rθ )Q(r),

where P
′
(rθ ) is the direct sum of k matrices coinciding with Pm(rθ ).

Then P h(r) = Q−1(r)P
′
(rθ )Q(r), it follows

A = a0I + a1Q
−1(r)P

′
(rθ )Q(r) + · · · + atQ

−1(r)
[
P

′
(rθ )

]t
Q(r)

then

Q(r)AQ−1(r) = a0I + a1P
′
(rθ ) + · · · + at

[
P

′
(rθ )

]t =
⊕ t∑

i=0

aiP
i
m(rθ ).

This completes the proof of the theorem.

In the case of h = 1, an immediate consequence is that the r-circulant matrix
A = a0 + a1P

h(r) + · · · + asP
sh(r) where s ≤ ⌊

n
h

⌋
, is similar to the r-circulant

matrix B = a0I + a1P(r) + · · · + P s(r). Another consequence is the following

Corollary 1 Let A =∑s
i=0 aiP

ih(r) be a r-circulant matrix of n, where 1 < h < n,
(n,h)=k, n=km, t = ⌊n

h

⌋
, θ = h

k
and 0 ≤ s ≤ t . Then we have

Per

(
s∑

i=0

aiP
ih(r)

)

=
(

Per

(
s∑

i=0

aiP
i
m(rθ )

))k

.

Proof It is well known that for an arbitrary matrix A of n and a (h, r)-regular gen-
eralized permutation matrix Q(r) of order n, the relation Per(A) = Per(QAQ−1)

always holds. Then by Theorem 2, it follows the result.

Example As an example of (6,2)-regular generalized permutation matrix of order 9,
we consider the following matrix

Q(2) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 2 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 2 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 2 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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Then consider the 9 × 9 matrix A = I + P 6, we obtain

Q(2)AQ−1(2) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0
0 1 1
4 0 1

1 1 0
0 1 1
4 0 1

1 1 0
0 1 1
4 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Recall that if A is a r-circulant matrix with first row [a0, a1, · · · , an−1], the
polynomial p(λ) =∑n

i=0 aiλ
i is said the Hall polynomial of the matrix A.

Denote by ωk = ρe
2πi
n

k (k = 0, n − 1), where

ρ =
{

n
√

r, r > 0
n
√|r| (cos π

n
+ isinπ

n

)
, r < 0

.

Then the eigenvalues of r-circulant matrix A are p(ω0), p(ω1), · · · , p(ωn−1).

Denote by 
k = �e
2πi
m

k (k = 0, m − 1), where

� =
{

m
√

r, r > 0
m
√|r| (cos π

m
+ isin π

m

)
, r < 0

.

By Theorem 2, we can get the following

Corollary 2 Let the r-circulant matrix A = a0I + a1P
h(r) + · · · + asP

sh(r), and
q(λ) be the Hall polynomial of the r-circulant matrix B = a0I + a1Pm(rθ ) + · · · +
asP

s
m(rθ ), where 1 ≤ h < n, k = (n, h), n = km, θ = h

k
, and 1 ≤ s ≤ ⌊n

h

⌋
.

Then the sets of eigenvalues of A and B coincide for k = 1. In the case
of k > 1, the set of eigenvalues of A is the union of k sets coinciding with
{q(
0), q(
1), · · · , q(
m−1)}.

A consequence is that, when k > 1, each eigenvalue of A has multiplicity at leat k.

3 Sparse r-circulant matrices

In this section, we consider the r-circulant matrix of order n

A = a0I + aiP
i(r) + ajP

j (r),

where i, j, n are positive integers and 1 ≤ i < j ≤ n.

Lemma 2 Let Q(r) be the (h, r)-regular matrix of order n, where 1 < h < n,
(n, h) = k > 1, n = km and h = kh

′
. Then the nonzero element in the n-th column
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of Q(r) is in one of the last m rows; and the nonzero element in the n-th row of
Q−1(r) is in one of the last m columns.

Proof For the last m rows of Q(r), let i = (k − 1)m + q (1 ≤ q ≤ m), then
σ(i) = k + (q − 1)h (σ is defined in following (3.2)). The nonzero element of Q(r)

which is in position (i, n) means n|σ(i). For the m integers: 1 +h
′
, 1 + 2h

′
, · · · , 1 +

(m − 1)h
′
, by the pigeonhole principle, there exists q ∈ {1, 2, · · · , m} such that

1 + (q − 1)h
′ ≡ 0(mod m),which is equivalent to k + (q − 1)h ≡ 0(mod n). Since

there is one and only one nonzero element in each row and column of Q(r), Then the
nonzero element in the n-th column of Q(r) must be in one of the last m rows.

Similarly, we can proof another result of lemma.

Lemma 3 Let Q(r) be the (h, r)-regular generalized permutation matrix of order
n, where 1 < h < n, (n, h) = k > 1, n = km and h = kh

′
. The matrix

Q(r)P (r)Q−1(r) may be partitioned into the following superdiagonal k × k block
form:

B = Q(r) · P(r) · Q−1(r) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 Im 0 · · · 0
0 0 Im · · · 0
...

...
...

...
...

0 0 0 · · · Im

�s
m 0 0 . . . 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (3.1)

where �m = diag(r−α, · · · , r−α

︸ ︷︷ ︸
number: m−s

, rβ, · · · , rβ

︸ ︷︷ ︸
number: s

)×Pm(1), s is the inverse of h
′
modulo

m, and α =
⌊

sh−k+1
n

⌋
, β =

⌊
k−1−sh+mh

n

⌋
+ 1.

Proof Notice that the (h, r)-regular matrix Q(r) = [qi,j ] of order n can be written
in the form

qi,j =

⎧
⎪⎪⎨

⎪⎪⎩

r

⌊
σ(i)
n

⌋

, if σ(i) ≡ j (mod n) and n � σ(i)

r

⌊
σ(i)
n

⌋
−1

, if σ(i) ≡ j (mod n) and n|σ(i)

0, otherwise

.

where σ is a permutation of n elements be represented by the following array:
(

1 · · · m m + 1 · · · 2m · · · (k − 1)m + 1 · · · km

1 · · · 1 + (m − 1)h 2 · · · 2 + (m − 1)h · · · k · · · k + (m − 1)h

)

.

(3.2)

Similarly, the circulant matrix P(1) represents a permutation π .
Firstly, let us consider the simple case of r = 1, then

σπσ−1 =
(

1 2 · · · (k − 1)m (k − 1)m + 1 · · · km

m + 1 m + 2 · · · km s + 1 · · · s

)

, (3.3)

where the integers are taken modulo n and k + 1 ≡ 1 + sh(mod n); then
s is the inverse of h

′
modulo m. As a consequence, the corresponding
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permutation matrix may be partitioned into blocks of order m in the following
form:

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 Im 0 · · · 0
0 0 Im · · · 0
...

...
...

...
...

0 0 0 · · · Im

(Pm(1))s 0 0 . . . 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

it is just the result in [4].
Now let us consider the case of r 	= 1.
It is evident that two matrices Q(r)P (r)Q−1(r) and Q(1)P (1)Q−1(1) have the

same sparse structure and only different in nonzero elements.
For the first (k − 1)m rows of the matrix Q(r)P (r)Q−1(r), let i = (t − 1)m + q,

where 1 ≤ t ≤ k − 1, 1 ≤ q ≤ m and t, q are integers. Using (3.2), σ(i) =
t + (q − 1)h. Then by Lemma 2, we can get n � σ(i) for 1 ≤ i ≤ (k − 1)m.

From the structure of (h, r)-regular matrices, the nonzero element in the i-th row

of Q(r) is rμ, where μ =
⌊

t+(q−1)h
n

⌋
.

By (3.3), j = σπσ−1(i) = tm + q, then the nonzero element in the j -th column
of Q−1(r) is r−ν , where

ν =

⎧
⎪⎪⎨

⎪⎪⎩

⌊
t+1+(q−1)h

n

⌋
, if n � (t + 1 + (q − 1)h)

⌊
t+1+(q−1)h

n

⌋
− 1, if n|(t + 1 + (q − 1)h)

.

If n � (t +1+(q −1)h), then
⌊

t+(q−1)h
n

⌋
=
⌊

t+1+(q−1)h
n

⌋
; if n|(t +1+(q −1)h),

then
⌊

t+(q−1)h
n

⌋
=
⌊

t+1+(q−1)h
n

⌋
− 1, it follows μ = ν and B(i, σ (i)) = rμ × 1 ×

r−ν = 1.
Then we can conclude that all the nonzero elements in the first (k − 1)m rows of

the matrix Q(r)P (r)Q−1(r) are 1.
Now we turn to consider the nonzero elements in the last m rows of the matrix

Q(r)P (r)Q−1(r).
Let i = (k − 1)m + q (1 ≤ q ≤ m). By (3.2), σ(i) = k + (q − 1)h, then the

nonzero element in the i-th row of Q(r) is rμ, where

μ =

⎧
⎪⎪⎨

⎪⎪⎩

⌊
k+(q−1)h

n

⌋
, if n � (k + (q − 1)h)

⌊
k+(q−1)h

n

⌋
− 1, if n|(k + (q − 1)h)

.

By (3.3), j = σπσ−1(i) = s + q. Then using Lemma 2 again, we can get n �
(1 + (q − 1 + s)h), it follows n � (1 + (q − 1 + s − m)h).
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Notice that for the matrix P(r), its element in position (n, 1) is r , and other
nonzero elements are 1. Then the nonzero element in the j -th column of Q−1(r) is
r−ν , where

ν =

⎧
⎪⎪⎨

⎪⎪⎩

⌊
1+(q−1+s)h

n

⌋
, if q ≤ m − s

⌊
1+(q−1+s−m)h

n

⌋
, if q > m − s

.

By sh
′ ≡ 1 (mod m), we can get

(1 + (q − 1 + s)h) − (k + (q − 1)h) ≡ 1(mod n), (3.4)

and

(k + (q − 1)h) − (1 + (q − 1 + s − m)h) ≡ n − 1(mod n). (3.5)

Therefore, for q ≤ m− s, if n � (k + (q − 1)h), then B(i, σ (i)) = rμ × 1 × r−ν =
r−(ν−μ) = r

−
(⌊

(1+(q−1+s)h)
n

⌋
−
⌊

k+(q−1)h
n

⌋)

; if n|(k + (q − 1)h), then B(i, σ (i)) = rμ ×
r × r−ν = r

−
(⌊

(1+(q−1+s)h)
n

⌋
−1−

⌊
k+(q−1)h

n

⌋
+1
)

.

By (3.4), we can get B(i, σ (i)) = r
−
⌊

sh−k+1
n

⌋

.

For q > m − s, by (3.5), similarly, we can obtain B(i, σ (i)) = r

⌊
k−1−sh+mh

n

⌋
+1

.

At last, set α =
⌊

sh−k+1
n

⌋
, β =

⌊
k−1−sh+mh

n

⌋
+ 1, we complete the proof of the

lemma.

Example Let Q(3) be the (6, 3)-regular matrix of order 8, and P(3) be the 3-
circulant matrix of order 8 with first row (0, 1, 0, · · · , 0). They are of the following
forms

Q(3) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 3 0 0 0
0 0 9 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 3 0 0
0 0 0 9 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Q−1(3) =
[

Q

(
1

3

)]T

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 1

9 0 0 0 0
0 0 0 0 0 0 0 1

9
0 0 1

3 0 0 0 0 0
0 0 0 0 0 0 1

3 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

and

P(3) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
3 0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
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then

Q(3) · P(3) · Q−1(3) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 1

9 0 0 0 0
3 0 0 0 0 0 0 0
0 3 0 0 0 0 0 0
0 0 3 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Now, let us consider the n × n sparse r-circulant matrix

A = a0I + aiP
i(r) + ajP

j (r),

where i, j, n are positive integers such that 1 ≤ i < j ≤ n.

Theorem 3 If the positive integers i, j, n have a non-trivial common factor, say h,
n=hm, i = hi

′
, j = hj

′
and θ = 1, then A is similar to the direct sum of h matrices

coinciding with a0Im + aiP
i
′

m (rθ ) + ajP
j

′
m (rθ ).

It is the special case of Theorem 2.
Now assume that i, j, n have not a common factor. In particular, as first case,

assume that n and i are coprime.

Theorem 4 Let A = a0I + aiP
i(r) + ajP

j (r) be a r-circulant matrix of order n,
where 1 ≤ i < j ≤ n − 1. (n, i) = 1, j = iq + t , 0 ≤ t < i. Then A is similar to
a0I + aiP (rθ ) + aj r

−atP q+st (rθ ) , where s is the inverse of i modulo n, a = si−1
n

,
and θ = i.

Proof Let Q(r) be the (i, r)-regular matrix of order n. Then P i(r) =
Q−1(r)P (rθ )Q(r) and

A = a0I + aiQ
−1(r)P (rθ )Q(r) + aj

(
Q−1(r)P (rθ )Q(r)

)q

P t (r),

it follows Q(r)AQ−1(r) = a0I + aiP (rθ ) + ajP
q(rθ )(Q(r)P (r)Q−1(r))t .

Since P s(rθ ) = (Q(r)P i(r)Q−1(r))s = raQ(r)P (r)Q−1(r), then

Q(r)AQ−1(r) = a0I + aiP (rθ ) + aj r
−atP q+st (rθ ).

Theorem 5 Let A = a0I + aiP
i(r) + ajP

j (r) be a r-circulant matrix of order n,
where 1 ≤ i < j < n, (n, i) = k > 1, n = km, i = ki

′
, j = iq + t, 0 < t < i and

i, j, n have not a non-trivial common factor.
Then A is similar to a k × k block matrix whose elements on the main diagonal

coincide with a0I + aiPm(rθ ) (here θ = i
′
), while other elements are 0, but on

the diagonals d(1, t + 1) and d(n − t, 1), where they coincide with ajP
q
m(rθ ) and
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ajP
q
m(rθ ) × �s

m , respectively, where s is the inverse of i
′

modulo m, �m is in the
form of which in (3.1).

Proof Denote by Q(r) the (i, r)-regular matrix of order n. By Theorem 1

P i(r) = Q−1(r)P
′
(rθ )Q(r),

where P
′
(rθ ) is direct sum of k matrices coinciding with Pm(rθ ). By Lemma 3 we

have that

(
Q(r)P (r)Q−1(r)

)t =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 · · · 0 Im · · · 0
...

...
...

...
...

...

0 · · · 0 0 · · · Im

�s
m · · · 0 0 · · · 0
...

...
...

...
...

...

0 · · · �s
m 0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where in the first row the matrix Im is in position (1, t + 1) and in the first column

�s
m is in position (n − t, 1). As

(
P

′
(rθ )

)q

is direct sum of k matrices coinciding

with P
q
m(rθ ), it follows that

(
P

′
(rθ )

)q · (Q(r) · P(r) · Q−1(r)
)t

is a block matrix of

order k having the same structure as the preceding one, but in which Im and �s
m are

replaced by P
q
m(rθ ) and P

q
m(rθ ) × �s

m , respectively.
Then

Q(r)AQ−1(r) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a0Im + aiPm(rθ ) · · · 0 aj P
q
m(rθ ) · · · 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0 · · · a0Im + aiPm(rθ ) 0 · · · aj P
q
m(rθ )

aj P
q
m(rθ ) × �s

m · · · 0 a0Im + aiPm(rθ ) · · · 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

0 · · · aj P
q
m(rθ ) × �s

m 0 · · · a0Im + aiPm(rθ )

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

and the result holds.

Now we consider a lower bound for the sparse r-circulant matrices.

Lemma 4 Let A = a0I + aiP
i(r) be a r-circulant matrix of order n, where a0, ai

are real numbers, (n, i) = k and n = km, i = ki
′
. Then per (A) = (am

0 + am
i rθ )k ,

here θ = i
′
.

Proof Let Q(r) be the (i, r)-regular matrix of order n. By Theorem 1 we have
that P i(r) = Q−1(r)P

′
(rθ )Q(r), where P

′
(rθ ) is a direct sum of k matrices coin-

ciding with Pm(rθ ). Then Q(r)AQ−1(r) = ⊕
(a0Im + aiPm(rθ ) and per (A) =

(per (a0Im+aiPm(rθ )))k . Obviously, per (a0Im+aiPm(rθ )) = am
0 +am

i rθ . It follows
per (A) = (am

0 + am
i rθ )k.

Now let us consider the case that i, j, n have not a non-trivial common factor.
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Theorem 6 Let A = a0I + aiP
i(r) + ajP

j (r) be a r-circulant matrix of order n,
where a0, ai, aj are real numbers, 1 ≤ i < j ≤ n − 1, (n, i) = k, n = km, i = ki

′

,j = kq + t , 0 ≤ t < k . Then

per (A) ≥ (am
0 + am

i rθ )k + an
j rθqk × rs2α+s2β−msα,

where s, α, β, �m, θ are in the forms of which in Theorem 5.

Proof By Theorem 5, A is similar to a k × k block matrix, which coincide with
a0I+aiPm(rθ ) on the main diagonal, while other elements are 0, but on the diagonals
d(1, t + 1) and d(n − t, 1), where they coincide with ajP

q
m(rθ ) and ajP

q
m(rθ ) × �s

m

, respectively. Then

per (A) =per (Q(r)AQ−1(r)) ≥ (per (a0I + aiPm(rθ )))k + an
j per (P

qk
m (rθ )�st

m)

≥ (am
0 + am

i rθ )k + an
j rθqk × rs2tα+s2tβ−mstα

= (am
0 + am

i rθ )k + an
j rθqk+s2t (α+β)−mstα.

This completes the proof of the theorem.
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