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Abstract Nonlinear time-fractional diffusion equations have been used to describe
the liquid infiltration for both subdiffusion and superdiffusion in porous media.
In this paper, some problems of anomalous infiltration with a variable-order time-
fractional derivative in porous media are considered. The time-fractional Boussi-
nesq equation is also considered. Two computationally efficient implicit numerical
schemes for the diffusion and wave-diffusion equations are proposed. Numerical
examples are provided to show that the numerical methods are computationally
efficient.

Keywords Anomalous infiltration · Porous media · Subdiffusion and
superdiffusion · Time-fractional Boussinesq equation · Time variable order
fractional derivative

1 Introduction

Anomalous diffusion is known to describe diffusion processes in fractal media more
accurately than normal diffusion. Subdiffusion and superdiffusion are both in the
anomalous diffusion regime. Anomalous infiltration, i.e. liquid absorption in porous
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media with a nonlinear dependence of the mean-square value of the wetting front
position 〈x2〉 ∼ tα , is a subject of many investigations during the last decade [5].
Their analysis leads to a diffusion/wave-diffusion equation for the moisture content
u with fractional variable order for the time-derivative operator [5]:

∂α(u(x,t))u

∂tα(u(x,t))
= ∂

∂x

(
D(u)

∂u

∂x

)
. (1)

When 0 < α(u(x, t)) < 1, (1) is a fractional diffusion equation, but for 1 <

α(u(x, t)) ≤ 2, it is a fractional wave-diffusion equation.
The concept of a variable order operator is of much more recent development,

which is a new paradigm in science. Samko and Ross [13, 14] directly generalized the
Riemann-Liouvile and Marchaud fractional integration and differentiation to the case
of variable order, then showed some properties and an inversion formula. Lorenzo
and Hartley [9, 10] suggested that a variable order operator is allowed to vary either
as a function of the independent variable of integration or differentiation (t), or as a
function of some other (perhaps spatial) variable (x). They also explored the relation-
ship between the mathematical concepts and physical processes. Different authors
have proposed different definitions of variable order differential operators, each of
which has a specific meaning to suit desired goals. Coimbra [3] took the Laplace
transform of Caputo’s of the fractional derivative as the starting point to suggest a
novel definition for the variable order differential operator. Because of its meaningful
physical interpretation, Coimbra’s definition is better suited for modeling physical
problems. Ingman et al. [6, 7] employed the time dependent variable order operator
to model the viscoelastic deformation process. Pedro et al. [11] studied the motion
of particles suspended in a viscous fluid with drag force using variable order cal-
culus. Coimbra’s paper [3] is also the first paper to actually discuss variable order
differential equations.

These pioneering publications focused on mathematical properties of possible
candidates for a Variable-Order differintegral operator. In particular, Coimbra et al.
have done a number of excellent works [3, 4, 12, 16] in using a Variable-Order
differintegral operator.

Since the kernel of the variable order operators has a variable exponent, analytical
solutions to the resulting equations are more difficult to obtain, hence the develop-
ment of numerical techniques to handle these equations has received more attention.
Coimbra [3] proposed a consistent (first-order accurate) approximation for the solu-
tion of variable order differential equations. Soon et al. [16] employed a second-order
Runge-Kutta method consisting of an explicit Euler predictor step followed by an
implicit Euler corrector step to numerically integrate the variable order differential
equation. Sun et al. [17] introduced a classification of the variable-order fractional
diffusion models based on the possible physical origins that motivated the variable-
order, and employed the Crank-Nicholson scheme to get the diffusion curve of the
variable order differential operator model. Zhuang et al. [20] proposed explicit and
implicit Euler approximations for the variable-order fractional advection-diffusion
equation with a nonlinear source term. Chen et al. [1] proposed two numerical
schemes for a variable-order anomalous subdiffusion equation, one with first order
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temporal accuracy and fourth order spatial accuracy, the other with second order
temporal accuracy and fourth order spatial accuracy. Shen et al. [15] proposed an
approximate scheme for the variable order time fractional diffusion equation, via the
technique of Fourier analysis to discuss the stability, convergence and solvability.

The object of this paper is to develop numerical methods for simulation of nonlin-
ear fractional diffusion/wave diffusion equations with variable order time-fractional
derivative operator.

2 Nonlinear variable order time-fractional diffusion/wave-diffusion equations

We consider the following nonlinear variable order time-fractional diffusion/wave-
diffusion equation:

∂α(u(x,t))u

∂tα(u(x,t))
= ∂

∂x

(
D(u)

∂u

∂x

)
+ f (u, x, t), (x, t) ∈ � = [0, L] × [0, T ], (2)

with the initial and boundary conditions:

{
u(x, 0) = h(x),

∂u(x, 0)

∂t
= g(x), 0 ≤ x ≤ L,

u(0, t) = φ(t), u(L, t) = ψ(t), 0 ≤ t ≤ T .
(3)

where 0 < α(u(x, t)) ≤ 2 and α(u(x, t)) �= 1. We adopt the Caputo definition of
variable-order operator which was introduced in [17, 18]:

∂α(u(x,t))u

∂tα(u(x,t))

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

�(1 − α(u(x, t)))

t∫
0+

(t − σ)−α(u(x,t)) ∂u(x, σ )

∂σ
dσ, 0 < α(u(x, t)) < 1,

1

�(2 − α(u(x, t)))

t∫
0+

(t − σ)1−α(u(x,t)) ∂
2u(x, σ )

∂σ 2
dσ, 1 < α(u(x, t)) ≤ 2.

(4)

We define the function space G(�) =
{
u(x, t)|∂

4u(x, t)

∂x4
,
∂3u(x, t)

∂t3
∈ C(�)

}
. In

this paper, we suppose the continuous problem (3)-(4) has a smooth solution u(x, t) ∈
G(�).

As a special case of (2) , when α is a constant and D(u) = u , (2) becomes a
time-fractional Boussinesq equation:

∂αu(x, t)

∂tα
= ∂

∂x

(
u(x, t)

∂u(x, t)

∂x

)
+ f (x, t), (5)

where 0 < α < 1 or 1 < α < 2.
The time-fractional Boussinesq equation can been used to study tidal water table

fluctuations.
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3 Numerical approximation for the nonlinear variable-order time-fractional
diffusion equation

When 0 < α(u(x, t)) < 1 , (2) is a nonlinear variable order time-fractional diffusion
equation.

We take an equally spaced mesh of M points for the spatial domain 0 ≤ x ≤ L, N
constant time steps for the temporal domain 0 ≤ t ≤ T , and denote the spatial grid
points by

xi = ih, i = 0, 1, . . . ,M,

and the temporal grid points by

tn = nτ, n = 0, 1, . . . , N,

where the grid spacing is simply h = L/M in the spatial domain and τ = T/N in
the temporal domain.

At the grid point (xi, tn), (2) becomes

∂α(u(x,t))u

∂tα(u(x,t))

∣∣
(xi ,tn) = ∂

∂x

(
D(u)

∂u

∂x

) ∣∣
(xi ,tn) + f (u, x, t)

∣∣
(xi ,tn) , (6)

where f (u, x, t)
∣∣
(xi ,tn) = f n

i = f (u(xi, tn), xi, tn).
We denote by un

i the numerical approximation to u(xi, tn), and Dn
i the numerical

approximation to D(u(xi, tn)).
The nonlinear spatial derivative on the right hand side of (6) can be approximated

by the following expression [5, 8]:

∂

∂x

(
D(u)

∂u

∂x

) ∣∣
(xi ,tn) ≈

Dn

i+ 1
2

un
i+1−un

i

h
− Dn

i− 1
2

un
i −un

i−1
h

h

=
Dn

i+ 1
2
(un

i+1 − un
i ) − Dn

i− 1
2
(un

i − un
i−1)

h2

≈
Dn

i+1+Dn
i

2 (un
i+1 − un

i ) − Dn
i +Dn

i−1
2 (un

i − un
i−1)

h2
.

(7)

By Taylor expansion, we have

Dn
i+1 + Dn

i

2
= Dn

i+ 1
2

+ O(h2),
Dn

i + Dn
i−1

2
= Dn

i− 1
2

+ O(h2),

un
i+1 − un

i = h

(
∂u

∂x

)n

i+ 1
2

+ 1

24
h3

(
∂3u

∂x3

)n

i+ 1
2

+ O(h5),

un
i − un

i−1 = h

(
∂u

∂x

)n

i− 1
2

+ 1

24
h3

(
∂3u

∂x3

)n

i− 1
2

+ O(h5).

Thus,

Dn
i+1 + Dn

i

2
(un

i+1 − un
i ) = h

(
D

∂u

∂x

)n

i+ 1
2

+ 1

24
h3

(
D

∂3u

∂x3

)n

i+ 1
2

+
(

∂u

∂x

)n

i+ 1
2

· O(h3)

+ 1

24

(
∂3u

∂x3

)n

i+ 1
2

· O(h5) + Dn

i+ 1
2

· O(h5) + O(h7),

(8)



Numer Algor (2015) 68:443–454 447

Dn
i + Dn

i−1

2
(un

i − un
i−1) = h

(
D

∂u

∂x

)n

i− 1
2

+ 1

24
h3

(
D

∂3u

∂x3

)n

i− 1
2

+
(

∂u

∂x

)n

i− 1
2

· O(h3)

+ 1

24

(
∂3u

∂x3

)n

i− 1
2

· O(h5) + Dn

i− 1
2

· O(h5) + O(h7),

(9)

Combining (8) and (9) we get

Dn
i+1 + Dn

i

2
(un

i+1 − un
i ) − Dn

i + Dn
i−1

2
(un

i − un
i−1)

= h

[(
D

∂u

∂x

)n

i+ 1
2

−
(

D
∂u

∂x

)n

i− 1
2

]
+ 1

24
h3

[(
D

∂3u

∂x3

)n

i+ 1
2

−
(

D
∂3u

∂x3

)n

i− 1
2

]

+
[(

∂u

∂x

)n

i+ 1
2

−
(

∂u

∂x

)n

i− 1
2

]
· O(h3) + O(h5)

= h

[
h

∂

∂x

(
D

∂u

∂x

)n

i

+ O(h3)

]
+ 1

24
h3

[
h

∂

∂x

(
D

∂3u

∂x3

)n

i

+ O(h3)

]

+
[
h

∂

∂x

(
∂u

∂x

)n

i

+ O(h3)

]
· O(h3) + O(h5)

= h2 ∂

∂x

(
D

∂u

∂x

)n

i

+ O(h4).

Hence

∂

∂x

(
D(u)

∂u

∂x

) ∣∣
(xi ,tn)

=
Dn

i+1 + Dn
i

2
(un

i+1 − un
i ) − Dn

i + Dn
i−1

2
(un

i − un
i−1)

h2
+ O(h2).

(10)

When 0 < α(u(x, t)) < 1, the variable order of the time-derivative operator on
the left hand side of (6) can be approximated by the following expression [15]:

∂α(u(x,t))u

∂tα(u(x,t))

∣∣
(xi ,tn) = τ−αn

i

�(2 − αn
i )

n−1∑
k=0

an
n−k−1,i (u

k+1
i − uk

i ) + O(τ), (11)

where αn
i = α(u(xi, tn)) and an

j,i = (j + 1)1−αn
i − j1−αn

i (j = 0, 1, · · · , n − 1).
From (10) and (11), we obtain the following implicit approximation scheme to (2)

for 0 < α(u(x, t)) < 1:

τ−αn
i

�(2 − αn
i )

n−1∑
k=0

an
n−k−1,i (u

k+1
i − uk

i )

=
Dn

i+1 + Dn
i

2
(un

i+1 − un
i ) − Dn

i + Dn
i−1

2
(un

i − un
i−1)

h2
+ f n

i ,

i = 1, 2, · · · , M − 1; n = 1, 2, · · · , N,

(12)
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with initial and boundary conditions

{
u0

i = h(xi),

un
0 = φ(tn), un

M = ψ(tn).
(13)

The accuracy of the scheme (12) to approximate (2) is O(h2 + τ).

4 Numerical approximation for the nonlinear variable-order time-fractional
wave-diffusion equation

When 1 < α(u(x, t)) ≤ 2, (2) is a nonlinear variable-order time-fractional wave-
diffusion equation. The variable order of the time-derivative operator on the right
hand side of (2) can be approximated by the following expression [2, 19]:

∂α(u(x,t))u

∂tα(u(x,t))

∣∣
(xi ,tn)

≈ 1

τ�(2 − αn
i )

[
bn

0,i

∇t u
n
i

τ
−

n−1∑
k=1

(bn
n−k−1,i − bn

n−k,i)
∇t u

k
i

τ
− bn

n−1,igi

]
,

(14)

where ∇t u
n
i = un

i − un−1
i , bn

j,i = τ 2−αn
i

2 − αn
i

[
(j + 1)2−αn

i − j2−αn
i

]
and gi = g(xi).

When α is a constant, the accuracy of the approximation (14) is O(τ 3−α), which
was established in [2, 19]. Hence, the accuracy of (14) is at least O(τ) for 1 <

α(u(x, t)) ≤ 2.
The approximation for the nonlinear spatial derivative on the right hand side of (2)

is the same as (10).
From (10) and (14), we obtain the following implicit approximation scheme to (2)

for 1 < α(u(x, t)) ≤ 2:

1

τ�(2 − αn
i )

[
bn

0,i

∇t u
n
i

τ
−

n−1∑
k=1

(bn
n−k−1,i − bn

n−k,i)
∇t u

k
i

τ
− bn

n−1,igi

]

=
Dn

i+1 + Dn
i

2
(un

i+1 − un
i ) − Dn

i + Dn
i−1

2
(un

i − un
i−1)

h2
+ f n

i ,

i = 1, 2, · · · , M − 1; n = 1, 2, · · · , N,

(15)

with initial and boundary conditions

⎧⎨
⎩ u0

i = h(xi),
∂u(x, t)

∂t

∣∣∣∣
0

i

= g(xi),

un
0 = φ(tn), un

M = ψ(tn).

(16)

The accuracy of the scheme (15) to approximate (2) is at least O(h2 + τ).
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5 Numerical approximation for the time-fractional Boussinesq equation

From (12), we obtain the following implicit approximation scheme to the time-
fractional Boussinesq equation for 0 < α < 1:

τ−α

�(2 − α)

n−1∑
k=0

an−k−1(u
k+1
i − uk

i )

=
un

i+1 + un
i

2
(un

i+1 − un
i ) − un

i + un
i−1

2
(un

i − un
i−1)

h2
+ f n

i ,

i = 1, 2, · · · , M − 1; n = 1, 2, · · · , N,

(17)

with initial and boundary conditions

{
u0

i = h(xi),

un
0 = φ(tn), un

M = ψ(tn),
(18)

where aj = (j + 1)1−α − j1−α (j = 0, 1, · · · , n − 1) and f n
i = f (xi, tn).

From (15), we obtain the following implicit approximation scheme to the time-
fractional Boussinesq equation for 1 < α ≤ 2:

1

τ�(2 − α)

[
b0

∇t u
n
i

τ
−

n−1∑
k=1

(bn−k−1 − bn−k)
∇t u

k
i

τ
− bn−1gi

]

=
un

i+1 + un
i

2
(un

i+1 − un
i ) − un

i + un
i−1

2
(un

i − un
i−1)

h2
+ f n

i ,

i = 1, 2, · · · , M − 1; n = 1, 2, · · · , N,

(19)

with initial and boundary conditions

⎧⎨
⎩ u0

i = h(xi),
∂u(x, t)

∂t

∣∣∣∣
0

i

= g(xi),

un
0 = φ(tn), un

M = ψ(tn),

(20)

where bj = τ 2−α

2 − α

[
(j + 1)2−α − j2−α

]
(j = 0, 1, · · · , n − 1).

6 Numerical results

In this section, we carry out a number of numerical examples to verify the theoretical
results. Here the Jacobi iteration technique is used for solving the implicit difference
schemes (17), (19) and (15).
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Table 1 The error of the numerical solution from the exact solution when t = 1, h = 1/16, τ = 1/256

Space (xi ) Numerical solution Exact solution Error

0.125 0.38441101 0.38268343 0.00172758

0.250 0.71092937 0.70710677 0.00382260

0.375 0.92910177 0.92387952 0.00522224

0.500 1.00571372 1.00000000 0.00571372

0.625 0.92910179 0.92387955 0.00522224

0.750 0.71092940 0.70710681 0.00382260

0.875 0.38441106 0.38268348 0.00172758

Example 1 We consider the following time-fractional Boussinesq equation for 0 <

α < 1:⎧⎪⎪⎨
⎪⎪⎩

∂0.7u(x, t)

∂t0.7
= ∂

∂x

{
u(x, t)

[
∂u(x, t)

∂x

]}
+ f (x, t), (x, t) ∈ � = [0, 1] × [0, 1],

u(x, 0) = 0, 0 ≤ x ≤ 1,

u(0, t) = u(1, t) = 0, 0 ≤ t ≤ 1,

(21)

where f (x, t) = sin(πx)
t0.3

�(1.3)
− t2π2 cos(2πx).

The exact solution is u(x, t) = t sin(πx). Here, we use the implicit numerical
scheme (17).

A comparison of the numerical solution and the exact solution when t = 1 for
Example 1 is provided in Table 1. Here, we take h = 1/16 and τ = 1/256. It shows
that the numerical solution is in good agreement with the exact solution.

Table 2 shows that, when the number of spatial subintervals / time steps is doubled
(i.e., step sizes are halved), the error behavior versus grid size reduction at t = 1 for
Example 1 is observed, as expected with the order O(h2 + τ) of the method, where
the convergence order is calculated by the following formula:

Cvge. Order = log h1
h2

e1

e2
.

Table 2 Maximum error behavior versus grid size reduction at t = 1 when h2 = τ

h τ Maximum error Cvge. Order of space Cvge. Order of time

1/4 1/16 0.09855078

1/6 1/36 0.04187286 2.111 1.055

1/8 1/64 0.02319386 2.053 1.027

1/12 1/144 0.01019669 2.027 1.013

1/16 1/256 0.00571372 2.013 1.007
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Table 3 The error of the numerical solution from the exact solution when t = 1, h = 1/16, τ = 1/256

Space (xi ) Numerical solution Exact solution Error

0.125 0.44131098 0.43750000 0.00381098

0.250 0.75334297 0.75000000 0.00334297

0.375 0.94055349 0.93750000 0.00305349

0.500 1.00295655 1.00000000 0.00295655

0.625 0.94055349 0.93750000 0.00305349

0.750 0.75334297 0.75000000 0.00334297

0.875 0.44131098 0.43750000 0.00381098

Example 2 We consider the following time-fractional Boussinesq equation for 1 <

α ≤ 2:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂1.8u(x, t)

∂t1.8
= ∂

∂x

{
u(x, t)

[
∂u(x, t)

∂x

]}
+ f (x, t), (x, t) ∈ � = [0, 1] × [0, 1],

u(x, 0) = 0,
∂u(x, 0)

∂t
= 0, 0 ≤ x ≤ 1,

u(0, t) = u(1, t) = 0, 0 ≤ t ≤ 1,

(22)

where f (x, t) = 8(x − x2)
t0.2

�(1.2)
− 16t4(1 − 6x + 6x2).

The exact solution is u(x, t) = 4t2(x − x2). Here, we use the implicit numerical
scheme (19).

A comparison of the numerical solution and the exact solution when t = 1 for
Example 2 is provided in Table 3. Here, we take h = 1/16 and τ = 1/256. It shows
that the numerical solution is in good agreement with the exact solution.

Table 4 shows that, when the number of spatial subintervals / time steps is doubled
(i.e., step sizes are halved), the error behavior versus grid size reduction at t = 1 for
Example 2 is observed, as expected with the order O(h2 + τ) of the method.

Table 4 Maximum error behavior versus grid size reduction at t = 1 when h2 = τ

h τ Maximum error Cvge. Order of space Cvge. Order of time

1/4 1/16 0.07360206

1/6 1/36 0.03196249 2.057 1.029

1/8 1/64 0.01796630 2.002 1.001

1/12 1/144 0.00784773 2.043 1.021

1/16 1/256 0.00408902 2.266 1.133
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Example 3 We consider the following nonlinear variable order time-fractional
diffusion/wave-diffusion equation:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂α(u(x,t))u

∂tα(u(x,t))
= ∂

∂x

[
D(u)

(
∂u

∂x

)]
+ f (u, x, t), (x, t) ∈ � = [0, 2] × [0, 1],

u(x, 0) = cos
(π

4
x
)

,
∂u(x, 0)

∂t
= 0, 0 ≤ x ≤ 2,

u(0, t) = 1, u(2, t) = 0, 0 ≤ t ≤ 1,

(23)
where

f (u, x, t) = 2x(2 − x)
t2−α(u(x,t))

�(3 − α(u(x, t)))

−eu

{
4(1 − x)2t4 −

[
π(1 − x) sin

(π

4
x
)

+ 2
]
t2 + π2

16

[
sin2

(π

4
x
)

− cos
(π

4
x
)]}

,

D(u) = eu, and

α(u(x, t)) =
{ 2 + sin(xt)

4
, when u < 1.4;

1.5 + 0.4 sin(0.5πxt), when u ≥ 1.4.

The exact solution is u(x, t) = cos
(π

4
x
)

+ t2x(2 − x).

When α(u(x, t)) = 2 + sin(xt)

4
, we use the implicit numerical scheme (12), and

when α(u(x, t)) = 1.5+0.4 sin(0.5πxt), we use the implicit numerical scheme (15).
A comparison of the numerical solution and the exact solution when t = 1 for

Example 3 is provided in Table 5. Here, we take h = 1/16 and τ = 1/256. It shows
that the numerical solution is in good agreement with the exact solution.

Table 6 shows that, when the number of spatial subintervals / time steps is doubled
(i.e., step sizes are halved), the error behavior versus grid size reduction at t = 1 for
Example 3 is observed, as expected with the order O(h2 + τ) of the method.

Table 5 The error of the numerical solution from the exact solution when t = 1, h = 1/16, τ = 1/256

Space (xi ) Numerical solution Exact solution Error

0.25 1.41851485 1.41828528 0.00022957

0.50 1.67448931 1.67387954 0.00060977

0.75 1.76968925 1.76896962 0.00071963

1.00 1.70756071 1.70710679 0.00045392

1.25 1.49299964 1.49307025 0.00007060

1.50 1.13210223 1.13268345 0.00058122

1.75 0.63190752 0.63259035 0.00068282
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Table 6 Maximum error behavior versus grid size reduction at t = 1 when h2 = τ

h τ Maximum error Cvge. Order of space Cvge. Order of time

1/2 1/4 0.05182303

1/4 1/16 0.01300180 1.995 0.997

1/8 1/64 0.00301043 2.111 1.055

1/16 1/256 0.00072752 2.049 1.024

7 Conclusions

This paper developed an implicit numerical approach for numerical simulation of
nonlinear variable-order time-fractional diffusion/wave-diffusion equations. These
equations are useful to describe liquid infiltration for both subdiffusion and superdif-
fusion in porous media. As a special case, a time-fractional Boussinesq equation
has also been considered. Three numerical examples demonstrated the accuracy and
efficiency of the implicit numerical approach.
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