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Abstract We develop a novel and general approach to the discretization of partial
differential equations. This approach overcomes the rigid restriction of the traditional
method of lines (MOL) and provides flexibility in the treatment of spatial discretiza-
tion. This method is essential for developing efficient numerical schemes for PDEs
based on two-derivative Runge–Kutta (TDRK) methods, where the first and second
derivatives must be discretized in an efficient way. This is unlikely to be achieved
by using MOL. We then apply the explicit TDRK methods to the advection equa-
tions and analyze the numerical stability in the linear advection equation case. We
conduct numerical experiments on the Burgers’ equation using the TDRK methods
developed. We also apply a two-stage semi-implicit TDRK method of order-4 and
stage-order-4 to the heat equation. A very significant improvement in the efficiency
of this TDRK method is observed when compared to the popular Crank-Nicolson
method. This paper is partially based on the work in Tsai’s PhD thesis (2011) [10].

Keywords Two-derivative Runge–Kutta methods · PDE methods · Stability
region · Advection equation · Heat equation

1 Introduction to two-derivative Runge–Kutta methods

We have discussed the derivation of two-derivative Runge-Kutta (TDRK) methods in
[4], hence only the basic information on TDRK methods is shown in this section for
convenience of reference.

A. Y. J. Tsai · R. P. K. Chan (�) · S. Wang
Department of Mathematics, University of Auckland, 38 Princes Street, Auckland 1142,
New Zealand
e-mail: symmetrizer@gmail.com

mailto:symmetrizer@gmail.com


688 Numer Algor (2014) 65:687–703

We consider an initial-value problem,

y ′ = f (y), y(x0) = y0,

with f : RN → R
N and assume that the second derivative is also known,

y ′′ = g(y) := f ′(y)f (y), g : RN → R
N.

An s-stage TDRK method for the step yn �→ yn+1 applied with stepsize h is defined
by

Yi = yn + h

s∑

j=1

aijf (Yj )+ h2
s∑

j=1

âij g(Yj ), i = 1, . . . , s,

yn+1 = yn + h

s∑

i=1

bif (Yi)+ h2
s∑

i=1

b̂ig(Yi ).

It is convenient to rewrite the defining equations in block-matrix form,

Y = e ⊗ yn + h(A⊗ IN)F (Y )+ h2(Â⊗ IN)G(Y ),

yn+1 = yn + h(bT ⊗ IN)F (Y )+ h2(̂bT ⊗ IN)G(Y ),

where e is the s × 1 vector of units, and the block vectors in R
sN are defined by

Y =
⎡

⎢⎣
Y1
...

Ys

⎤

⎥⎦ , F (Y ) =
⎡

⎢⎣
f (Y1)

...

f (Ys)

⎤

⎥⎦ , G(Y ) =
⎡

⎢⎣
g(Y1)

...

g(Ys)

⎤

⎥⎦ .

The coefficients of the method can be displayed in an extended Butcher tableau

c A Â

bT b̂T

where A, Â are s × s matrices, and b, b̂, c are s × 1 vectors.
The TDRK methods used in the later sections of this paper are TDRK4, TDRK4a

and TDRK244sss; their coefficients are listed respectively from left to right as
follows:

0 0 0 0 0
1
2

1
2 0 1

8 0

1 0 1
6

1
3

,

0 0 0 0 0 0 0
1 1 0 0 1

2 0 0
1
2

3
8

1
8 0 0 0 0

1
6

1
6

2
3 0 0 0

,

0 0 0 0 0
1 1

2
1
2

1
12 − 1

12
1
2

1
2

1
12 − 1

12

. (1)

TDRK4 and TDRK4a are explicit order-4 methods while TDRK244sss is a 2-stage,
order-4, stage-order-4, semi-implicit method which is also symmetric and stiffly
accurate [4, 10].

2 A novel semi-discretization method for PDEs

In order to apply the TDRK methods to PDEs (partial differential equations), we
develop a semi-discretization method in this section based on the method of Rothe
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[5, 8]. The aim is two-fold. Firstly, it provides a method to numerically evaluate the
second derivative with respect to time t , as required in a TDRK method. Secondly,
it provides a general approach to discretize the PDEs with more flexibility than the
traditional MOL [6]. Following the method of Rothe, we consider discretizing the
temporal variable t in the first step by Runge-Kutta methods or TDRK method with
error of order O(δp+1), and leave the spatial variables to be discretized with error
of order O(hq) in the next step. This guarantees a local error order O(δp+1 + hq).
Meanwhile, the spatial discretization can be chosen in a more flexible way to meet
stability and/or computational requirements. The approach is general and enables
us to systematically apply ODE numerical methods to PDEs. In fact, many classi-
cal numerical schemes for PDEs can be considered as special cases of this general
approach, for instance, the Lax-Wendroff scheme for the advection equation. This
approach is valid for general PDEs. However, for simplicity, we consider only the
PDEs with one spatial dimension. One may easily generalize the result to general
PDEs. Letting f (η) be a smooth function of η, we consider PDEs having the form

∂u

∂t
= f (P(u)), (2)

where P(u) is a linear partial differential operator with constant coefficients such as

P(u) = ∂

∂x
u and P(u) = ∂2

∂x2
u.

We start by differentiating (2) with respect to t ,

∂2u

∂t2
= ∂

∂t
f (P(u)) = fη(P(u))

∂

∂t
P(u)

= fη(P(u))P
(
∂u

∂t

)
= fη(P(u))P(f (P(u))),

or, written in a compact form,

∂2u

∂t2
= fηP(f ). (3)

Notice that ∂
∂t

commutes with P (
∂
∂t
P = P ∂

∂t

)
and the chain rule plays a basic role

in the derivation of (3). This can be compared with the similar formula for ODEs,
y ′(t) = f (y),

d2y

dt2
= fyf, (4)

by using the chain rule. It is therefore clear that (4) differs from (3) only in the
additional linear operator P .

This procedure can be carried out for higher derivatives, for example,

∂3u

∂t3
= ∂

∂t
fηP(f ) = fηηP(f )P(f )+ fηP(fηP(f )),

∂4u

∂t4
= ∂

∂t
(fηηP(f )P(f )+ fηP(fηP(f )))

= fηηηP(f )P(f )P(f )+ 3fηηP(f )P(fηP(f ))

+fηP(fηηP(f )P(f ))+ fηP(fηP(fηP(f ))),
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and so on. The above formulae are similar to the counterparts in ODE theory. In fact,
we can recover the elementary differential formulae for the scalar ODEs by simply
removing the operator P (also the associated bracket) from above formulae. We then
have the following theorem.

Theorem 1 The nth derivative of the exact solution is given by

∂nu

∂tn
=

∑

|τ |=n

α(τ)F(τ )(u), (5)

where

F(τ ) = f (m)P(F(τ1)) · · ·P(F(τm)), for τ = [τ1, . . . , τm],
and α(τ) is the number of ways of labelling τ with an ordered set.

The proof is exactly the same as in the ODE theory based on Butcher’s tree theory
[1–3]. Theorem 1 has a useful corollary:

Corollary 1 For the linear PDEs of the form,

∂u

∂t
= P(u),

Equation (5) reduces to

∂nu

∂tn
= Pn(u). (6)

Using exactly the same approach, we can derive the elementary differential theo-
rem and the order conditions using Butcher’s tree theory. This observation leads to
the conclusion that the numerical methods for ODEs including RK methods and the
TDRK methods are directly applicable to the discretization of the PDEs (2) with the
time variable t .

This approach differs from the classical MOL, where a PDE is first discretized in
space and then an ODE numerical method is applied to solve the semi-discretized
ODE system. To distinguish the current approach from MOL, we call the current
approach MMOL (modified method of lines). MMOL can be considered as a direct
generalization of MOL in the sense that all PDE schemes based on MOL can be
obtained by MMOL as a special case but not vice versa. In fact, the numerical scheme
derived by MOL corresponds only to a single numerical scheme by using one spe-
cial spatial discretization in MMOL. Many additional numerical schemes can be
obtained only by MMOL with using various different spatial discretization meth-
ods. The multiplicity of selection of the spatial discretization in MMOL would, no
doubt, create opportunities to improve the numerical scheme obtained by MOL. It
is therefore a necessary task to explore all possible numerical schemes based on
MMOL in a systematical way, in order to achieve an optimal performance among
them. This is particularly important in TDRK methods, where the numerical scheme
for the second temporal derivative is required as an input; when the MOL approach is
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used the scheme for the second derivative is rigidly determined by the first step spa-
tial discretization. This rigidity may directly result in poor performance schemes or
unstable schemes in some PDEs. MMOL effectively removes this rigidity and pro-
vides flexibility in constructing a numerical PDE scheme and thus achieve optimal
performance.

Example 1 To illustrate the advantage of the new approach, we consider the model
advection/wave equation,

∂u

∂t
+ a

∂u

∂x
= 0. (7)

We interpret the well-known Lax-Wendroff scheme as a TDRK method with a suit-
able numerical scheme for the second time derivative used in the MMOL approach.
Let un(x) be the numerical approximation to the exact solution u(x, tn) at time tn.
We apply the explicit 2-stage TDRK method,

0 0 0 0 0
1 1 0 0 0

1 0 1
2 0

,

with timestep δ = tn+1 − tn to the advection (7) and get

Y1 = un(x),

Y2 = un(x)− aδ(un(x))x,

un+1(x) = un(x)− aδ(un(x))x + a2δ2

2
(un(x))xx. (8)

A full discretization of the advection equation is obtained by applying a suitable
spatial discretization for variable x. It can be shown that if the following spatial
descretizations

(un(xj ))x ≈ un(xj+1)− un(xj−1)

2�x
,

(un(xj ))xx ≈ un(xj+2)− 2un(xj )+ un(xj−2)

4�x2
,

are used, the resulting numerical scheme is equivalent to the one derived using the
RK2 method with MOL approach, which is a well-known unstable scheme. However,
the flexibility of the current approach allows us to select a more compact scheme,
using the neighbouring grid points, to approximate uxx in (8),

(un(xj ))xx ≈ un(xj+1)− 2un(xj )+ un(xj−1)

�x2 .

This leads to the following numerical scheme

Un+1
j = Un

j − aδ
Un
j+1 − Un

j−1

2�x
+ a2δ2

Un
j+1 − 2Un

j + Un
j−1

2�x2
, (9)

where Un
j ≈ u(xj , tn), the numerical solution at the grid point (xj , tn). This is a

stable numerical scheme with second-order temporal and spatial accuracy. In fact,
this is the well-known Lax-Wendroff scheme. Our novel approach sheds new light
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on the relationship of the RK method and the Lax-Wendroff approach, and possibly
opens more applications of RK methods to PDEs along this line in the future.

This example shows that the numerical scheme for the second derivative is deter-
mined by that of the first derivative, resulting in a loose spread-out numerical scheme
for the second derivative. This is a common flaw when the MOL approach is used in
TDRK method. It is therefore necessary to take advantage of the flexibility of MMOL
in applying TDRK methods to PDEs.

3 TDRK method for advection equations

3.1 A case study for the stability of TDRK methods applied to advection equations

We study the numerical stability of a TDRK method when applied to the model
advection (7) on the interval (0, 1) with spatially periodic boundary condition
u(0, t) = u(1, t) imposed. We use the explicit TDRK4a method (1) for demonstra-
tion in this study. To proceed, we find the second derivative using Corollary 1 and (7)
as

∂2u

∂t2
= a2P2(u) = a2D(u), (10)

where D(u) = uxx to indicate that D must be treated as a whole in the spatial
discretization. Applying the TDRK4a scheme, we obtain

Y1 = un(x),

Y2 = un(x)− aδ(Y1)x + a2δ2

2
D(Y1),

Y3 = un(x)− 3aδ

8
(Y1)x − aδ

8
(Y2)x,

un+1(x) = un(x)− aδ

6
((Y1)x + (Y2)x + 4(Y3)x), (11)

or, in terms of D,

un+1(x) = un(x)− aδ(un(x))x + a2δ2

2
(un(x))xx

−a3δ3

12
((D(un(x)))x + (un(x))xxx)+ a4δ4

24
(D(un(x))xx. (12)

To obtain a full discretization of the advection equation we use the following grid
points on the interval [0, 1] for the spatial discretization,

xj = jh, j = 0, 1, . . . , N,N + 1, h = �x = 1/(N + 1),
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and the following fourth-order spatial discretizations for ux and uxx , respectively.

ux(xj , tn) = 1

h

(
1

12
u(xj−2, tn)− 2

3
u(xj−1, tn)

+2

3
u(xj+1, tn)− 1

12
u(xj+2, tn)

)
+O(h4), (13)

uxx(xj , tn) = 1

h2

(
− 1

12
u(xj−2, tn)+ 4

3
u(xj−1, tn)

−5

2
u(xj , tn)+ 4

3
u(xj+1, tn)− 1

12
u(xj+2, tn)

)
+O(h4). (14)

Note that (14) is not derived from (13) using the MOL, which will have given us a
much less compact scheme than (14). Let Un

j ≈ u(xj , tn), the numerical approxi-

mation to the solution at the gridpoint (xj , tn), and let Un = [
Un

1 , U
n
2 , . . . , U

n
N

]T
.

Inserting (13) and (14) into (11) (or (12)), after some algebraic manipulation, we have

Un+1 =
[
I − aδAh + a2δ2

2
A2
h −

a3δ3

12

(
A3
h +AhDh

)
+ a4δ4

24

(
A2
hDh

)]
Un,

where Ah and Dh are the finite difference matrices with size N ×N for the first and
second derivatives respectively,

Ah = 1

h

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0 2
3 − 1

12
1
12 − 2

3
− 2

3 0 2
3 − 1

12
1

12
1

12 − 2
3 0 2

3 − 1
12

. . .
. . .

. . .
. . .

. . .

− 1
12

1
12 − 2

3 0 2
3

2
3 − 1

12
1

12 − 2
3 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

and

Dh = 1

h2

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

− 5
2

4
3 − 1

12 − 1
12

4
3

4
3 − 5

2
4
3 − 1

12 − 1
12− 1

12
4
3 − 5

2
4
3 − 1

12
. . .

. . .
. . .

. . .
. . .

− 1
12 − 1

12
4
3 − 5

2
4
3

4
3 − 1

12 − 1
12

4
3 − 5

2

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

Ah and Dh are circular matrices because u(0, t) = u(1, t) [6]. The eigenvalues of Ah

and Dh are found to be

λj (h) = i

3h
sin(2πjh)(4 − cos(2πjh)), for Ah, (15)

λj (h) = − 16

3h2 sin2(πjh)

(
1 − 1

4
cos2(πjh)

)
, for Dh. (16)

Stability requires
∣∣∣∣1 − aδλj + a2δ2

2
λ2
j −

a3δ3

12

(
λ3
j + λjλj

)
+ a4δ4

24

(
λ2
jλj

)∣∣∣∣ ≤ 1, (17)
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Inserting (15) and (16) into (17) and through a numerical estimate, we obtain a
stability (CFL) range:

|a|δ
h

< 1.5.

This shows that the TDRK4a method exhibits a similar stability behavour to RK4, the
classical Runge–Kutta method of order 4, when applied to the advection equation.
The same stability analysis can also be applied to TDRK4 in (1) and leads to a similar
stability result.

3.2 Numerical experiments on the Burgers’ equation

We consider the inviscid Burgers’ equation

∂u

∂t
+ ∂(u2)

∂x
= 0. (18)

The second derivative is found as

utt = 8uu2
x + 4u2uxx = 8uu2

x + 4u2D(u),

where D(u) = uxx as in (10). Applying the TDRK4a method to (18), the internal
stage values are, for timestep δ,

Y1 = un(x),

Y2 = un(x)− δ
(
Y 2

1

)

x
+ δ2

2

(
8Y1((Y1)x)

2 + 4Y 2
1 D(Y1)

)
,

Y3 = un(x)− 3δ

8

(
Y 2

1

)

x
− δ

8

(
Y 2

2

)

x
,

un+1(x) = un(x)− δ

6

((
Y 2

1

)

x
+

(
Y 2

2

)

x
+ 4

(
Y 2

3

)

x

)
. (19)

Similarly, applying the TDRK4 method to (18), the internal stage values are, for
timestep δ,

Y1 = un(x),

Y2 = un(x)− δ

2

(
Y 2

1

)

x
+ δ2

8

(
8Y1((Y1)x)

2 + 4Y 2
1 D(Y1)

)
,

un+1(x) = un(x)− δ
(
Y 2

1

)

x
+ δ2

6

(
8Y1((Y1)x)

2 + 4Y 2
1 D(Y1)

+2
(

8Y2((Y2)x)
2 + 4Y 2

2 D(Y2)
))

. (20)

A full discretization of the Burgers’ equation can then be readily obtained by using
sufficiently high order spatial discretizations for ux and D(u). In our implementation
of (19), the spatial discretization is performed using the sixth-order compact scheme
described by Lele [7]. See Appendix A for details. The high order spatial resolution
would allow us to capture the temporal error trend. This is important for an explicit
method because the CFL condition imposes a severe restriction on the time stepsize
δ, which is of the same order as the spatial stepsize h, and the spatial error would
overwhelm the temporal error with a low order spatial numerical scheme.
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We conduct numerical experiments on Burgers’ (18) with the boundary and initial
values,

u(0, t) = u(π, t), u(x, 0) = sin(2x)

2
.

This Burgers’ equation can be solved using the method of characteristics and the
solution is given in parametric form:

u = sin 2x0

2
, x = sin(2x0)t + x0,

where x0 ∈ [0, π]. The regular solution ceases to exist at time t = 0.5 and thereafter.
A shock solution will occur after that time.

Figure 1 shows the solutions of Burgers’ equation at time t = 0, 0.21, 0.42 and
0.48. The wave progressively steepens along time near the midpoint x = π

2 .
Figure 2 shows the error behaviour of RK4 (MOL), TDRK4 (MMOL) and

TDRK4a (MMOL) at position x = 0.20π for various time points, t = 0.21, 0.42 and
0.48.

• At t = 0.21, the exact solution has a sine-like shape, as shown in Fig. 1. All three
methods show similar behaviour, but RK4 performs slightly better than the other
two.
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Solution of Burgers’ equation at different time t

t=0
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t=0.42
t=0.48

Fig. 1 Solution of Burgers’ equation
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Fig. 2 Order plots and efficiency diagrams for Burgers’ equation
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• At t = 0.42, the solution has a steeper wave shape. TDRK4a has a similar
error behaviour as RK4, but TDRK4 performs significantly better than these two
methods.

• The wave is at the edge of breaking at t = 0.48, both TDRK4 and TDRK4a per-
form better than RK4. Here, TDRK4 is clearly a superior method over RK4 and
TDRK4a. The reasons are in its treatment of nonlinear wave evolution and the
singularity development. The scheme that TDRK4 uses to calculate the second
derivatives, D in (20), is more compact than the scheme derived from the MOL.
Hence it is more efficient in capturing the sharp wave shape. (In all figures work
done is measured in CPU time). We notice that TDRK4 uses a more compact
scheme for D than TDRK4a, and this explains why TDRK4 performs better than
TDRK4a.

In Fig. 3, we observe a similar trend in the error behaviour of the methods at position
x = 0.45π for t = 0.42 and 0.48 as in Fig. 2 at position x = 0.20π .
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Fig. 3 Order plots and efficiency diagrams for Burgers’ equation
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4 The TDRK method for the heat equation

We conduct numerical experiments on the heat equation

∂u

∂t
= ∂2u

∂x2 , (21)

with the fourth-order semi-implicit TDRK244sss method (1). Using Corollary 1, we
have

∂2u

∂t2
= P2(u) = uxxxx.

Let un(x) ≈ u(x, tn) and the semi-discretization of the problem for timestep δ reads
as:

un+1(x) = un(x)+ δ

2
((un(x))xx + (un+1(x))xx)

+ δ2

12
((un(x))xxxx − (un+1(x))xxxx), (22)
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Fig. 4 The numerical solution vs the exact solution plot and the error behaviour plot at x = 0.5 for the
heat equation
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or

un+1(x)− δ

2
(un+1(x))xx + δ2

12
(un+1(x))xxxx

= δ

2
(un(x))xx + δ2

12
(un(x))xxxx + un(x). (23)

Let us consider the initial and boundary conditions

u(x, 0) = s(x), u(0, t) = p(t) and u(1, t) = q(t).

Note that (23) is a boundary value problem for a fourth order ODE, and, hence, needs
four boundary conditions. The other two conditions, derived from the heat equation,
are

uxx(0, t) = p′(t) and uxx(1, t) = q ′(t).
A full-discretization of (21) can be obtained by using the central differences

uxx(xj , tn) = u(xj−1, tn)− 2u(xj , tn)+ u(xj+1, tn)

h2
+O(h2), (24)

uxxxx(xj , tn) = u(xj−2, tn)− 4u(xj−1, tn)+ 6u(xj , tn)− 4u(xj+1, tn)+ u(xj+2, tn)

h4
+O(h2).

(25)
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Fig. 6 Order plot for the heat equation at x = 0.5 and t = 1

The first (also the last) internal grid point uses a different scheme which accounts for
the contribution of the boundary:

uxx(x1, tn) = p(tn)− 2u(x1, tn)+ u(x2, tn)

h2 +O(h2),

uxxxx(x1, tn) = −2p(tn)+ 5u(x1, tn)− 4u(x2, tn)+ u(x3, tn)

h4
+ p′(tn)

h2
+O(h2).

The details of the resulting numerical scheme are described in Appendix B.
The numerical computation is carried out with the homogeneous boundary con-

ditions p(t) = q(t) = 0, and initial value s(x) = sin(πx). An analytic solution
u = sin(πx) exp(−π2t) is available for this problem.

Figure 4 shows a plot of the exact solution against the numerical solutions using
TDRK244sss and the Crank-Nicolson method, respectively, at x = 0.5 and the errors
for time t = 0.1(0.1)1.0. Figure 5 compares the numerical result of TDRK244sss
with that of the classical Crank-Nicolson method, which is based on the implicit
trapezoidal rule and can be written as

un+1(x) = un(x)+ δ

2
((un(x))xx + (un+1(x))xx),

where un(x) ≈ u(x, tn). It is found that the TDRK244sss is far more efficient than
the popular Crank-Nicolson method. Note that TDRK244sss holds its fourth order
until the spatial error becomes dominant.

Notice that the implicit method, when it is applied to PDEs with relatively large
temporal stepsize compared to the spatial stepsize, could exhibit order reduction.
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However, order reduction behaviour does not occur for the current problem where
the boundary condition is homogeneous. In [9], the authors show that order reduction
does not occur for the advection equation with homogenous boundary conditions.

We conduct numerical experiments for non-homogeneous boundary condition,
p(t) = tα for α > 1 and f (x) = 0. Figure 6 shows the error behaviour of Crank-
Nicolson, 2-stage Gauss and TDRK244sss for α = 1.9. The order reduction of the
2-stage Gauss method is clearly seen in this case. It behaves like a second order
method similar to the Crank-Nicolson method. On the other hand, TDRK244sss
preserves its order-4 behaviour, a demonstration of the benefit of higher stage order.

5 Conclusions

We have developed a novel approach, MMOL, for the treatment of discretization of
PDEs. The approach is motivated by applying TDRK methods to PDEs, where the
second derivative utt must be discretized by using an appropriate finite difference
scheme. It turns out that the traditional MOL often leads to a rather ‘loose’ scheme.
The MMOL overcomes this problem and allows choices of more compact finite dif-
ference schemes for utt . The advantage of using the compact scheme for utt was
clearly observed in the numerical experiment on the Burgers’ equation when applying
the explicit TDRK methods to the equation.

The MMOL will provide a systematic way to apply the numerical ODE method to
PDEs. It offers a more flexible treatment of the spatial discretization to meet stability
and/or computational requirements. The Lax-Wendroff scheme (9) for the advection
equation discussed in Section 2 is an example to demonstrate such applications. It is
clear that many classical PDE schemes can be interpreted in the same way in terms
of MMOL. Future work along this line, combining with TDRK methods, may lead to
the discovery of more efficient numerical schemes for PDEs. Note that the stability
region of individual numerical schemes obtained by using MMOL is generally dif-
ferent from those of MOL, depending on the specific spatial finite difference scheme
used and shall be analyzed on a case by case basis. We have presented a typical sta-
bility analysis in Section 3 and this type of technique is applicable to other numerical
schemes.

The advantage of TDRK methods is clearly demonstrated in the application of
TDRK244sss to the heat equation. Firstly, TDRK244sss is a fourth-order, stage-
order-four, semi-implicit method with two stages, which cannot be achieved by a
RK method. The numerical implementation of the TDRK244sss to the heat equa-
tion has a low computation cost, incurring only twice the cost of the second-order
Crank-Nicolson method.

Moreover, TDRK244sss, a stage-order-4 method, exhibits an excellent feature to
overcome the phenomenon of order reduction as shown in Fig. 6. We will report
more detailed results on the order reduction analysis of TDRK methods for PDEs in
another paper.
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Appendix: A

In the following, the value of the numerical solution at the node (xi, tn) is denoted
by Ui = Un

i ≈ u(xi, tn). Note that n is omitted as we are only concerned with the
spatial discretization here. The first derivative, ux , is approximated by,

α̃U ′
i−1 + U ′

i + α̃U ′
i+1 = b̃

Ui+2 − Ui−2

4h
+ ã

Ui+1 − Ui−1

2h
, (26)

where U ′
i ≈ ux(xi, tn), α̃ = 1

3
, b̃ = 1

9
and ã = 14

9
.

The second derivative, U ′′
j ≈ uxx(xj , tn) is approximated by

α̃U ′′
j−1 + U ′′

j + α̃U ′′
j+1 = b̃

Uj+2 − 2Uj + Uj−2

4h2 + ã
Uj+1 − 2Uj + Uj−1

h2 , (27)

with α̃ = 2

11
, b̃ = 3

11
and ã = 12

11
. This is an order-six scheme from Lele [7]. U ′

i and

U ′′
i for i = 1, 2, . . . , N are found by solving (26) and (27), respectively, for given

U ′
i , i = 1, 2, . . . , N .
It shall be pointed out that the second derivative discretization is not derived

from the first derivative using the MOL scheme. The latter generates a less compact
scheme.

Appendix: B

We use the following grid points on the interval [0, 1] for the spatial discretization,

xj = jh, j = 0, 1, . . . , N,N + 1, h = �x = 1/(N + 1).

Note that j starts from 0, and the two boundary points are x0 and xN+1. With the
boundary values given at x0 and xN+1, we seek the numerical solutions for the inter-
nal grid points xj where j = 1, 2, . . . , N . Let Un

j denote the approximation to
u(xj , tn). Inserting (24) and (25) into (22), we obtain

AhUn+1 = Z, (28)

where

Ah =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ã1 b̃ c̃

b̃ ã b̃ c̃

c̃ b̃ ã b̃ c̃

. . .
. . .

. . .
. . .

. . .

c̃ b̃ ã b̃ c̃

c̃ b̃ ã b̃

c̃ b̃ ã1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

ã = 6r2 + 2r1 + 1, b̃ = −4r2 − r1, c̃ = r2, ã1 = 1 + 2r1 + 5r2,
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with r1 = δ

2h2
and r2 = δ2

12h4
. For the RHS of (28), Z = [z1, z2, . . . , zN ]T , where

zj = r2U
n
j−2 − (4r2 − r1)U

n
j−1 + (6r2 − 2r1 + 1)Un

j − (4r2 − r1)U
n
j+1 + r2U

n
j+2,

for j = 3, . . . , N − 2; for j = 1 and 2, we have

z1 = (1 − 2r1 + 5r2)U
n
1 + (r1 − 4r2)U

n
2 + r2U

n
3 + (r1 − 2r2)p(tn)

+(r1 + 2r2)p(tn+1)+ r1δ

6
(p′(tn)− p′(tn+1)),

z2 = −(4r2 − r1)U
n
1 + (6r2 − 2r1 + 1)Un

2 − (4r2 − r1)U
n
3 + r2U

n
4

+r2(p(tn)− p(tn+1)),

and similar terms for zN−1 and zN

zN−1 = −(4r2 − r1)U
n
N + (6r2 − 2r1 + 1)Un

N−1 − (4r2 − r1)U
n
N−2 + r2U

n
N−3

+r2(q(tn)− q(tn+1)),

zN = (1 − 2r1 + 5r2)U
n
N + (r1 − 4r2)U

n
N−1 + r2U

n
N−2 + (r1 − 2r2)q(tn)

+(r1 + 2r2)q(tn+1)+ r1δ

6
(q ′(tn)− q ′(tn+1)).

This pentadiagonal system can be solved with twice the computation cost of a
tridiagonal system.
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