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Abstract Kernel functions play an important role in the complexity analysis of the
interior point methods for linear optimization. In this paper, we present a primal-
dual interior point method for linear optimization based on a new kernel function
consisting of a trigonometric function in its barrier term. By simple analysis, we show
that the feasible primal-dual interior point methods based on the new proposed kernel
function enjoys O

(√
n (logn)2 log n

ε

)
worst case complexity result which improves

the results obtained by El Ghami et al. (J Comput Appl Math 236:3613–3623, 2012)
for the kernel functions with trigonometric barrier terms.

Keywords Kernel function · Linear optimization · Primal-dual interior-point
methods · Large-update methods

1 Introduction

In this paper, we focus on the primal Linear Optimization (LO) problem as

(P ) min
{
cT x : Ax = b, x ≥ 0

}
,

along with its dual problem as follows:

(D) max
{
bT y : AT y + s = c, s ≥ 0

}
,
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where A ∈ R
m×n with rank(A) = m, x, c ∈ R

n, b ∈ R
m, y ∈ R

m and s ∈ R
n.

Polynomial time Interior Point Methods (IPMs) for solving linear programming
were first proposed by Karmarkar in [5]. The primal-dual IPMs have been developed
by Kojima et al. in [6] and Megiddo in [7] for the first time. Nowadays, researches
in this field spread out aiming at generating practically efficient methods with low
complexity results in worst case.

Interior point methods based on barrier functions have been widely studied in
the literature. The so called self-concordant barrier functions were first proposed
by Nesterov and Nemirovskii in [9]. These functions allowed the IPMs for LO to
be extended to the more general class of convex optimization problems, such as
nonlinear complementarity problems, second order cone optimization (SOCO) and
semidefinite optimization (SDO) problems. Note that the so far best known iteration
complexity for LO in the large neighborhood of the central path, based on a self-
concordant function, is O

(
n log n

ε

)
. This bound has been improved by Peng et al. in

[10] by using the so called Self-Regular proximity functions. Indeed, they proposed
a variant of primal-dual IPMs based on SR kernel functions for LO and its extension
to SDO, SOCO and complementary problems and obtained the so far best known
worst case iteration complexity as O

(√
n log n log n

ε

)
. Since then, several attempts

have been done for introducing non-SR kernel functions in order to at least meeting
the SR based complexity results, see e.g. [2, 3, 11]. We refer the interested reader to
the comparative study on the kernel functions in [1]. Recently, El Ghami et al. in [4]
introduced a trigonometric kernel function for the first time and analyzed the feasible
primal-dual IPMs based on this kernel function. They showed that the primal-dual

interior point methods for solving LO enjoys O
(
n

3
4 log n

ε

)
as the worst case iteration

complexity.
In this paper, we introduce the function

ψ(t) = t2 − 1

2
−
∫ t

1
e3(tan(h(x))−1)dx, (1)

with

h(t) = π

2 + 2t
, (2)

as a new kernel function and provide a primal-dual interior point algorithm based on
the proximity measure induced by this function. Our main focus is on analyzing the
large-update version of the aforementioned algorithm in the large neighborhood of
the central path. Using some easy to check conditions and simple analysis, we show
that the worst case iteration complexity for primal-dual IPMs based on the proposed
kernel function enjoys O

(√
n (logn)2 log n

ε

)
. This result improves significantly the

iteration bound for linear optimization problems obtained by El Ghami et al. in [4].
The paper is organized as follows: In Section 2, we recall some basic concepts of

interior point methods and the central path curve for LO. Some interesting and useful
properties of the new kernel function are provided in Section 3. Section 4 is devoted
to describe the proximity reduction during an inner iteration. An for the step size is
discussed in Section 5. The worst case iteration bound for the primal-dual IPMs based
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on the new IPMs based on the new kernel function is given in Section 6. Finally, we
end up the paper by some concluding remarks in Section 7.

We use the following notational conventions: Throughout the paper, ‖.‖ denotes
the Euclidian norm of a vector. The nonnegative and positive orthants are denoted
by R

n+ and R
n++, respectively. For a vector x = (x1, . . . , xn) ∈ R

n, x∗ is the min-
imum component of x. For given vectors x and s, the vectors xs and x

s
denote

the coordinate-wise operations on the vectors, i.e., whose components are xisi and
xi
si

, respectively. We say that f (t) = �(g(t)), if there exist positive constants ω1
and ω2 so that ω1g(t) ≤ f (t) ≤ ω2g(t) satisfies for all t ∈ R++. We also say
f (t) = O (g(t)), if there exists a positive constant ω so that f (t) ≤ ωg(t), for all
t ∈ R++.

2 Preliminaries

In this section, we briefly describe the idea behind the interior point methods based
on kernel functions. We also provide the structure of the generic primal-dual IPMs
when the kernel functions are used to induce the proximity measure.

One knows that for the feasible primal and dual linear optimization problems, i.e.
problems (P) and (D), an optimal solution can be found by solving the following
system:

Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0, (3)

xs = 0,

where xs denotes the coordinate wise (Hadamard) product of the vectors x and s. In
this system, the first and second equations are the primal and dual feasibility, respec-
tively, while the third equation is the so called centering equation or complementary
equation. Without loss of generality we assume that both problems (P) and (D) satisfy
the Interior Point Condition (IPC) [12], i.e., there exist x0 and

(
y0, s0

)
such that

Ax0 = b, x0 > 0,

AT y0 + s0 = c, s0 > 0.

In the primal-dual IPMs, the centering equation in (3) is replaced by a parametric
equation xs = μe, where μ is a positive parameter and e denotes the all-one vector,
i.e., e = (1, 1, . . . , 1)T . This leads us to the following parametric system:

Ax = b, x > 0,

AT y + s = c, s > 0, (4)

xs = μe.

It is shown that, under IPC condition and rank(A) = m, system (4) has a unique
solution, for each μ > 0. This solution is denoted by (x(μ), y(μ), s(μ)), where x(μ)
and (y(μ), s(μ)) are called the μ-centers of (P) and (D), respectively. The set of all
μ-centers, with μ > 0, forms the so called central path for (P) and (D) [8, 13]. The
central path for LO was first recognized by Sonnevend [13] and Megiddo [7]. It is
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proved that as μ → 0, the limit of the central path exists and converges to an analytic
center of the optimal solutions set of (P) and (D).

Let μ > 0 be fixed. A direct application of the Newton method on (4) provides
the following system for �x, �y and �s:

A�x = 0,

AT�y +�s = 0, (5)

x�s + s�x = μe − xs.

Thus, the new iterate is computed by

x+ = x + α�x, y+ = y + α�y, s+ = s + α�s,

where α ∈ (0, 1] is chosen appropriately so that (x+, s+) > 0. For simplicity, let us
change the vector space from (x, s) to the scaled vector space v which is defined by

v :=
√
xs

μ
.

Therefore, the Newton system (5) in the v-space can be written as follows:

Ādx = 0,

ĀT dy + ds = 0, (6)

dx + ds = v−1 − v,

where

Ā := 1

μ
AV−1X = AS−1V

V := diag(v), X := diag(x), S := diag(s) (7)

dx = v�x

x
, ds = v�s

s
.

Note that dx = ds = 0 if and only if v−v−1 = 0 if and only if x = e if and only if x =
x(μ), s = s(μ). A crucial observation in (6) is that the right hand side of the third
equation is the minus gradient of the proximity function 	c(v) = ∑n

i=1 ψc(vi). This

proximity function is induced by the kernel function ψc(t) = t2−1
2 − log t , for t > 0,

which is a strictly differentiable convex function on R
n++ with ψc(1) = ψ ′

c(1) = 0.
The new variant of primal-dual IPMs was developed by Peng et al. in [10] in

which the proximity function 	c(v) is replaced by a proximity function 	(v) =∑n
i=1 ψ(vi), where ψ(t) is any strictly differentiable convex barrier function on R

n++
with ψ(1) = ψ ′(1) = 0. In this case, system (6) is converted to the following system
with new centering equation:

Ādx = 0,

ĀT dy + ds = 0, (8)

dx + ds = −∇	(v).
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Now, we describe one step of the IPMs based on the kernel function. Starting with
the interior point (x0, y0, s0), μ0 > 0, an accuracy ε > 0 and the proximity function
	(v), let a good approximation of the μ-center (x(μ), y(μ), s(μ)) be known for
μ > 0. Then, the parameter μ is decreased by a factor 1 − θ , for θ ∈ (0, 1), and set
μ := (1 − θ)μ. An approximate solution of the μ-center is obtained by frequently
using the Newton method. Indeed, we first solve system (8) for dx and ds and then
find the Newton directions �x, �y and �s by using (7). This procedure is repeated
until we get to the point in which xT s < ε. In this case, we say that the current x and
(y, s) are ε-approximate solutions of the primal and dual problems, respectively.

Now, we can outline the above procedure in the following primal-dual interior
point scheme [10].

Algorithm 1 Generic Primal-dual IPM for LO

Input
a proximity function 	(v)

a threshold parameter τ > 0
an accuracy parameter ε > 0
a barrier update parameter θ , 0 < θ < 1

begin
x := e; s := e;μ := 1; v := e;
while nμ > ε do
begin
μ := (1 − θ)μ;
while 	(v) > τ do
begin
x := x + α � x

s := s + α � s

y := y + α � y

v :=
√
xs

μ
end

end
end

Algorithm 1 consists of inner and outer while loops (iterations). Each outer iter-
ation includes an update of parameter μ and a sequence of (one or more) inner
iteration. The total number of iterations is described as a function of the dimension
n and ε. The choice of the barrier update parameter θ plays an important role in the-
ory and practice of IPMs. For a constant θ , let say θ = 1

2 , the algorithm is called
the large-update method, while for the case when the θ is depended on n, let say

θ = 1√
n

, the algorithm is named the small-update method. Note that, small-update

methods have the best iteration bound in theory while the large update methods are
practically efficient [12].
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3 The new kernel function and its properties

This section is devoted to provide some essential properties of the new kernel func-
tion, given by (1), which will be used in the complexity analysis of Algorithm 1. For
this purpose, we need the first three derivatives of the function (1), which are:

ψ ′(t) = t − e3(tan(h(t))−1) (9)

ψ ′′(t) = 1 + 6π

(2 + 2t)2 (1 + tan2(h(t)))e3(tan(h(t))−1) (10)

ψ ′′′(t) =
(

1 + tan2(h(t))
)
e3(tan(h(t))−1)k(t), (11)

where:

k(t) = −24π(2 + 2t)+ 24π2 tan(h(t)) + 36π2(1 + tan2(h(t)))

(2 + 2t)4
. (12)

Lemma 3.1 For the function h(t), defined by (2), we have:

tan(h(t)) ≥ 1

πt
, f or all t ∈ (0, 1].

Proof The proof is similar to the proof of Lemma 2.1 in [4], however we restate it
here. Let g(t) be defined as

g(t) := tan(h(t)) − 1

πt
.

For this function, we have:

g′(t) = h′(t)
cos2(h(t))

+ 1

πt2
= 1

πt2 cos2(h(t))
(h′(t)πt2 + cos2(h(t))),

where h′(t) = −2π
(2+2t )2 . Now, as π

4 ≤ h(t) < π
2 , for all t ∈ (0, 1], then we obtain

sin
(π

2
− h(t)

)
= cos(h(t)) ≤ π

2
− h(t).

This implies that

g′(t) = 1

πt2 cos2(h(t))

(
h′(t)πt2 + sin2

(π
2
− h(t)

))

≤ 1

πt2 cos2(h(t))

(
h′(t)πt2 +

(π
2
− h(t)

)2
)

≤ 1

πt2 cos2(h(t))

( −π2t2

(2 + 2t)2

)
< 0.

Thus, g(t) is a decreasing function on (0, 1]. Now, the proof is completed by
considering the fact that g(1) > 0.

Now, we provide some technical lemma about this function.
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Lemma 3.2 Let the function ψ(t) be defined as in (1). Then, we have:

i) ψ ′′(t) > 1, f or all t > 0.
ii) tψ ′′(t)− ψ ′(t) > 0, f or all t > 1.
iii) tψ ′′(t)+ ψ ′(t) > 0, f or all t > 0.
iv) ψ ′′′(t) < 0, f or all t > 0.

Proof We first prove that (i) holds. To do so, we first note that, for all t > 0, we
have 0 ≤ h(t) < π

2 , which implies that tan(h(t)) > 0 and

ψ ′′(t) = 1 + 6π

(2 + 2t)2

(
1 + tan2(h(t))

)
e3(tan(h(t))−1) ≥ 1.

For proving (ii), we have:

tψ ′′(t)− ψ ′(t) =
(

6πt

(2 + 2t)2

(
1 + tan2(h(t))

)
+ 1

)
e3(tan(h(t))−1) > 0.

Now, we prove that (iii) holds. For this purpose, let 0 < t ≤ 1
2 . Using Lemma 3.1

and the fact that tan(h(t)) ≥ √
3 holds for all t ∈

(
0, 1

2

]
, we have

tψ ′′(t)+ ψ ′(t) = 2t +
(

6πt

(2 + 2t)2

(
1 + tan2(h(t))

)
− 1

)
e3(tan(h(t))−1)

≥ 2t +
(

6πt

(2 + 2t)2 + 6
√

3

(2 + 2t)2 − 1

)

e3(tan(h(t))−1) > 0.

On the other hand, for 1
2 < t ≤ 1, we have

(
1 + tan2(h(t))

) ≥ 2, which implies that

tψ ′′(t) + ψ ′(t) ≥ 2t +
(

6π

(2 + 2t)2
− 1

)
e3(tan(h(t))−1) > 0.

To complete the proof of (iii), it remains to show that the inequality holds for t > 1.
Using the fact that ψ ′(1) = 0 and ψ ′(t) is a strictly increasing function, for all t > 0,
we obtain ψ ′(t) > 0, for all t > 1. This implies that tψ ′′(t) + ψ ′(t) > 0, for all
t > 1. Therefore the proof is completed for the item (iii).

The proof of (iv) is trivial from (12).

The third part of Lemma 3.2 is known as exponential convexity (or simply e-
convexity) property of the kernel function ψ(t). The following lemma provides
equivalent forms of the e-convexity property [1].

Lemma 3.3 (Lemma 2.1.2 in [10]) Let ψ(t) be a twice differentiable kernel function
for t > 0. Then, the following three properties are equivalent:

i) ψ(
√
t1t2) ≤ 1

2 (ψ(t1)+ ψ(t2)), f or t1, t2 > 0.
ii) ψ ′(t) + tψ ′′(t) ≥ 0, f or t > 0.
iii) ψ(eξ ) is a convex function.
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The e-convexity property plays an important role in the analysis of the primal-dual
interior point methods based on kernel functions.

In what follows, we explore some results related to the new kernel function which
are important in the complexity analysis of Algorithm 1. To do so, we first define the
norm-based proximity measure δ(v) as follows:

δ(v) := 1

2
‖∇	(v)‖ = 1

2

√√√√
n∑

i=1

(ψ ′(vi))2, v ∈ R
n++. (13)

Based on this measure and the fact that from ψ(1) = ψ ′(1) = 0, the function ψ(t)

can be described by its second derivative according to:

ψ(t) =
∫ t

1

∫ ξ

1
ψ ′′(ζ )dζdξ, (14)

we have:

Lemma 3.4 Let the kernel function ψ(t) be defined as in (1). Then, we have:

i) 1
2 (t − 1)2 ≤ ψ(t) ≤ 1

2ψ ′(t)2 , for all t > 0.
ii) 	(v) ≤ 2δ(v)2.
iii) ‖v‖ ≤ √

n+√
2	(v) ≤ √

n+ 2δ(v).

Proof The proof is similar to the proof of Lemma 3.4 in [11] using (14) and Lemma
3.2. Therefore, we omit it here.

In the next section the effect of updating the barrier parameter μ on the value of
the proximity measure is investigated.

4 The effect of barrier update on proximity function

In this section, we study the growth behavior of the proximity function after a μ-
update. For given τ , at the start of any outer iteration of Algorithm 1 and just before
updating of μ, we have 	(v) ≤ τ . For 0 < θ < 1, and due to the updating strategy
of μ, i.e. μ := (1 − θ)μ, the vector v is divided by a factor

√
1 − θ . This leads

to an increase in the value of 	(v), in general. The subsequent inner iterations are
performed in order to bring the values of 	(v) back to the situation where we have
	(v) ≤ τ . Therefore, just after updating of μ, the largest values of 	(v) occur.
Therefore, we have the following results which are important in deriving the iteration
complexity of the Algorithm 1.

Lemma 4.1 For given β ≥ 1, we have

ψ(βt) ≤ ψ(t)+ 1

2

(
β2 − 1

)
t2.
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Proof Let us define ψ(t) as

ψ(t) = 1

2

(
t2 − 1

)
+ p(t),

where the function p(t) is defined as follows:

p(t) = −
∫ t

1
e3(tan(h(x))−1)dx.

Then, we have

ψ(βt)− ψ(t) = 1

2

(
β2 − 1

)
t2 + p(βt) − p(t).

Since β ≥ 1, to complete the proof, it is sufficient to show that the function p(t) is a
decreasing function. For this purpose, we have

p′(t) = −e3(tan(h(t))−1),

which is negative for all t > 0.

Lemma 4.2 Let 0 < θ < 1 and v+ = v√
1−θ

. Then, one has

	(v+) ≤ 	(v)+ θ

2(1 − θ)

(
2	(v)+ 2

√
2n	(v)+ n

)
.

Proof Applying Lemma 4.1 with β = 1√
1−θ

, we have

	(βv) ≤ 	(v)+ 1

2

n∑

i=1

(
β2 − 1

)
v2
i = 	(v)+ θ‖v‖2

2(1 − θ)
.

Now, the lemma is easily followed by using the third item of Lemma 3.4 on this
inequality.

5 An estimation for the step size

This section is devoted to obtain a default value for the step size during an inner
iteration. After an inner iteration, the new point is computed by

x+ = x + α�x, y+ = y + α�y, s+ = s + α�s,

where α is the step size. From the centering equation in (7), we have:

x+ = x

v
(v + αdx), y+ = y + α�y, s+ = s

v
(v + αds).

Thus,

v2+ = x+s+
μ

= (v + αdx)(v + αds).

The e-convexity property of the function 	(v) implies that

	(v+) = 	
(√

(v + αdx)(v + αds)
)
≤ 1

2
[	(v + αdx)+	(v + αds)] .
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Let

f (α) = 	(v+)−	(v), (15)

f1(α) = 1

2
[	(v + αdx)+	(v + αds)] −	(v). (16)

The function f1(α) is a convex function with respect to α since 	 is a convex function
and its arguments in the first two terms are linear with respect to α. The first and
second derivatives of the function f1(α) with respect to α are:

f ′
1(α) = 1

2

n∑

i=1

(
ψ ′(vi + αdxi )dxi + ψ ′(vi + αdsi )dsi

)
,

f ′′
1 (α) = 1

2

n∑

i=1

(
ψ ′′(vi + αdxi )d

2
xi
+ ψ ′′(vi + αdsi )d

2
si

)
.

Note that

f ′
1(0) =

1

2
∇	(v)T (dx + ds) = −1

2
∇	(v)T∇	(v) = −2δ(v)2,

where the last equality is obtained from (13). For simplicity, in the sequel, we use the
following notations:

v∗ = min(v), δ := δ(v).

The following results introduce the conditions on α in which we have f ′
1(α) < 0

which implies that the function f (α) decreases during an inner iteration using the
fact that f (0) = f1(0) = 0 and f (α) ≤ f1(α).

Lemma 5.1 (Lemma 4.1 in [1]) Assume that f1 is defined by (16). Then, the second
derivative of the function f1 with respect to α satisfies the following inequality:

f ′′
1 (α) ≤ 2δ2ψ ′′(v∗ − 2αδ).

Lemma 5.2 (Lemma 4.2 in [1]) The inequality f ′
1(α) ≤ 0 holds if α satisfies the

following inequality:

− ψ ′(v∗ − 2αδ)+ ψ ′(v∗) ≤ 2δ. (17)

Lemma 5.3 (Lemma 4.3 in [1]) Let ρ : [0,∞) → (0, 1] be the inverse of the function
− 1

2ψ
′(t) in the interval (0, 1]. Then, the largest possible value for α in order to

satisfy (17) is given by

α = 1

2δ
(ρ(δ)− ρ(2δ)). (18)

Lemma 5.4 (Lemma 4.4 in [1]) Let α be defined as in (18). Then, it yields the
following inequality:

α ≥ 1

ψ ′′(ρ(2δ))
. (19)
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Due to Lemmas 5.3 and 5.4, in the sequel, we set the following value for the step
size in Algorithm 1 as the default value:

α̃ = 1

ψ ′′(ρ(2δ))
. (20)

It is easily seen that α̃ ≤ α. The following lemma helps us to provide an upper bound
for the decrease of the proximity function during an inner iteration.

Lemma 5.5 (Lemma 3.5 in [4]) Suppose that the step size α is such that α ≤ ᾱ, thus
we have:

f (α) ≤ −αδ2.

Now, we are ready to provide the amount of decrease in the proximity function
during an inner iteration by considering the default value for the step size, i.e. α = α̃.

Lemma 5.6 Let 	(v) ≥ 1, and ρ and α̃ be defined as in Lemma 5.3 and (20),
respectively. Then, we have

f (α̃) ≤ − δ2

ψ ′′(ρ(2δ))
≤ −�

⎛

⎜
⎝

δ
(

1 + 1
3 log(4δ + 1)

)2

⎞

⎟
⎠ . (21)

Proof From Lemma 5.5 and the fact that α̃ ≤ α imply that f (α̃) ≤ −α̃δ2, which
gives the first inequality.

To prove the last inequality, we need to compute the inverse function of − 1
2ψ

′(t)
in the interval (0, 1]. For this purpose, we solve the equation − 1

2ψ
′(t) = s for t . We

have

−
(
t − e3(tan(h(t))−1)

)
= 2s.

This implies that,

e3(tan(h(t))−1) ≤ 2s + 1, (22)

where the last inequality is obtained from the fact that t ≤ 1. Now, letting t = ρ(2δ),
we get 4δ = −ψ ′(t). Thus, from (22), we have

e3(tan(h(t))−1) ≤ 4δ + 1 (23)

⇒ 3(tan(h(t))− 1) ≤ log(4δ + 1)

⇒ tan(h(t)) ≤
(

1 + 1

3
log(4δ + 1)

)
. (24)
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Now, we obtain a lower bound for α̃. Using (23) and (24), for all 0 < t ≤ 1, we have:

α̃ = 1

ψ ′′(t)
= 1

1 + 6π
(2+2t )2 (1 + tan2(h(t)))e3(tan(h(t))−1)

≥ 1

1 + 3π
2 (4δ + 1)+ 3π

2 (4δ + 1)
(

1 + 1
3 log(4δ + 1)

)2

≥ 1

2δ + 9πδ + 9πδ
(

1 + 1
3 log(4δ + 1)

)2

≥ 1

2(1 + 9π)δ
(

1 + 1
3 log(4δ + 1)

)2

≥ �

⎛

⎜
⎝

1

δ
(

1 + 1
3 log(4δ + 1)

)2

⎞

⎟
⎠ ,

where the second inequality is obtained from the second part of Lemma 3.4 with
	(v) ≥ 1. This implies that

f (α̃) ≤ −α̃δ2 ≤ − δ2

ψ ′′(ρ(2δ))
≤ −�

⎛

⎜
⎝

δ
(

1 + 1
3 log(4δ + 1)

)2

⎞

⎟
⎠ .

This completes the proof of lemma.

Note that, using the second part of Lemma 3.4, we have δ ≥ 1√
2
	

1
2 . Therefore,

an immediate consequence of Lemma 5.6 is:

f (α̃) ≤ −�

⎛

⎜
⎝

δ
(

1 + 1
3 log(4δ + 1)

)2

⎞

⎟
⎠ ≤ −�

⎛

⎜
⎝

	
1
2

(
1 + 1

3 log	
)2

⎞

⎟
⎠ . (25)

6 Iteration complexity

In this section, the worst case total iteration complexity for the Algorithm 1 based
on the proximity measure 	 induced from the kernel function ψ defined by (1) is
derived. As before, the value α̃, defined by (20), is utilized as a default value for the
step size during an inner iteration.

Using Lemma 4.2, we have

	(v+) ≤ 	(v)+ θ

2(1 − θ)
(2	(v)+ 2

√
2n	(v)+ n), (26)
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right after updating the parameter μ to (1 − θ)μ, for θ ∈ (0, 1). Since we are inter-
ested to work in large neighborhood of the central path, we assume that τ = O(n) ≥
1. Moreover, in the large update methods we have θ = �(1).

At the start of an outer iteration and just before updating of the parameter μ, we
have 	(v) ≤ τ . Based on (26), the 	(v) exceeds the threshold τ after updating of
μ. Therefore, we need to compute the number of inner iterations that are required to
return the iterations back to the situation where 	(v) ≤ τ . Let us denote the value of
	(v) after μ-update by 	0, and the subsequent values by 	j , for j = 1, . . . , L− 1,
where L is the total number of inner iterations in an outer iteration. Relation (26)
together with 	(v) ≤ τ = O(n) imply that

	0 ≤ τ + θ

2(1 − θ)

(
2τ + 2

√
2nτ + n

)
= O(n). (27)

Now, from (15) and (25) and using the fact that in the inner iteration we have 	j >

τ ≥ 1, the decrease of 	 in each inner iteration is given by

	j+1 ≤ 	j − κ�	j j = 0, 1, . . . , L− 1, (28)

where κ is some positive constant and �	j is defined by

�	j = 	
1
2
j

(
1 + 1

3 log	j

)2
. (29)

Now, we are in situation to state the inner iteration complexity result in an outer
iteration. The following technical lemma helps us in this purpose. One can find its
proof in [10].

Lemma 6.1 Given α ∈ [0, 1] and t ≥ −1, one has

(1 + t)α ≤ 1 + αt.

Now, the worst case upper bound for the total number of inner iterations in an
outer iteration is provided in the following theorem.

Theorem 6.1 Let μ be updated by μ := (1 − θ)μ and τ ≥ 1. Then, the number of
inner iterations that are required to return the iterations back to the situation where
	(v) ≤ τ is bounded above by

L ≤ 1 +
2
(

1 + 1
3 log	0

)2

κ
	

1
2
0 . (30)
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Proof Using (28), for all j = 0, 1, . . . , L− 1, we have

0 ≤ 	
1
2
j+1 ≤

⎛

⎜
⎝	j − κ

	
1
2
j

(
1 + 1

3 log	j

)2

⎞

⎟
⎠

1
2

= 	
1
2
j

⎛

⎜
⎝1 − κ

	
− 1

2
j

(
1 + 1

3 log	j

)2

⎞

⎟
⎠

1
2

≤ 	
1
2
j

⎛

⎜
⎝1 − κ

	
− 1

2
j

2
(

1 + 1
3 log	j

)2

⎞

⎟
⎠

= 	
1
2
j − κ

2
(

1 + 1
3 log	j

)2
, (31)

where the last inequality is obtained from Lemma 6.1. By subsequently using (31),
we obtain

	
1
2
j+1 ≤ 	

1
2

0 − jκ

2
(

1 + 1
3 log	0

)2
.

Letting j = L− 1, we obtain

0 ≤ 	
1
2
L ≤ 	

1
2

0 − (L− 1)κ

2
(

1 + 1
3 log	0

)2
,

which implies that

L ≤ 1 +
2
(

1 + 1
3 log	0

)2

κ
	

1
2
0 .

This completes the proof of the theorem.

Now, using (27), for the large update interior point methods, we have 	0 = O(n).
Therefore, from Theorem 6.1, we obtain the following upper bound for the total
number of inner iterations in an outer iteration:

L ≤
⎡

⎢⎢⎢⎢
1 +

2
(

1 + 1
3 log	0

)2

κ
	

1
2

0

⎤

⎥⎥⎥⎥
=
⌈
O
(√

n(logn)2
)⌉

. (32)

On the other hand, for θ = �(1) and given accuracy parameter ε > 0, the total

number of outer iterations for getting nμ ≤ ε are bounded above by O
(

1
θ

log n
ε

)
,

see Lemma I.36 in [12]. Now, the total number of iterations for the Algorithm 1 is
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obtained by multiplying the total number of inner and outer iterations. Therefore, by
omitting the integer bracket in (32) which does not change the order of complexity,
we then derive the following total number of iterations to get an ε solution, i.e. a
solution that satisfies xT s = nμ ≤ ε, as follows:

O
(√

n(log n)2 log
n

ε

)
.

The iteration complexity for the small-update methods is straight and we rest it for
the interested readers.

7 Concluding remarks

In this paper, we propose a new kernel function consisting of a trigonometric func-
tion in its barrier term for the large-update primal-dual interior point methods for
linear optimization in large neighborhood of the central path. Using some mild and
easy to check conditions, a simple analysis for the primal dual IPMs based on the
proximity function induced by the new kernel function is provided. As usual, the e-
convexity property of the kernel function plays an important role in deriving a default
value for the step size. We finally derive the worst case iteration complexity of Algo-
rithm 1 which is O

(√
n(logn)2 log n

ε

)
. This bound improves significantly the results

obtained by El Ghami et al. in [4] for the kernel functions with trigonometric function
in their barrier term.
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