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Abstract In recent years, it has been found that many phenomena in engineering,
physics, chemistry and other sciences can be described very successfully by mod-
els using mathematical tools from Fractional Calculus. Recently, a new space and
time fractional Bloch-Torrey equation (ST-FBTE) has been proposed (Magin et al.,
J. Magn. Reson. 190(2), 255-270, 2008), and successfully applied to analyse diffu-
sion images of human brain tissues to provide new insights for further investigations
of tissue structures. In this paper, we consider the ST-FBTE with a nonlinear source
term on a finite domain in three-dimensions. The time and space derivatives in the
ST-FBTE are replaced by the Caputo and the sequential Riesz fractional deriva-
tives, respectively. Firstly, we propose a spatially second-order accurate implicit
numerical method (INM) for the ST-FBTE whereby we discretize the Riesz frac-
tional derivative using a fractional centered difference. Secondly, we prove that the
implicit numerical method for the ST-FBTE is uniquely solvable, unconditionally
stable and convergent, and the order of convergence of the implicit numerical method

is O (Tzfa + T4+ h}c + hi + h%) Finally, some numerical results are presented to
support our theoretical analysis.

Keywords Fractional Bloch-Torrey equation - Fractional calculus -
Implicit numerical method - Fractional centered difference - Solvability -
Stability - Convergence

J. Song
Sunshine College, Fuzhou University, Fuzhou, Fujian 350015, China
e-mail: geigeisong@ 126.com

Q. Yu - E Liu (<) - I. Turner

School of Mathematical Sciences, Queensland University of Technology,
GPO Box 2434, Brisbane, QLD 4001, Australia

e-mail: f.liu@qut.edu.au

@ Springer


mailto:geigeisong@126.com
mailto:f.liu@qut.edu.au

912 Numer Algor (2014) 66:911-932

1 Introduction

It is now well accepted that many phenomena in engineering, physics, chemistry and
other sciences can be described very successfully by models that employ the theory
of derivatives and integrals of fractional order [4, 5, 10, 11, 18, 20, 22, 28, 29]. At
present, fractional order equations have been applied to model dynamical systems
in science and engineering [12, 26]. These new fractional models are more adequate
than the previously used integer order models [17], because fractional order deriva-
tives and integrals enable the description of the memory and hereditary properties of
different substances.

In physics, particularly when applied to diffusion, fractional order dynamics lead
to an extension of Brownian motion to what is called anomalous diffusion [13].
Anomalous diffusion concerns the theory of diffusing particles in environments that
are not locally homogeneous, including disorder that is not well-approximated by
assuming a unified change in the diffusion constant. Such systems include diffu-
sion in complicated structures such as brain tissue. Hall and Barrick [7] show that
the usual manner to study the diffusive dynamics is to investigate the mean square
displacement <r2(t)> of the particles, namely

(ﬂ(r)) 1%, 1 = o0, (1

where « is the anomalous diffusion exponent.

A very interesting and particular class of complex phenomena arises in the
nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) fields,
and Fractional Calculus may help to express a physical meaning by utilizing the
fractional derivative operator [14, 15]. If the complex heterogeneous structure, such
as spatial connectivity, can facilitate the movement of particles at a certain scale,
fast motions may no longer obey the classical Fick’s law and may indeed have a
probability density function that follows a power-law. For example, if C(x, t) repre-
sents the concentration of the diffusing species in one-dimension, then a space-time
Riesz-Caputo fractional diffusion equation of the form

PC(x, 1)
ax|p

emerges from Fick’s first law in the continuity equation [6], where K, is the gen-
eralized diffusion coefficint, g D¢ is the Caputo time fractional derivative of order
a (0 < o < 1) with respect to ¢ with starting point at = 0 defined as [17]:

€ o 1 f’ C'(x, 1)
Och(x’t)_F(l—a) ; (t_r)adr, (3)
Pl

and Rf = aplf is the Riesz fractional derivative of order 8 (1 < 8 < 2) with respect

SD¥C(x, 1) = Ky (2)

to x, which is defined in (5) below.

Recently, some authors have used Fractional Calculus to investigate the connec-
tion between fractional order dynamics and diffusion by solving the Bloch-Torrey
equation [13, 23, 24]. They have demonstrated that a Fractional Calculus based diffu-
sion model can be successfully applied to analyzing diffusion images of human brain
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tissues and provide new insights for further investigations of tissue structures. The
following new diffusion model was proposed for solving the Bloch-Torrey equation
using Fractional Calculus with respect to time and space [13]:

N SDY M,y (x, 1) = AMyy(r, 1) + D P DR M,y (x, 1), )

where A = —iy(r- G(t)), r = (x, y, 2), G(¢) is the magnetic field gradient, y and
D are the gyromagnetic ratio and the diffusion coefficient, respectively. In addition,

R? = (Rf + Rf + Rf ) is a sequential Riesz fractional order operator in space

[8]. Myy(x,t) = M, (r,t) + iMy(r, ), where i = V-1, comprises the transverse
components of the magnetization; 7! and >~ are the fractional order time
and space constants needed to preserve units, respectively (0 < ¢ < 1,and 1 <
B < 2). The fractional order dynamics derived from the space fractional Bloch-
Torrey equation can be used to fit the signal attenuation in diffusion-weighted images
obtained from Sephadex gels, human articular cartilage and a human brain [13], and
can also be used to analyse diffusion images of healthy human brain tissues in vivo at
high b values up to 4700 sec/mm?> (b is the degree of diffusion sensitization defined
by the amplitude and the time course of the magnetic field gradient pulses used to
encode molecular diffusion displacements [9]) [27].

Compared with the considerable work carried out on the theoretical analysis,
relatively little work has been done on the numerical solution of (4). Magin et al. [13]
derived the analytical solutions with fractional order dynamics in space (i.e., ¢ = 1,
B an arbitrary real number, 1 < 8 < 2) and time (i.e.,0 < @ < 1, and g = 2),
respectively. Yu et al. [24] derived an analytical solution for solving (4) using a frac-
tional Laplacian based model and an effective implicit numerical method for solving
(4) using a Riesz fractional based model. They also considered the stability and
convergence of the implicit numerical method. However, due to the computational
overheads necessary to perform the simulations for solving (4) in three dimensions,
Yu et al. [24] presented a preliminary study based on a two-dimensional example
to confirm their theoretical analysis. Yu et al. [23] proposed a fractional alternating
direction implicit scheme to overcome the computational bottlenecks described in
[24], they also proved the stability and convergence of the proposed method. How-
ever, the order of convergence in [23, 24] is 0(r2’°‘ + hy + hy + hy) first order in
space.

The Griinwald-Letnikov derivative approximation scheme of order O (h) is gen-
erally used to approximate the Riesz fractional derivative [17, 18, 20, 23, 24, 29]. In
order to obtain a better approximation, Ortigueira [16] defined the ‘fractional cen-
tered derivative’ and proved that the Riesz fractional derivative of an analytic function
can be represented by the fractional centered derivative. Celik and Duman [3] used
the fractional centered derivative to approximate the Riesz fractional derivative and
applied the Crank-Nicolson method to a fractional diffusion equation that utilises the
Riesz fractional derivative, and showed that the method is unconditionally stable and
convergent with O (h?) accuracy. Yu et al. [25] derived an effective implicit numer-
ical method for solving (4) in two-dimensions with a linear source term using the
fractional centered derivative to approximate the Riesz fractional derivative. They
also considered the stability and convergence of the implicit numerical method,
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however, they did not consider the method’s solvability, and the order of convergence
in [25]is O (zH +T 42+ hg).

In this paper, we build upon the work in [25] and use a fractional centered deriva-
tive to approximate the Riesz fractional derivative, and propose a new effective
implicit numerical method for the space and time fractional Bloch-Torrey equation
(ST-FBTE) with a nonlinear source term with initial and boundary conditions on
a finite domain in three-dimensions, and prove that the implicit numerical method
for the ST-FBTE is uniquely solvable, unconditionally stable and convergent. The
convergence order is O (rz_"‘ + 7+ h)zc + hi + h%)

The remainder of this article is arranged as follows. Some mathematical prelim-
inaries related to Fractional Calculus are introduced in Section 2. In Section 3, we
propose a new effective implicit numerical method for the ST-FBTE. The solvabil-
ity, stability and convergence of the implicit numerical method are investigated in
Sections 4, 5 and 6, respectively. Finally, some numerical results are presented to
show that our new implicit numerical method can obtain second order space accuracy,

which is O (rz_“ +T4+h2+ 3+ hﬁ).

2 Preliminary knowledge

In this section, we give some preliminary information that is assumed throughout this
paper.

Definition 1 [23] The Riesz fractional operator R? forn — 1 < B < n on a finite
domain [0, L] x [0, L,] x [0, L3] is defined as

FCx,y,2,0
RECGryoan="" """ = ¢ (0D ¢ D, ) Clxs v 2.0, (9)
where cg = ! B #1,

2005(”2ﬂ) ’

" [T CE v,z 0d
oDEC(x,y. 2. 1) = f &,y 2z, )ds
0

P(n—p)ax" Jo (x—g&)p+i-n’
8 I G DL L L ol (R U Y 2
etz = U [

Similarly, we can define the Riesz fractional derivatives Ry'S Cx,y,z,t) =
p B , .
9 Ca("‘y"yﬁ’z”) and RPC(x,y,z,0) =" C{;TZ’&;Z”) of order B (1 < B < 2) with respect
toyand z.

Now, we present our solution techniques for the ST-FBTE for a finite domain.
Firstly, the ST-FBTE (4) can be rewritten as:

Ko § DX My (r, 1) = AMyy(r, 1) + KgRP My, (v, 1), (6)

where K, = %! and Kg = Dp?>F=D.
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For the numerical solutions of the ST-FBTE, we equate real and imaginary com-
ponents to express (6) as a coupled system of partial differential equations for the
components M, and My, namely

3P 3P 3P
+ +

xlf ~ dlylF  9lzlf

3P 3P 3P
+ +

xlf ~ dlylP  dlzlf

Ko § DX My (v, 1) = Kﬁ< )n@(nt)+xgﬂamnt;(n

Ko §DIMy(r, 1) = Kﬁ< )Aaxnt)—kcﬂb(nt%(&

where Ag = y (r - G(¢)).
For convenience, (7) and (8) are decoupled, which is equivalent to solving

RL RL: RL
+ +
alx|B "~ dlylf  9|z|P

where M can be either M, or My, and f(M,r,t) = AgMy(r,t) if M = My, and
fM,x, t) = =AgMy(r,t)if M = M,.

<ng%ﬂnﬂ=Kﬁ< )an+fMan ©)

3 Implicit numerical method for the ST-FBTE

In this section, we propose a new implicit numerical method for the following space
and time fractional Bloch-Torrey equation with initial and boundary conditions on a
finite domain:

C o b b B
K(M()D[ M(rvt) = K/S <a|x|’3 +a|y|’3 +8|Z|'3>M(rvt)+f(M7rat)v (10)
M(r,0) = My(r), 1)
M(r,t)|g =0, (12)

where 0 <o < 1,1 < 8 <2,0 <t < T, r = (x,y,2) € Q, Q is the finite
rectangular region [0, L1] x [0, Ly] x [0, L3], and €2 is R3 — ©, the nonlinear source
term f(M,r,t) is assumed locally Lipschitz continuous.

Remark 1 [1, 2] We say that f : X — X is globally Lipschitz continuous if for
some L > 0, we have || f(u) — f(v)|| < L|lu — v|| for all u, v € X, and is locally
Lipschitz continuous, if the latter holds for ||u||, ||v|| < M with L = L(M) for any
M > 0.

Baeumer et al. [1, 2] showed how to solve nonlinear reaction-diffusion equations
of type (10) by an operator splitting method when the abstract function f is only
locally Lipschitz (see [1, 2, 21]).

Thus, we assume that forall k = 1,2,--- | N, [lu(x, y, z, t)ll, lvx, y,z, o) || <
M with a constant My > O forany r = (x, y, z) € 2, we have

| f(ulx,y,z, ) — fx,y, z, 6l < LM llulx, y, z, %) —v(x, ¥, z, i)l
= Lk”M(X, v, 2, tk) - U(x, v, 2, tk)”s (13)
where we have defined Ly = L(My) and Lyax = max Lyg.
0<k<N
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Let hy = L{/N1,hy = Ly/N>,h; = L3/N3,and T = T/N be the spatial and
time steps, respectively. For i, j, k € Nandn € N, we denote the exact and numerical
solutions M (r, t) at a point (x;, y;, zx) at the moment of time #, as m(x;, y;, 2k, tn)
and mﬁj,k, respectively. Similar notations for f(M (x;, ¥, Zk, ta), Xi, ¥j, Zk, ta) and
Fljke

Firstly, utilizing the discrete scheme in [18], we can discretize the Caputo time
fractional derivative of m(x;, y;, zk, th+1) as

— n
.L,(M

c
o Dim(xi, yj, 2k, tag1) = rQ-a ;bl [m(xi, yj. 2o tn1-1)
—mexi gz )] 40 (270). (14

where by = (I + 1)~ —(/'=* 1 =0,1,---, N.
Secondly, adopting the fractional centered difference scheme in [3], we can
discretize the Riesz fractional derivative as

ap 1 <

2
a|x|ﬁm(xiv Yijs ks tn+l) = - B Z -a)pm(-xi*ps Yjs Zks tn—H) +0 (hx) s
X p=—=Ni+i
(15)
where the coefficients w), are defined by
—DPrB+1
wp=  TVTEED o FL2. 6
rG—p+or(§+p+1)
Similarly,
L 1
oy 5 T ) = =y D wgm, v, s + O ().
Y ¥ g=—Natj
(17)
Y. & >
J) |ﬁm(xi, Vis ks 1) = = 4 > omi,yj. 2k tap1) + O (hz) - (18)
< Z r=—N3+k

The nonlinear source term can be treated either explicitly or implicitly. In this
paper, we use an explicit method and evaluate the nonlinear source term at the
previous time step:

fznf/: = fi'jx+ 0. (19)

In this way, we avoid solving a nonlinear system at each time step and obtain an
unconditionally stable and convergent numerical scheme, as shown in Sections 5
and 6. However, the shortcoming of the explicit method is that it generates additional
temporal error, as shown in (19).
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Then we can obtain the implicit numerical scheme:
n

Kot Zb S e
T2 —a) L\ k ij.k
1=0

1

J
n+l1
Z @gM; g,k

_ n+1
- Kﬁ h'B Z a)pm p.j.k + hﬁ
X p=—Ni+i Y q=—Nr+j
1 k
+ 5 2 o, |+ fe 20)
hz r=—N3+k

Thus, we have the following implicit difference approximation:

i J
n+l n+1 n+1
migetm D ot Y wgmitl
p=—Ni+i q=—N2+j
n—1
n+1 _ b —b n—I b 0 n 21
WM G k—r = (by l+l)m,-,j’k + nM; jk + ILOf,',J',k, (21)
r=—N3+k =0
i=1727"'7N]_17.].:1’2’"'7N2_17k:1525”'7N3_17

with
0 _ o . — (Xiy Vi k),
m; ik = 8i,jk=8WXi,Yj,Zk),
n+1 n+1 _ n+l _ n+l _ n+l _ n+l
Mo ik =My ik = M0k = "Nk = i,j,o—mi,j,lv3—0
(1_0717 aNla]_Oala”'7N27k_0717“'7N3)
o — Kgt®T'(2— Kgt*T'(2— Kgt*T'(2—
where uo = © I‘l((Z oz)’M] _ Kpt (ﬂ a), _ Kt (ﬂ oz)’ _ Kpt (ﬂ a)’and
a Koh? Koh? Koh?

noting that the coefficients o, i1, 2, u3 > 0forO <o <land 1 < g <2.

Remark 2 If we use the implicit method to approximate the nonlinear source term,
the numerical method of the ST-FBTE can be written as:

n+] n+l
ka+“1 Z opmi, i+ 2 Z DgM; j—g.k
—Ni+i g=—Nr+j

Z wmi T, Z(bz brym! T+ bamy  + mo fl1 (22)
=—N3+k =0

namely, replace f" ik in (21) with fl";',i This numerical method is stable and conver-
gent when the nonlinear source term f (M, r, t) satisfies the local Lipschitz condition
(13) (see [21]).
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Lemma 1 The coefficients by (I =0, 1, 2, -- ) satisfy:
Wbo=1,b;>0forl=1,2,---;
)by > by forl =0,1,2,---.

Proof See [11].

Lemma 2 The coefficients w, (p € N) satisfy:
(1) wo >0, ok =wi <0 forall |k| > 1;

o
2 Y w,=0;
p=—00
n
(3) For any positive integer n, m withn < m, we have ) wp > 0.
p=—m+n

Proof See [3, 16].
4 Solvability of the implicit numerical method
We 1 Mn+] _ n+1 n+1 n+1 r * 1

e let = MM My NNt | 0 N = (N = 1)
(N2 — )(N3 — 1), and M® = [g1.1.1, 82.1.1, "+ » @Ny—1.No—1,Ns—1]" , respectively,

then the implicit difference approximation (21) can be written in matrix form as

n—1

I+ MM =% (b1 = b)) M"™ + b MO + o F, (23)
=0
T * *
where F" = [fl"’l’l, VLRI "flr\lll—l,Nz—l,N3—l:| , I € RV™XN" is the identity
matrix. A = [asy] € RN"XN" ig a coefficient matrix. If s = v for s = 1,2,---, N*,

then we obtain

ass = wo(pr + pa + ©3). (24)
In addition, let s* = (k — 1)(N3 — 1) + (j — 1)(N2 — 1) + i, then we have
N3—1 No—1 Ny—1

Z Z Z As*, (r—D)(N3—1)+(g—D)(N2—D)+p — ds*.s*

r=1 g=1 p=1

i j k
= u1 Z wp + U2 Z wg + 13 Z wr, (25)
p=—N1+i,p#0 g=—N2+j,q#0 r=—N3+k,r#0

fori=1,2,---,Ny—1,j=1,2,--- ,No—1,k=1,2,--- N3 — 1.
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Theorem 1 The difference equation defined by (23) is uniquely solvable.

Proof Let A be the eigenvalue of the matrix A. Then by the Gerschgorin’s circle
theorem [19] and Lemma 2, we have

A — w1 + 2 + pu3)| <r;

i J k
= Y epltur Y ogltus Y o
p=—N1+i,p#0 q=—N2+j,q#0 r=—N3+k,r#0
< wo(p1 + 2 + u13), (26)
o o0 o0

where > lwp| = wo, > lwgl =woand Y |w| = wo, that is,

p=—00,p#0 q=—00,q#0 r=—00,r#0

we have

0 <X <2wo(ur + pu2 + p13). (27)

Hence the spectral radius of the matrix (I + A) is greater than one. Therefore, the
difference equation defined by (23) is uniquely solvable.

5 Stability of the implicit numerical method
In this section, we prove the stability of the implicit numerical method for the

ST-FBTE.
Let %,” ik be the approximate solution of the implicit numerical method (21), and

T
n _ n n - n n _ n _~n
set EY = [%,1,17%,1,1, ""lel,szl,er] s Where W' = mj ;o — g

~n . . n
and let fi!j’k be the approximation of fi’j!k.
Assuming that |[E" | = max [} |, then we can
1<i<N{—1,1<j<Np—1,1<k<N3—1 ")

obtain the following theorem by mathematical induction.
Theorem 2 The implicit numerical method defined by (21) is unconditionally stable,
and there is a positive constant C, such that

IE" oo < CFIE oo, n=0,1,2,---.

Proof From (21), the error " ik satisfies

i J k
n+l1 n+l n+l1 n+l
T TR ST G (- SO 7 S TE S SO R iy
p=—Ni+i g=—No+j r=—N3+k
n—1
— O -~
=" G = b VT8 + b0+ 0 (fa = Ta) (28)
m=0

fori =1,2,--- ,Ny—1,j =1,2,--- ,Np— 1,k =1,2,---, N3 — 1. Since f
satisfies the local Lipschitz condition (13), we have

|k — fi',lj,k < La|¥} 4 (29)
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When n = 0, assume that HE1 HOO = max
I<i<N1—1,1<j<Np—1,1<k<N3—

|1//] k. | Using Lemma 2, and noting that w1, o, u3 > 0 we have

| |1/’il,j,k| =

b
1 _ 1
['],. = [t
iy Je
1 1 1
= ‘wi*,j*,k* ) wl"wi*,/’*,k* )] “’q‘l/fi*,j*,k*
p:_NIJFi* q=—N2+j*
ke
1
s D o i,
r=—N3+ks

Ix

1
S DENCY ‘I/fi*,j*,k*

p=—N|+ix, p7#0

[1+ wo(pe1 + p2 + u3)l ‘I/Ii]*,j*,k*

Jx ki

+u2 Z Wy ‘Ipil*,j*,k* + 13 Z wy

g=—Na+ji,q#0 r=—N3+ky,r #£0

1
Vi ke

Ix

1
+ Z @p ‘wi**p,j*,k*

[1+ wo(ur + p2 + 13)] ‘Ilfi]*,j*,k*

5
p=—Ni+is, p#0
Js ke
+tu2 Z Wq ‘I/Iil*,j*—q,k* + U3 Z r I/fil*,j*,k*—r

g=—N2+jx,q#0 r=—N3+ks,r #0

With the well known inequality |Z;| — |Z2| < |Z] — Z>|, using Lemma 1 we have

1 1
e, =[¥d
i
[1+ wo(per + p2 + 13)] I/Ii]*,j*,k* + 1 Z wpwil*fp,j*,k*
p=—Ni+ix,p#0

IA

Jx ks
1 1
+,bL2 Z wa/fi*,j*—q,k* + M3 Z wrl/fi*,j*,k*_r
q=—No+jx,q7#0 r=—N3+ky,r#0
s Jx
— 1 1 1
- wi*,j*,k* + M1 Z wpwi**Pyj*,k* + M2 Z wqwi*,j**q,k*
p=—Ni+ix q=—No+j«
ks
1
+,bL3 Z wrwi*yj*,k**r
r=—N3+ky

0 0 70
‘bol”i*,j*,k* 0 (£ - ft,.i,k)‘ :
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Using local Lipschitz condition (29), we have

0 0 0 0
HEIHOQ S ‘I//i*,j*,k* +M0LO ‘I//i*vj*,k* S ‘wi*s]‘*ak* + 'uOLmaX I//i*vj*vk*
= (1 + poLmax) ‘1//,(1/*/(* = (I + 1oLmax) HEOHOO .
Leté - 1 + MOLmam thus’ i El HOO 5 5 ||E0 ||OO.
Now, we suppose that |[E™|, < & HEO”OQ m = 1,2,---,n. Assum-
ino g+ — max ‘ .”J,rl‘ = ‘ n+l | and usin
g ” Hoo 1<i<Nj—1,1<j<Nr—1,1<k<N3—1 wl,J,k I/Il*,,]*,k* g

Lemma 2 again, we can obtain

] -
oo

ix, i ks

I Jx
n+1 Z n+1 Z n+l1
= ‘wi*,j*,k* + wl"wi*,j*,k* + D Vi ok
p=—N+iy g=—No+jx

ke

n+l1
s YL or Ui
r=—N3+ks

= [1+wo(u1 + p2 + 13)] ‘wi'i—}_ji’k*

ix
n+1
+ 11 Z wp ‘wi*,]‘*’k*
p=—Ni+isx,p#0

Jx ki

D SR A KT D SR

g=—Na+ji,q#0 r=—N3+ky,r #£0

Fey Joe s Ko

I
n+1
+,bL1 Z C()p ‘I/fi*—P,j*,k*
p=—N1+ix,p#0

< [+ oot + 2+ )] [75]

Jx ks

1
tra Y “’q‘l/’fifj*—q,k* tus ), o

q=—No+jx,q#0 r=—N3+ky,r#0

I/fn+]
i*,j*,k*_r
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Using inequality |Z1| — |Z»| < |Z1 — Z>| and Lemma 1 again, we have

ix

n+l n+1 n+1
IE" oo = |[1+ wolpr + p2 + )13 g, + 11 Yoo eyt
p=—Ni+ix,p#0
Jx ks
n+l n+l
+M2 Z wqwi*,j*—q,k* + M3 Z wrwi*,j*,k*—r
q=—No+jx,q7#0 r=—N3+ky,r#0
Ix Jx
n+1 Z n+1 Z n+1
Vi jeoke T H1 OpYi ke T H2 gV, j—q.ke
p=—Ni+ix g=—Na+j«
ks
n+l
TH3 Z Or Vi ker
r=—N3+ky

n—1

_ n—m 0 n n

= Z(bm - bm+1)l//i*,j*,k* + bnl/fi*,j*,k* + Ko (fi,j,k - fi,j,k)
m=0

Using local Lipschitz condition (29) again, we have

n—1

IE" Moo < D (b = bt DIE" " lloo + ballE® oo + poLn| ¥ ;. 4.
m=0
n—1
< ED (bn— bt DIE lloo + balE%lloo + 140 Limax [E" [loo

m=0
< (b + boE — ba&) IE® [l + &120 Linax IE [loo
= (&% — buptoLmax) [E® [l o-

From Lemma 1, we know that by = 1 and b, — 0 as n — o00. Also, note that
& = 1 + poLmax, then it is easy to know that 52 — byuoLmax > 0. Hence, let
Cl = €2 — b, puoLmax, we have

[ert] =i
[e¢)

EOHOO . 30)

Hence the implicit numerical method defined by (21) is unconditionally stable.

Remark 3 If we use an implicit method to approximate the nonlinear source term, as
shown in Remark 2, we can prove that the numerical method defined in (22) is stable
when 1 — woLmax > 0, which is independent of the spatial step. In fact, when the
time step is small, the condition 1 — woLmax > 0 is generally satisfied.
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6 Convergence of the implicit numerical method

In this section, we prove the convergence of the implicit numerical method for the
ST-FBTE.

Setting Hl?fj’k =mXi, yj, Tk, th) —m and denoting

n
i,j,k?

T
n __ n n n
R" = [91,1,1v92,1,1’ ’9N|—1,N2—1,N3—1:| )

where R? = 0. Note that R" and 0 are ((N] — 1) x (N2 — 1) x (N3 — 1)) vectors,
respectively.
From (10)—(21), the error 6" ik satisfies

J
n+ n+ n+1 n+l
ij—i-pbl E wp91p1k+“2 E a)qé? qk+M3 E a)rel]kr
—Nj+i q=—Nr+j =—N3+k

n—1

=Y (bn — b )07} +uo(f(M(x,-,y,;,Zk,tn),x,-,yj,Zk,tn)—ﬂjﬂ,,k)
m=0

+ O (P T 1 A2, (31)

fori=1,2,---,Ny—1,j=1,2,--- ,Np—L,k=1,2,--- , N3 — 1.
Since f satisfies the local Lipschitz condition (13), we have

‘f(M(xis VisZhkstn)s Xis Y Zhs th) — ]Ciflj,k‘ <Ly Ql'rfj’k‘ . (32)

en+]

i k| , then we can obtain the

Assuming |R"*! | max
]<l<N1 1,1<j<Ny—1,1<k<N3—1

following theorem by mathematical induction.

Theorem 3 The implicit difference approximation defined by (21) is convergent, and
there is a positive constant C*, such that

||Rn+l||oo < Cc* <T2—a+f+h§+h§,+h§>, n=012,---. (33)
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Proof When n = 0, assume that [R' |, =

max 91'] ‘k‘ =
1<i<N|—1,1<j<N,—1,1<k<N3—11| b/

1

‘. Similarly, using Lemma 2, and noting that 1¢1, u2, u3 > 0, we have

l'*,,]'*,k*
1 _ a1
HR Hoo = 1O ook
Ly Jx
1 1 1
= S TR SR (7 B E R SCYE
p=—N+iy g=—Nao+jx
ke
1
+u3 Z wy Gi*,j*,k*
r=—N3+ks
i
1 1
= [+ wo(ur + 2+ u3)1 |0, ;| + 11 Z ©p |0, ke

p=—Ni+is,p#0
Jx

ks
1
ICIEED DRV A E D DR
q=—N2+jx,q#0 r=—N3+ky,r#0

Ix

91

i*,.i*,k*

1 1
< Moo+ +u)l|0 o l+m Y wp|fl ik
p=—Ni+is,p#0
Js ks
1 1
12 Z wagi*,.i*—q,k*| + 13 Z Or ei*,j*,k*—r :
g=—N2+jx,q#0 r=—N3+ky,r#0

Let V = C;t¢ (Tzfa +Tr+h+ h% + h?), using inequality |Z;| — |Z>| <
|Z1 — Z5|, Lemma 1 and local Lipschitz condition (32), we have

ix

1 1 1
HR Hoo < [1 + CUO(H’] + 12%) + I’L3)]9i*,j*,k* + 123} Z a)pei*_p’j*!k*
p=—Ni+isx, p#0
Jx ke
1 1
+M2 Z wqei*,j**qyk* + M3 Z wrei*,j*,k**r
q=—No+jx,q7#0 r=—N3+ky,r#0
I Jx
1 1 1
gi*!j*!k* +m Z wpgi*—l?s.i*!k* + 2 Z wqgi*s.i*—q!k*
p:—N] +iy q:_N2+]*
ks
1
+M3 Z wreiﬁm]‘*yk**r
r=—N3+ky
0
< (moLo? . . +V|=b;'V
- 00 i, Ja ks 0 :
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Now, we suppose that |[R"| < b, = 1,2,---,n. Assuming
l = max ”ﬂi‘ = 9"+1 , and using Lemma 2
©  I<i=N—1,1<j<Ny—11<k<Ns—1 1"/ ik
again we have
n+l _ |pn+l1
Rt =i
Ly J*
< |ort! Z ntl Z n+l
- l*v,/*ak* +IL1 (,()p el*y]*yk* +M2 (,()q el*y]*yk*
p=—N+iy g=—Nao+jx
ks
n+1
tus o Y or|0iT,
r=—N3+ky
I
n+l1 n+l1

= [1 +wo(u1 + p2 + u3)1 |0

+ 11 Z wp |0

|y |y
p=—Ni+is,p#0
Jx ks
n+1 Z n+1
+M2 Z 0’*,J*,k* + M3 91*,]*,/@;
q=—No+jx,q#0 r=—N3+ky,r#0
I
n+1 n+1
= [ +wolur +p2+ w310, i |+ 11 > p |00l ik
p=—Ni+is,p#0
Jx ks
n+1 n+1
SR TC RN SR OVE (il I E R S O (S
q=—No+jx,q#0 r=—N3+ky,r#0

Using inequality |Z1| — |Z»| < |Z1 — Z>| and Lemma 1 again, we have

ix

n+1 n+l1 Z n+1
<
HR HOO = [T+ wolper + p2 + w316, + 1 wp; ", i k.
p=—N1+ix,p#0
Jx ks
n+1 Z n+1
+M2 Z 91* J«—q, ks + K3 91*,J*,k*_r
q=—No+jx,q#0 r=—N3+ky,r#0
ix Jx
— n+1 Z n+1 Z n+1
- ei*,j*,k* + M1 9 =P, Js.ks + M2 wqel*y]* —q,kx
p=—Ni+ix q=—Nr+Jx
ks
n+1
+M3 Z wrgl*y]*yk*
r=—N3+ky

= | Y (b —=bu )0 " + 10 (f(M(xi*, Vjur Thys ) Xigs Viss Thos n)

_fir:,,i*,k*> +V].
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Using local Lipschitz condition (32) again, we have

n—1
+1 —
HR” Hoo < Z(bm - bm“”i,,/ﬁik* =+ 'U’OL”HI'Z,j*,k* + VvV
m=0
n—1
= Z (bm — bm+])b;,lm,1V + /LOLmaxbn_,l]V +V
m=0

n—1
< Y (bn = burD)b, 'V + o Lmaxh, 'V +V
m=0

= b;] (bo — by + poLmax + bn)V
= b, '(bo + poLmax)V
= &b, 'V,

Noting that V = C; 1% (rz’“ + T+ h,% + h%, + h%), and

b n¢« 1

lim " = lim =
n—>o00 n% n—o0 (n + 1)1—05 —pl-a 1l —«

therefore there exists a positive constant C,, such that
HR”“ H < £C1Con“t” (r”“ +Thy+h)+ hf) :
oo

Finally, noting that nt < T is finite, so there exists a positive constant C*, such
that [R™1 |, = €% (2 o+ 2+ 13+ 42) forn =0,1,2, .
Hence, the implicit numerical method defined by (21) is convergent.

Remark 4 If we use an implicit method to approximate the nonlinear source term,
as shown in Remark 2, we can prove that the numerical method defined in (22) is
convergent when 1 — poLmax > 0, which is independent of the spatial step. In fact,
when the time step is small, the condition 1 — poLmax > 0 is generally satisfied.

7 Numerical results

Due to the computational overheads necessary to perform the simulations for the
space and time fractional Bloch-Torrey equation in three dimensions, we present here
a preliminary study based on a two-dimensional example to confirm our theoretical
analysis.

In example 1, we use the same example in [24], where the source term
depends only on space and time, for comparison to show that our new
implicit numerical method can obtain second order space accuracy, which is

O (v + 7+ k2 +h2+12).
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Example I The following time and space Riesz fractional diffusion equation with
initial and zero Dirichlet boundary conditions on a finite domain is considered
(See [24]):

9P 9P
Ka G DY M(x.1) = Kp (amﬁ + BW) M(r 1)+ f(r.10), (34)
M(r,0) = 0, (35)
M(r,t)|g = 0, (36)

where

_ KﬂtaJrﬁ 2 28 28
fon = 2cos(Br/2) <<r(3 —B) [x +d=x ]

N I S e
r@— B) [x + 1 —-x) ]
24 4-p _ 4-p 2 _ 2
1 - g) [P+ - Dy (1—y)

* <F(32_ B) [yzﬂg +(1= y)27ﬁ]

N I S S e
r'@—B) [y A=) ]
24 4-p _ 4—,3) 201 _ 2)
+F(5—,8) [y +d-y ] x7(1—x)

Kel@+p+1) 52,

C2v0201 2
r+ 1) X))y (L= y)7, (37)

andO0<a<1,1<B<2,t>0,r=(x,y) € Q, Qis the finite rectangular region
[0, 1] x [0, 1], and € is R* — Q.

The exact solution of this problemis M(r, t) = 2tPx2(1 — x)2y2(1 — y)2, which
can be verified by substituting directly into (34).

When K, = 1.0, Kg = 0.5, = 0.8, and 8 = 1.8, Table 1 lists the maximum
absolute error between the exact solution and the numerical solutions obtained by

Table 1 Comparison of

. BT 22—«
maximum error for the implicit
numerical method at time T 2 mho=h Maximum error Error rate
t=10 .
4 0.000591593 -
1
g 0.000141157 420~ 4
1
16 0.0000342583 412~ 4
1
2 0.00000835079 4.10~ 4
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the implicit numerical method, with spatial and temporal steps © S ah x =hy =
1/4,1/8,1/16,1/32 attime t = 1.0
From Table 1, it can be seen that the

error(h)?
Error rate = ~ 4

error (éh)z

This is in good agreement with our theoretical analysis, namely the convergence
order of the implicit numerical method for this problemis O (72~% + 7 + h)ZC + hi)

We now exhibit in example 2 the solution profiles of the time and space Riesz
fractional diffusion equation with a nonlinear source term.

o
o
&
o
N
&

§ 0.2 ﬁ 0.2
Q Q
o 0.15 o 0.15
] ]
-'I-Il 0.1 "I'I' 0.1
> I////I, >
X iy Y X
s 0.05 Wl‘l';l"‘ ‘ s 0.05

-0
-0

32/322)

& \\\\\\
,/IIII;;I' ’:‘“ ‘: ‘\\

}'i///"’ " '0": \\\ N
/ I///,, “ \}}\\\\\\\\“

M(x,y,t

=
R

e:\“mm
‘ \

(d)

Fig.1 A plot of numerical solutions of ST-FBTE using the implicit numerical method (INM) with spatial
and temporal steps hy = hy = 1/32, = = 1/322 at time t = 32/322 with Ky = 1.0, 43y = 1.0 for
different o, p and Kg. aa = 1.0, =2.0,Kg =1.0.ba =10, =2.0,Kg =20.ca =08,8 =
1.8,Kg=10.da=08,8=18,Kg =20
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Example 2 Nonlinear time and space Riesz fractional diffusion equation with initial
and zero Dirichlet boundary conditions on a finite domain:

ah Bl
Ko §DYM(r, 1) = Kp <a|x|ﬂ + a|y|ﬂ) M(r, 1)+ f(M,r, 1), (38)
M(r,0) = min{1.0, 10e=* "}, (39)
M(r,1)|g = 0, (40)

where the nonlinear source term is Fisher’s growth equation f(M,r,f) =
025M(r,H)[1 — M@, t)],and0 <o < 1,1 < <2,t>0,r=(x,y) € 2, Qs
the finite rectangular region [0, 1] x [0, 1], and Q is R* —

The solution profiles of (38) by the implicit numerical method, with spatial and
temporal steps hy = hy = 1/32, v = 1/322 at time t = 32/322 with K, =
1.0, tfinai = 1.0 for different o, 8 and Kg are listed in Fig. 1. From Fig. 1, it can be
seen that the coefficient K g impacts on the solution profiles of (38), whereby a larger
value of K g produces more diffuse profiles.

o
o
&

o o
8" 0.2 8"
§ 0.15 §
1 / 1
= 01 ‘ =
e /I/ ’I »
% iy I' \\\ %
Z 005 \» a3
= ‘m'" 00 ‘ ‘ﬁ\‘““\\\‘\ \ =
0
1
1
o 02
y X
(@)
0.25 0.25
§ 02 & 02
§ 0.15 § 0.15
Il Il
3 o 3 o
\>.<: 0.05 ; ' ‘ 5 0.05
= 7 ”l"" ,',':l"'"“‘: ‘::““‘\{:\\“A = S TSSO
10 Woo“t“:&“\\\\\\\ 10 ‘ ““‘:‘:\\:&‘
Do 2628 “ SIS
1 0" 1
0 o 0 o
y X y X
(© (d)

Fig.2 A plot of numerical solutions of ST-FBTE using the implicit numerical method (INM) with spatial
and temporal steps hy = hy = 1/32, 7 = 1/322 at time t = 32/322 with Ky = 1.0, Kg = 1.0, t fipar =
1.0 for B fixedat2.aw =1.0.bae=09.ca=05.da =0.2
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32/322)
32/322)

M(x,y.,t
M(x,y,t

11005 0005048 ‘w“\\“‘{\\‘\t\e
5203585 :\\“‘::\‘\\“\t‘
e Se S esSprstinnunt
S S SSSN

7 5500505, S,
S
s

] g
?"I. , ,j/’/};;',, SR ?-'I. “H“I,“; SR ‘“ \Q&&‘“
‘& E G

it A

“‘9‘\“ AT oy

Fig. 3 A plot of numerical solutions of ST-FBTE using the implicit numerical method (INM) with spatial
and temporal steps hy = hy = 1/32, 7 = 1/322 at time t = 32/322 with Ky = 1.0, Kg = 1.0, t fipar =
1.0fora fixedatl.ag =2.0.bg=18.¢cf=15dp=12

In Fig. 2, we illustrate the effect of the fractional order in space for this problem,
with spatial and temporal steps hy = hy = 1/32, T = 1/322 at time t = 32/322
with Ky = 1.0, Kg = 1.0, tfina = 1.0 for B fixed at 2 and o varying. From Fig. 2,
it can be seen that as « is decreased the diffusion profiles becomes more pronounced.

In Fig. 3, we illustrate the effect of the fractional order in time for this problem,
with spatial and temporal steps iy = hy = 1/32, v = 1/322 at time t = 32/322
with Ky = 1.0, Kg = 1.0, tfina; = 1.0 for « fixed at 1 and 8 varying. From Fig. 3,
it can be seen that as f is reduced the diffusion becomes more pronounced.

8 Conclusions

In this paper, a new effective implicit numerical method for solving the fractional
Bloch-Torrey equation in three-dimensions with a nonlinear source term has been
derived. We prove that the implicit numerical method is uniquely solvable, uncondi-
tionally stable and convergent. In addition, compared with first order spatial accuracy
of convergence in [24], and the two-dimensional model with a linear source term in

@ Springer



Numer Algor (2014) 66:911-932 931

[25], our new implicit numerical method can obtain second order space accuracy,
whichis O (727 + 7 + b3 + 12 + 12).
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