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Abstract Complex valued linear algebraic systems arise in many important applica-
tions. We present analytical and extensive numerical comparisons of some available
numerical solution methods. It is advocated, in particular for large scale ill-
conditioned problems, to rewrite the complex-valued system in real valued form
leading to a two-by-two block system of particular form, for which it is shown that a
very efficient and robust preconditioned iterative solution method can be constructed.
Alternatively, in many cases it turns out that a simple preconditioner in the form of
the sum of the real and the imaginary part of the matrix also works well but involves
complex arithmetic.
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1 Introduction

Complex valued linear algebraic systems arise in many important applications, such
as in computational electrodynamics (e.g., [1]), in time–dependent Schrödinger equa-
tions (e.g., [2]), inverse scattering problems (e.g., [3]), and in the numerical solution
of (stiff) systems of ordinary differential equations using implicit Runge–Kutta
methods (e.g., [4, 5]).

We pay particular attention to complex symmetric matrices. They arise in impor-
tant large scale applied problems, such as quantum mechanics, electromagnetism,
structural dynamics, electrical power system models, wave propagation, magnetized
multicomponent transport etc.

To simplify the data handling and the construction of efficient preconditioners, it
can be efficient to rewrite the complex valued system in real valued form to enable the
use of real arithmetics. This can, for instance, be done in the following way. Consider
the complex linear system

Cz = h, (1)

where C = A+ iB , z = x + iy and h = f + ig. Thus, (A+ iB)(x + iy) = f + ig ,
where A,B are real matrices, x, y, f, g are real vectors and i = √−1 is the imaginary
unit. This system can be rewritten in a matrix form

[
A −B

B A

] [
x
y

]
=

[
f
g

]
. (2)

As discussed in earlier works, for instance in [6], the real form (2) of the system (1)
is not unique. As an example, the form

[
B −A

A B

] [
x
−y

]
=

[
g
f

]
(3)

is equivalent to (2) and could be the preferred choice for some particular combina-
tions of the matrices A and B . Note that C is nonsingular if and only is ±i is not a
generalized eigenvalue of the matrix pair (A, B).

As noted in [6], if an iterative method is applied directly to a real formulation of
(1), the convergence rate may be worse than for the original complex linear system.
As the known preconditioners for complex linear systems are relatively limited, one
could hope to find a more efficient preconditioner for the real formulation of the
problem, with or without utilizing the two-by-two block structure of the matrices in
the real formulation. We refer to [7–9] for some examples of preconditioners for the
real case, see also [10].

In this work, based on the particular form of the matrix in (2), we show that for
solving such a system in two-by-two block form with square block matrices there
exists a very efficient preconditioner that requires solution only of matrices that are
linear combinations, A + αB , of A and B where α is a parameter. Often A + αB ,
is better conditioned than A itself. This method has been published in [11] and [1],
where the method was named the ’C–to–R ’ method. See also references in these
publications.
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The preconditioned system can be solved using various iterative solution methods,
such as Krylov subspace iteration methods. To lower the solution cost when solv-
ing the arising inner systems with matrix A + αB it can be efficient to use inner
iteration methods, such as a preconditioned conjugate gradient method, when the
matrix is symmetric and positive definite. For the outer iteration method to solve the
two-by-two block system it is then advisable to use a flexible version of GMRES,
FGMRES ([12, 13]) or a variable preconditioned version of GCG [14], see also [15].
If eigenvalue bounds are known one can even use a Chebyshev semi-iteration method,
thereby avoiding computation of inner products and global communication, which
becomes of particular interest when applied on multi/many core computers.

Another method, that has more recently gained attention, is based on an operator
splitting, alternating direction type of method, described in [16, 17] and [19]. It has
the form of a stationary (fixed point) iteration method,

(αV +A)xk+1/2 = (αV − iB)xk + f + ig

(αV + B)xk+1 = (αV + iA)xk+1/2 − if + g, k = 0, 1, . . . .

Here V is a preconditioner, chosen as a symmetric and positive definite (spd) matrix
if A and B are symmetric and positive semidefinite (spsd). The method is referred
to as PMHSS (Preconditioned Modified Hermitian and Skew–Hermitian Splitting
method). As before, α is a given preconditioning parameter. It is also possible to
rewrite the method as a preconditioner for a GMRES method. This method still
involves some complex arithmetics, but to a lesser extent than if a method is applied
directly for (1). For the choice V = I , the method has been presented and discussed
in [18] and [19]. The skew-symmetric splitting method was actually discussed ear-
lier in [20] in a more general framework for non-Hermitian linear systems with a
dominant positive definite Hermitian part.

In [7] an iteration method is used, based on the skew–symmetric splitting[
A −B

B A

]
=

[
A 0
0 A

]
+

[
0 −B

B 0

]
.

This method can be efficient only if the symmetric part dominates the skew–
symmetric part which, however, does not hold in general.

As pointed out in [21], if the complex inner product x∗y is replaced by xT y,
complex symmetric systems can be solved by a classical conjugate gradient method,
that is, with short recurrences - a form of the Biconjugate Gradient (BiCG) method.
However, this method breaks down if xT x = 0 for some complex vector x �= 0. To
some extent, this can be cured by use of a look–ahead strategy, see [22] and [23].

It is also possible to solve complex valued systems with a related algorithm,
namely the unpreconditioned or preconditioned Quasi–Minimal–Residual (QMR)
method (cf. [24]). The QMR algorithm can be seen as a stabilized version of the
Biconjugate Gradient (BiCG) method using look-ahead techniques. Similarly to
BiCG, QMR requires matrix-vector multiplications with both the coefficient matrix
and its transpose. The main idea behind this algorithm is to solve the arising reduced
triangular system in a least square sense, similar to the approach followed in GMRES
and GCG. The difference is that the Krylov subspace basis vectors are bi-orthogonal
rather than orthogonal as in the GMRES and GCG methods, so the obtained solution
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can be viewed as a quasi-minimal residual solution. QMR uses look-ahead tech-
niques to avoid breakdowns in the underlying Lanczos process. The method gives
less reduction of the condition number, it may need additional computations due to
the look-ahead and requires the action of the transpose of the preconditioner, which
could be disadvantageous. However, a transpose-free version of QMR exists [25].

In this paper we focus on methods that are fully robust, i.e., more generally appli-
cable, independent of various problem, discretization and method parameters, and
with a nearly optimal order of computational complexity. The purpose of the present
paper is to further develop some of the methods and to make a theoretical and a
thorough numerical comparison of them.

The remainder of the paper is organized as follows. We present in Section 2
preconditioners for the two-by-two block system (2) with square blocks as aris-
ing in the C–to–R method, and derive the rate of convergence when applied
for a suitable iterative method, such as a generalized conjugate gradient method
or a Chebyshev semi-iterative method. Section 3 contains a description of the
Preconditioned Modified Hermitian Skew-Hermitian Splitting (PMHSS) method and
the related eigenvalue analysis. In Section 4, various examples where complex valued
linear systems arise are presented while Section 5 contains the corresponding numer-
ical results. The final section contains a summary and concluding comparisons of the
methods.

2 Preconditioning methods for two-by-two block matrices with square blocks

To solve linear systems with two-by-two block matrices, such as arising from
complex valued linear systems and also in other important problems (see, e.g.
[6, 7]), we present now two types of preconditioning methods. We assume that
A + αB , α > 0 is nonsingular, where A and B are given in (2). The first is based
on a reduction of the system to Schur complement form, where we assume that A is
also nonsingular. The Schur complement is then solved by a preconditioned iterative
solution method. For this method we present two variants. Both variants involve an
inner system to be solved when computing the residuals that arise at each iteration.
Since the residuals must be computed sufficiently accurately, the solution of the cor-
responding inner systems must be done accurately. The second method is not based
on a reduction to Schur complement form and involves inner systems only to solve
the action of the inverse of the preconditioner, which can take place by iteration and
with a not particularly small stopping criteria, thereby saving computational efforts.

2.1 Reduction to Schur complement form

Assume first that A and A + αB, α > 0 are nonsingular. The system (2) can be
reduced to a Schur complement form,

(A+ BA−1B)x = f̃ , (4)

where f̃ = f + BA−1g.
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For the iterative solution of the reduced system we use a preconditioner in a form
presented already in [5],

Cα = (A+ αB)A−1(A+ αB),

where α > 0 is a parameter to be chosen.
The convergence of this iterative solution method to solve (4) depends on the

eigenvalues λ of Mα ≡ C−1
α (A + BA−1B), i.e., of the generalized eigenvalue

problem

λCαz = (A+ BA−1B)z, z �= 0. (5)

Although somewhat restricted, for the analysis we assume that the matrix B̃ = A−1B

is a normal matrix, i.e., with a complete spectrum and eigenvalues μ , μAz =
Bz, z �= 0. It follows from (5) that

λ(I + αB̃)2z = (I + B̃2)z.

Hence,

λ = 1 + μ2

(1 + αμ)2
. (6)

Clearly, λ �= 0 if and only if μ �= ±i. A related result for two-by-two block matrices
with square blocks is derived in [26] in the context of problems arising in PDE-
constrained optimization. The structure of the matrices, that arise there, is similar to
that in the C–to–R approach, up to some additional coefficients. There, the authors
derive an approximation of the Schur complement of the form

SPW = (A+ B)A−1(A+ B) (7)

and show that for symmetric and positive definite A and B , SPW is spectrally
equivalent to S = A+BA−1B , implying that all the eigenvalues of S−1

PWS belong to
the interval [0.5, 1], independently of the discretization parameter and the involved
scalar coefficients.

Apart from the matrix-vector multiplications with A and B , the computational
cost of the preconditioner, derived in [26], consists of two solutions with A+ B and
one solution with A. Below we show that for the considered type of matrix struc-
tures the solution with A can be avoided and reduction to Schur complement form is
unnecessary.

Case: A spd, B spsd

Assume first that A is spd and B is spsd. It follows then that μ ≥ 0 and the eigen-
values λ are real and positive. Hence, one can use a preconditioned version of the
classical conjugate gradient method (see, e.g. [27]), that is, letting the inner products
(x, y) be defined by the matrix Cα , i.e., (x, y) = xT Cαy.

The optimal value of the parameter α to minimize the spectral condition number
of C−1

α (A+ BA−1B) can be determined as follows.
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Proposition 1 Assume that A is spd and B is spsd. Then, the extreme eigenvalues of
the preconditioned matrix Mα , defined in (5), satisfy

λmin =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

1 + α2
, if 0 ≤ α ≤ μ̂

1 + μ̂2

(1 + αμ̂)2
, if μ̂ ≤ α

λmax =

⎧⎪⎪⎨
⎪⎪⎩

1 , if α̂ ≤ α

1 + μ̂2

(1 + αμ̂)2
, if 0 ≤ α ≤ α̂

where μ̂ is the maximal eigenvalue of A−1B , i.e.,A− 1
2 BA− 1

2 ≤ μ̂I and

α̂ = μ̂

1 + √
1 + μ̂2

.

The spectral condition number of Mα is minimized when α = α̂ , in which case

μmin = 1

1 + α̂2
, μmax = 1 Cond(Mα) = 1 + α̂2 = 2

√
1 + μ̂2

1 + √
1 + μ̂2

.

Proof See [11].

General case: A and A+ B nonsingular

From (6) one can estimate the location of the eigenvalues for more general problems
as follows. Since it may then turn out to be more difficult to estimate the optimal
value of α, we choose α = 1, which equals the limit of α̂ in Proposition 1 when
μ̂ → ∞. We assume that μ = μ0e

iφ with 0 ≤ |φ| ≤ φ0 < π
2 , that is, we assume

that the real part of μ is positive. For α = 1 it holds that

λ = λ(μ) = 1 + μ2

(1 + μ)2
= 1

2
+ 1

2

(
μ− 1

μ+ 1

)2

,

where
μ− 1

μ+ 1
= (μ− 1)(μ+ 1)

(μ+ 1)(μ+ 1)
= |μ|2 − 1 + (μ− μ)

|μ|2 + 1 + (μ+ μ)
.

The latter shows that the eigenvalues λ are located in a disc in the complex plane with
center close to 1

2 and with radius less than 1
2 . We give now more precise estimates.

Proposition 2 Let A and A + B be nonsingular and let μ denote eigenvalues of
A−1B . Let μ = μ0e

iφ, and assume that 0 ≤ |φ| ≤ φ0 < π
2 . Then the eigenvalues

λ(μ) in (6) are located in a disc, centered at 1
2 (1 + δ) with radius

1

2
(1 − δ), where

δ = cosφ0

1 + cosφ0
. The lower bound of the real part of the eigenvalues equals δ.

Proof Rewrite λ(μ) as

λ(μ) = 1 − 2μ

(μ+ 1)2 = 1 − 1

1 + 1
2 (μ+ 1

μ
)
,
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where 1
2 (μ + 1

μ
) = a cosφ + ib sinφ, a = 1

2 (μ0 + 1
μ 0

), b = 1
2 (μ0 − 1

μ 0
). Clearly,

a ≥ 1 and |b| < a. Hence,

1

1 + 1
2 (μ+ 1

μ
)
= 1 + a cosφ − ib sinφ

(1 + a cosφ)2 + (b sinφ)2
.

For the real part of λ it holds

1>Re(λ) = 1− 1 + a cosφ

(1 + a cosφ)2 + (b sinφ)2 ≥ 1− 1

1 + a cosφ
≥ a cosφ0

1 + a cosφ0
≡ δ̃.

By the assumptions made, for all a ≥ 1 there holds δ̃ ≥ δ = cosφ0

1 + cosφ0
> 0.

For the imaginary part it holds

|Im(λ)| = |b sinφ|
(1 + a cosφ)2 + (b sinφ)2 ≤ b̃

(1 + ã)2 + b̃2
,

with ã = a cosφ0 and b̃ = |b sinφ0|. A computation shows that

|Im(λ)| ≤ 1 + ã

2(1 + ã)2 = 1

2(1 + a cosφ0)
= 1

2

(
1 − a cosφ0

1 + a cosφ0

)
≤ 1

2
(1 − δ).

It follows that the smaller φ0 is, the smaller the convergence factor, max
μ

|λ(μ)|,
becomes. If φ0 = 0, then δ ≥ 1

2 and the eigenvalues λ are contained in the interval[
1
2 , 1

]
, which is in accordance with the result from Proposition 1.

When the eigenvalue bounds are known one can use a Chebyshev semi-iteration
method instead on the conjugate gradient method, thereby avoiding computation of
inner products and global communication thereof to all computer processor cores.

Avoiding the inner systems with the matrix A

The above method involves an inner system with matrix A to be solved at each iter-
ation. In some problems, it might be most efficient to use a direct solution of these
systems. However, in other problems A may be less well–conditioned but the linear
combination, A + αB may be better conditioned. Note also that the preconditioner
involves two solutions with the latter matrix. We show now that the system matrix
C−1
α (A+BA−1B) can be rewritten in a form where there is only one preconditioned

system with matrix A + αB and the inner system with matrix A has been replaced
by A+ αB . To this end, we first note that using matrix commutativity,

A(A+ αB)−1BA−1B = A(I + αA−1B)−1A−1BA−1B

= B(I + αA−1B)−1A−1B = B(A+ αB)−1B .

Further, we rewrite

A(A+ αB)−1A = A(A+ αB)−1(A+ αB − αB) = A− αA(A+ αB)−1B
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and

I −A(A+ αB)−1 = (A+ αB −A)(A+ αB)−1 = αB(A+ αB)−1.

It follows that the preconditioned system

C−1
α [(A+ BA−1B)x − f − BA−1g] = 0

can be rewritten as

(A+ αB)−1[A(A+ αB)−1(Ax − f − BA−1g + BA−1Bx)]
= (A+ αB)−1[A(A+ αB)−1(Ax − f − BA−1g)+ B(A+ αB)−1Bx]
= (A+ αB)−1[(A− αA(A+ αB)−1B + B(A+ αB)−1B)x

−(A(A+ αB)−1 − I )f − f − A(A+ αB)−1BA−1g]
= (A+ αB)−1[(A− αB + α(I −A(A+ αB)−1)B + B(A+ αB)−1B)x

−f + αB(A+ αB)−1f − BA−1(I + αBA−1)−1g]
= (A+ αB)−1[(A− αB + (1 + α2)B(A+ αB)−1B)]x
−f − B(A+ αB)−1(g − αf)] = 0 . (8)

This is the same equation that was derived in the following way in [11]. Rewrite{
Ax − By = f
Bx + Ay = g

in the form {
(A− αB)x +√

1 + α2 B ỹ = f√
1 + α2 Bx − (A+ αB)̃y = g̃ ,

where ỹ = αx − y√
1 + α2

, g̃ = g − αf√
1 + α2

and α > 0 is a parameter. Here the Schur

complement system takes the same form as in (8).
We see that here A+ αB arises as inner system when evaluating the residuals (r)

for the outer iterative solution method, namely

r = (A− αB)x + B(A+ αB)−1((1 + α2)Bx − g + αf)− f. (9)

The outer iteration preconditioner is A+ αB .

2.2 The two-by-two block matrix and its preconditioner

The above version of the C–to–R method requires accurate inner solvers to com-
pute the Schur complement residuals. If one instead solves the coupled two-by-two
block preconditioner, one avoids this problem as the residuals are computed from the
given, unreduced system. Furthermore, for this approach there exists a very efficient
preconditioner.

To show this, consider matrices of the form

A =
[
A aBT

−bB A

]
,

where a, b are real numbers such that ab > 0.
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Note that A and B are square matrices. We assume that A and B+BT are positive
semidefinite and

ker(A) ∩ ker(B) = {∅} .
It follows readily that under these assumptions, A is nonsingular. Namely, if

A
[

x
y

]
=

[
0
0

]
, then

Ax + aBT y = 0 and − bBx + Ay = 0

so
1

a
x∗Ax + x∗BT y = 0 and

1

b
y∗Ay − y∗Bx = 0 ,

that is, 1
a

x∗Ax + 1
b

y∗Ay = 0 which, since A is positive semidefinite, implies x, y ∈
ker(A). But then

Bx = 0 and BT y = 0 , hence x = y = 0,

i.e., the singular system has only the trivial solution. We let

B =
[

A aBT

−bB A+√
ab(B + BT )

]
,

be a preconditioner to A. Clearly B is also nonsingular.
As shown in [11, 28], its inverse can be written in the explicit form

B−1 =
⎡
⎣H−1

1 +H−1
2 −H−1

2 AH−1
1

√
a
b

(
I −H−1

2 A
)
H−1

1

−
√

b
a
H−1

2

(
I − AH−1

1

)
H−1

2 AH−1
1

⎤
⎦ ,

where Hi = A + √
abBi , i = 1, 2 and B1 = B,B2 = BT . Besides some

matrix-vector multiplications and vector additions, it follows readily that an action
of B−1 involves just one solution of a system with each of the matrices H1 and H2,

namely, the computation of

[
x
y

]
= B−1

[
f1
f2

]
can take place in the order depicted

in Algorithm 1.

Algorithm 1

(i) Solve H1g = f1 +
√

a
b

f2.

(ii) Compute Ag and f1 −Ag.
(iii) Solve H2h = f1 − Ag.

(iv) Compute x = g + h and y = −
√

b
a

h.

We derive now eigenvalue bounds for B−1A.

Proposition 3 Let A andB+BT be symmetric and positive semi-definite and assume
that ker(A) ∩ ker(B) = {∅}.
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(i) Then the eigenvalues λ of B−1A satisfy 1
2 ≤ 1

1+q
≤ λ ≤ 1, where

q = sup
x̃,y

2|̃x∗(B + BT )y|
x̃∗(B + BT )̃x + y∗(B + BT )y

≤ 1,

where x̃ =
√

b
a

x and x, y are eigenvectors of the generalized eigenvalue

problem λB
[

x
y

]
= A

[
x
y

]
. Here λ = 1 if and only if y ∈ N (B + BT ).

(ii) If A is symmetric and positive definite, then

max

{
1

1 + q
,

1

1 +√
abσ0

}
≤ λ ≤ 1 ,

where σ0 = σ(A−1/2(B + BT )A−1/2) and σ(.) denotes the spectral radius.

Proof The generalized eigenvalue problem leads to(
1

λ
− 1

)
A

[
x
y

]
=

[
0√

ab(B + BT )y

]
.

Using the similarity (scaling) transformation DAD−1, where D =
[ √

b
a
I 0

0 I

]

leads to (
1

λ
− 1

)[
A

√
ab BT

−√
ab B A

] [
x̃
y

]
=

[
0√

ab (B + BT )y

]
, (10)

where x̃ =
√

b
a

x. Multiplying (10) with (̃x∗, y∗) we obtain

(
1

λ
− 1

)
(̃x∗Ãx +√

ab x̃∗BT y −√
ab y∗B x̃ + y∗Ay) = √

ab y∗(B + BT )y ,

or (
1

λ
− 1

)
(̃x∗Ãx + y∗Ay) = √

ab y∗(B + BT )y . (11)

Since A and B+BT are positive semidefinite and have no common nullspace vector,
it follows that λ ≤ 1. Further it is seen that λ = 1 if and only if

y ∈ N (B + BT ) .

For λ �= 1 and multiplying (10) now with (y∗, −̃x∗), we find(
1

λ
− 1

)
(y∗Ãx +√

aby∗BT y +√
ab̃x∗Bx − x̃∗Ay) = −√

ab̃x∗(B + BT )y ,

or, since A is symmetric,(
1

λ
− 1

)
(2y∗BT y + 2x∗Bx) = −2x∗(B + BT )y .
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Since y∗BT y = y∗By and x̃∗B x̃ = x̃∗BT x̃, it follows that(
1

λ
− 1

)
(y∗(B + BT )y + x̃∗(B + BT )x) = −2̃x∗(B + BT )y

or

1

λ
− 1 ≤ q = sup

x̃,y

2 | x̃∗(B + BT )y |
x̃∗(B + BT )̃x + y∗(B + BT )y

≤ 1 .

To prove part (ii), if A is spd it follows from (11) that

1

λ
− 1 ≤ √

ab σ(B̃ + B̃T )

where

B̃ = A−1/2BA−1/2 ,

which proves the second lower bound.

Remark 1 The estimates in Proposition 3 involve coefficients q and σ0 that are not
easily computable. However, the estimates show that the lower bound of the eigen-
values depends on the maximum of two quantities and since q ≤ 1 it follows that
λ ≥ 1

2 .

Remark 2 The result in Proposition 2 holds also for the two-by-two block precondi-
tioned matrix B−1A, i.e., if the roles of A and B are reversed.

2.3 Inner iteration stopping criteria

If residuals in an iterative method are not computed sufficiently accurately, for
instance to obtain a reliable stopping criteria, the convergence may stall, i..e. the
iteration method many cease to converge after some iteration error bound has been
reached. Therefore, the inner systems with the matrix A in (4) and A+αB in (9) must
be computed with a sufficiently small stopping criteria. However, the corresponding
matrices in Algorithm 1 appear only in the preconditioner and to save computational
effort, the systems arising in the preconditioner can be computed by iteration less
accurately, i.e., with a larger stopping tolerance.

When the arising inner systems are solved exactly, it follows from Propositions 1
and 3 that the eigenvalues of the preconditioned matrix are contained in an interval
[a, 1], a ≥ 1

2 , in the case of spsd matrices. For a reasonably small inner iteration
stopping criteria, one can show that the eigenvalues are contained in a narrow ellipse
about the interval [a, 1], such as an ellipse with foci (a, 0), (1, 0) and with a small
eccentricity (ratio of semi-axes). As shown, e.g. in [27], a generalized CG method
will then still converge rapidly, typically with just one or two more iterations. The
parameters in a Chebyshev semi-iteration can be based on the eccentricity of this
ellipse, see e.g. [27]. As remarked previously, the use of Chebyshev semi-iteration
avoids computations of inner products and reduces the global communication of
them, as otherwise are needed in Krylov subspace methods.
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3 The preconditioned modified Hermitian and skew-Hermitian
splitting method

Following and augmenting the results in [19], we present now the PMHSS method
to solve the complex linear system in (1). As pointed out in the introduction, it still
involves complex arithmetic but for reasons of comparison we include here a brief
description and an analysis of it. The method takes the form of a stationary iterative
method,

(αV + A)xk+1/2 = (αV − iB)xk + b (12)

(αV + B)xk+1 = (αV + iA)xk+1/2 − ib

where α is a given positive parameter, V a prescribed symmetric positive definite
matrix and i is the imaginary unit. We assume that A is spd and B is spsd. It follows
that both αV + A and αV + B are spd. For V = I the method reduces to the
modified Hermitian and skew-Hermitian splitting method, presented in [18]. One
possible choice of V is A.

The method in (12) can be written in a compact form as

xk+1 = L(V ;α)xk +R(V ;α)b , k = 0, 1, 2, . . . (13)

where the iteration matrix, L(V ;α), has the form

L(V ;α) = (αV + B)−1(αV + iA)(αV +A)−1(αV − iB)

and
R(V ;α) = (1 − i)α(αV + B)−1V (αV + A)−1 .

To analyse the convergence factor we note that

σ(α) = ‖L(V ;α)‖ ≤ max
λ∈sp(V−1A)

√
α2 + λ2

α + λ
max

μ∈sp(V−1B)

√
α2 + μ2

α + μ

≤ max
λ∈sp(V−1A)

√
α2 + λ2

α + λ
< 1 , ∀α > 0 .

In particular, for the choice α = α̂ = √
λminλmax, where λmin, λmax are the extreme

eigenvalues of V −1A, it follows readily that

σ (̂α) ≤
√
κ(V −1A)+ 1√
κ(V−1A) + 1

,

where κ(V−1A) denotes the spectral condition number of V −1A.
The smallest convergence factor is achieved for V = A, in which case

σ (̂α) =
√

2

2
. (14)

The iteration matrix takes then the form

L(α) := L(A;α) = α + i

α + 1
(αA+ B)−1(αA− iB) (15)
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and

R(α) := R(A;α) = α(1 − i)

α + 1
(αA+ B)−1.

Here

σ (̂α) = ρ(L(α)) ≤
√
α2 + 1

α + 1
< 1 ,

where ρ(·) denotes the spectral radius. Clearly, the upper bound in (14) is indepen-
dent of the size of the problem.

From the form of L(α) in (15) it is seen that the eigenvalues are located in a disc

in the complex plane, centered at the unit value and radius r =
√

α2+1
α+1 . The radius is

smallest for α = 1, when r =
√

2
2 .

Since the eigenvalues are contained in a disc with center at unity in the com-
plex plane, it is not possible to improve the rate of convergence by use of a
Chebyshev semi-iteration method based on a circumscribing ellipse, see e.g. [27]
regarding Chebyshev iterations for complex eigenvalues. Hence, the convergence

factor remains equal to
√

2
2 ≈ 0.707.

In the version designed for solving the complex linear system (1), the PMHSS
iteration method deals with real matrices and is a useful preconditioned modification
of the HSS iteration method initially introduced in [16] and [17] for solving non-
Hermitian positive definite linear systems, see also [20] for an earlier presentation of
this method. It naturally results in a preconditioner of a matrix splitting type, called
the PMHSS preconditioner, to be used in Krylov subspace iteration methods such as
GMRES, employed to solve the complex linear system (1).

When both A and B are symmetric positive semidefinite and satisfy ker(A) ∩
ker(B) = {∅}, with ker(·) being the null space of the corresponding matrix, the
PMHSS iteration sequences converge to the unique solutions of the complex and the
real linear systems (1) and (2), respectively. For a specific choice of the precondition-

ing matrix the convergence factor is bounded by σ(α) =
√

α2+1
α+1 , and the eigenvalues

of the PMHSS-preconditioned matrices are located in a complex disk centered at 1
with radius σ(α). Note that the function σ(α) is independent of the problem sizes

and the input data, and attains the minimum
√

2
2 for α = 1.

In the numerical examples we apply PMHSS in the form of (12) with α = 1 and
V = A as a self-standing solver as well as a preconditioner for the GMRES method.
As follows from (13), letting the initial approximation be x0 = 0 + i0, for this
particular choice of the method parameters, the application of the PMHSS method
simplifies significantly and becomes

(A+ B)z = q

x = 0.5 ∗ (1 − i)z, (16)

where q is the current residual in the iterative solution method. Thus, PMHSS
requires only one solution with A+B and complex arithmetic, while C–to–R requires
two solutions with A+ B and real arithmetic.
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We analyse now a simplified version of (16) without the complex factor, namely,
the properties of A + B as a preconditioner for C = A + iB , where A and
B are real-valued matrices. Assume first that A is spd and B is spsd. Then the
eigenvalues μ = μ(A−1B) are real and nonnegative. Assume that μ ≤ 1. If
this does not hold, in some cases we can solve (B − iA)x = −if instead of
(A+ iB)x = f.

We see that (A + B)−1(A + iB) = I + (i − 1)(A + B)−1B = I + (i − 1)
(I + A−1B)−1(A−1B). For the eigenvalues λ of (A+ B)−1(A+ iB) there holds

λ− 1 = (i − 1)
μ

1 + μ
.

It follows that

1

2
≤ 1

1 + μmax

≤ Re(λ) ≤ 1 and |Im(λ)| ≤ μ

1 + μ
≤ μmax

1 + μmax

≤ 1

2
.

Hence, the eigenvalues are contained in a domain in the complex plane, as shown
in Fig. 1.

For comparison, we recall, that the eigenvalues for the C–to–R method are real
and contained in the interval [ 1

2 , 1].
Consider now the more general case, where the eigenvalues are complex,

μ = μ0e
iφ0, 0 < μ0 ≤ 1, 0 ≤ |φ| ≤ φ0 < π

2 .

Proposition 4 Assume that A−1B is a normal matrix and that μ(A−1B) = μ0e
iφ0,

0 < μ0 ≤ 1, 0 ≤ |φ| ≤ φ0 < π
2 . Then the eigenvalues λ of (A+B)−1(A+iB) satisfy

1

2
(1 − δ0) ≤ Re(λ) ≤ 1, |Im(λ)| ≤ 1

2
(1 + δ), where δ0 = sinφ0

1 + cosφ0
< 1.

Fig. 1 Eigenvalues of
(A+ B)−1(A+ iB)

1

2 i
−

Im(λ)

2
1

2

1

1

Re(λ)

i
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Proof It holds that

λ− 1 = (i − 1)
μ0(cosφ + i sinφ)

1 + μ0(cosφ + i sinφ)

= (i − 1)
(cosφ + i sinφ)

(
1
μ0

+ cosφ − i sinφ
)

(
1
μ0

+ cosφ
)2 + sin2 φ

= (i − 1)
1
μ0

cosφ + 1 + i 1
μ0

sinφ
1
μ2

0
+ 2

μ0
cosφ + 1

=
i
(

1 + 1
μ0

cosφ − 1
μ0

sinφ
)
−

(
1 + 1

μ0
cosφ + 1

μ0
sin φ

)

1 + 1
μ0

cosφ + 1
μ0

(
1
μ0

+ cosφ
) = i(1 − δ̃)− (1 + δ̃)

1 +
1
μ0

+cosφ

μ0+cosφ

,

where δ̃ = sinφ
μ0+cosφ . It can be seen that the maximum value of |Im(λ)| is taken for

μ0 = 1 and |Im(λ)| ≤ 1
2 (1 + δ0). Further, for μ0 = 1, Re(λ) ≥ 1 − 1

2 (1 + δ̃) ≥
1
2 (1 − δ0).

Comparing the eigenvalue estimates in Proposition 2 and 4, we see that the eigen-
values for the C–to–R method are contained in a smaller domain in the complex
plane than those for the (A+B)-preconditioned matrix C. In particular, the bound for
the maximal modulus of the imaginary part of the eigenvalues is nearly twice larger.

4 Test examples

The presented methods are tested with matrices, originating from the bench-
mark problems described below. The arising matrices satisfy the hypothesis in
Propositions 2 and 3. Without further knowledge of the eigenvalues of A−1B in
Proposition 2 it is not possible to actually compute the eigenvalue bounds for the pre-
conditioner. Nevertheless, for symmetric problems we have shown that there are very
tight bounds of the eigenvalues. The propositions should be seen as giving insight
into the behaviour of the eigenvalues, for instance as a function of the angle φ0.

Problem 1 (Shifted ω systems) The matrices originate from the discrete parabolic
problem (a test example from [11])

∂v

∂t
−�v = f (x, t), t > 0, (17)

where � is the Laplacian operator and the forcing function is periodic in time,
f (x, t) = f0(x, t)e

iωt . Applying the Ansatz v(x, t) = u(x)eiωt , where u and v are
complex-valued functions, we reformulate (17) as

∂u

∂t
−�u+ iωu = f0(x, t). (18)

Using an implicit time integration method, we must solve a system of the form

(K + iωτM)u = b,
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where K = M+τL, L is the discrete Laplace operator, M is either the identity or the
mass matrix, depending on the corresponding space discretization, finite differences
(FDM) or finite elements (FEM), and τ is the time-step. In the experiments τ is taken
to be equal to the space discretization parameter.

For reasons of comparisons, to match the experiments in [11] and [19], we
consider the simplified systems

(L+ iωM)u = b. (19)

The parameter ω is varied as 0.01, 1, 100.

Problem 2 (A convection-diffusion problem with a periodic forcing term) This
problem is of the same form as Problem 1, but includes a convection term,

∂v

∂t
− ε�v + (b · ∇)v = f (x, t), t > 0, (20)

thus, the matrix K is of the form K = M + τ(εL+B), where B originates from the
discretization of the convective term (b·∇)v for some given vector field b. To be spe-

cific, we choose b to describe a rotating vortex, b =
[

2(2y − 1)(1 − (2x − 1)2)

−2(2x − 1)(1 − (2y − 1)2)

]
.

In the experiments, ε is chosen as 1 and 0.001.
For this test problem we include experiments with the simplified matrices C =

M + iωτK as well as for C = M + τK + iωτM with τ = h for ω = 0.01, 1, 100.

Problem 3 (Padé approximations) The systems to be considered have the
following form [

M +
(

1 + 1√
3
i

)
τ

4
L

]
u = b, (21)

The problem parameter τ is varied as τ = h, where h is the characteristic mesh size
in space.

As already noted, in Problems 1, 2 and 3 L is the matrix obtained when discretizing

the negative Laplace operator Lu =
d∑

i=1

∂2u

∂x2
i

, x ∈ �d by either standard central

differences or conforming piece-wise linear finite elements on a regular triangular
mesh. We consider here two and three space dimensions. For simplicity, the domain
of definition is � = [0, 1]d , d = 2, 3. Homogeneous Dirichlet boundary conditions
are applied on the whole boundary.

Problem 4 (Schrödinger equation) Consider the time-dependent Schrödinger
equation

i�
∂

∂t
�(x, t) = Ĥ�(x, t) (22)

where � is Planck’s constant, divided by 2π and Ĥ is the (quantum) Hamilto-
nian, expressing the kinetic and the potential energy operators of the system under
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consideration. Without any further description, we follow the methodology from [2]
and in particular, Paper VII ([29]). The system to be solved is of the form

(M + i
τ

2
K)u(n+1) = (M − i

τ

2
K)un,

where τ is the time step and un, the solution of the previous time level, is assumed to
be known.

The test matrices M and K for this problem are both spd and are taken from
[29]. They originate from Radial Basis Functions used for the spatial discretization
of (22) and are dense. The matrices are extremely ill-conditioned and the order of the
condition number can reach 1018.

Problem 5 (Matrices from web-available matrix collections) We test the
following complex symmetric matrices available via the UF Sparse matrix collection
[30]:

– ’mhd1280b’:size 1280, 22778 complex nonzero elements
– ’mplate’; size 5962, 142190 complex nonzero elements
– ’windscreen’: car windscreen, size 22 692, 1 482 390 nonzero elements.

5 Numerical experiments

All tests are performed in Matlab 7.12.0 (64 bit) on a laptop Lenovo Thinkpad T500,
Intel Core(TM)2 Duo CPU T9400, 2.53GHz with 8GB RAM.

We compare the performance of Matlab’s sparse direct solver ’\’, the pre-
conditioned QMR, GMRES and GCG methods. We use the QMR and GMRES
implementations, provided in Matlab and self-implemented GCG. The problem size
in all tables is that of the original complex valued linear system. The experiments are
done under the following conditions.

1. For a fair comparison we solve the original complex valued system (1). This is
done via ’\’ (the column ’Direct/time’), by unpreconditioned or ILU-precondi-
tioned QMR, PMHSS and PMHSS-preconditioned GMRES. In PMHSS, sys-
tems with A+ B are solved directly, as in [19].

2. Any time when a direct solver is used, a pre-ordering is first applied in order
to avoid unnecessary fill-in and related higher computational cost. We use the
symmetric approximate minimal degree (AMD) ordering, as available in Matlab
(symamd). The same approach is used for the numerical experiments in [19].

3. The solution of the inner systems in PMHSS is done via a direct method
(Cholesky decomposition), as in the numerical tests in [19] or ILU for the
nonsymmetric matrices.

4. The twice larger real system (2) is solved via C–to–R -preconditioned GCGMR.
Due to the included inner solution method with the matrix A+ B , the precondi-
tioner for the outer solver is slightly varying.

As the implementation of GMRES, in the currently available version of Mat-
lab, does not incorporate variable preconditioning, GMRES does not always
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behave in a stable way for variable preconditioners and therefore it is not used
for testing the C–to–R preconditioner.

5. Unless stated otherwise, the (outer) stopping criterion is 10−8 and the stopping
tolerance for the inner iterative solver in C–to–R , whenever present, is 10−3,
both in relative residual norm.

6. As an inner solver for A+ B , or H1 and H2 respectively, we use either a direct
method or the aggregation-based algebraic Multigrid method AGMG. The con-
struction, the properties and the implementation of AGMG are described in
[31–33] and the references therein. The version of AGMG is precompiled, thus,
its performance is comparable with that of Matlab’s built-in functions.

7. The time required for constructing the preconditioners (AGMG, LU, LLT or
ILU) is included in the reported total solution time. The average number of inner
iterations is reported in brackets. The cases when we use a direct solver for the
blocks H1 and H2 are indicated by ’(0)’ inner iterations.

8. In some of the tables we present results for ILU-preconditioned QMR for the
complex linear system. The preconditioner is of incomplete factorization type
and is obtained via Matlab’s function ’ilu’ or ichol. The factorization is
of type ’ilutp’ for ’ilu’, i.e., with threshold and pivoting, and with a
dropping tolerance 10−3 for two-dimensional and 10−1 for three-dimensional
problems. For ichol the type is ’milu’, i.e., modified incomplete Cholesky
factorization. The reported time includes the time for constructing the incomplete
factorization and for the QMR iterations.

For each experiment in Tables 1–7 and 9, we have marked with bold the fastest
execution time. We note, however, that this criterion alone is not fully characterising
the corresponding solution method. In addition, we mention that due to the random
right hand size, the execution times might vary slightly.

Tables 1, 2 and 3 present tests with the matrix C = L + iωM , where M = I

in Table 1 and M is a mass matrix in Tables 2 and 3. Tables 4, 5 and 6 illustrate
the behaviour of the C–to–R method for nonsymmetric blocks (the block B in
Tables 4 and 5, and both blocks A and B in Table 6). In the cases when the convec-
tion is stronger (ε = 0.001), we use a direct inner solver. Table 7 shows comparisons
for Padé-approximation matrices (Problem 4). Table 8 and Fig. 5 illustrate the per-
formance of the methods for the very ill-conditioned dense matrices arising from
Schrödinger equation, discretized using radial basis functions. Finally, Table 9 shows
results for some symmetric indefinite matrices from [30].

Figures 2, 3 and 4 illustrate the behaviour of four of the considered solution meth-
ods from Table 2 (time vs reduction of the relative residual norm). We see that
unpreconditioned versions of QMR and PMHSS may exhibit slow convergence and
do not include those in further tests.

Table 2 presents results for Problem 1, discretized by FEM. We see that in this
case, for ω = 0.01 and ω = 1 the direct method is slower than C–to–R and PMHSS.
Both C–to–R and PMHSS are very robust in all cases and exhibit mesh-independent
convergence. PMHSS is sometimes slightly faster since it needs only one solve with
A + B per iteration, solved directly, while C–to–R performs two such solves with
AGMG(10−3).
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Table 2 Problem 1: 2D, FEM, M-mass matrix, C = L+ iωM;inner solver AGMG

Problem Direct ILU-QMR C–to–R -GCGMR PMHSS-GMRES
size time

iter time err. iter time err. iter time err.

ω = 0.01

4225 0.0594 14 0.2601 3(6) 0.0620 3 0.0196

1.3617e-6 4.9205e-6 1.4001e-8

16641 0.2652 26 1.8462 3(6) 0.22638 3 0.1084

2.9051e-5 6.7551e-5 6.5565e-8

66049 1.5852 52 13.311 3(6) 0.88911 3 0.5652

1.2776e-4 1.8912e-4 1.7679e-7

263169 9.735 103 98.19 3(6) 4.0115 3 2.5433

1.4075e-3 6.1502e-4 8.5698e-7

ω = 1

4225 0.1120 14 0.2473 5(7) 0.0976 5 0.1476

1.1306e-6 6.5157e-6 2.5291e-6

16641 0.2584 26 1.7549 5(7) 0.3514 5 0.15714

3.4661e-5 7.7713e-5 7.5906e-6

66049 1.5239 51 13.049 5(8) 1.6808 5 0.87701

1.7116e-4 3.7116e-4 5.4428e-5

263169 9.9332 101 99.411 5(8) 7.2114 5 4.5982

1.8803e-3 1.8262e-3 1.6029e-4

ω = 100

4225 0.0521 10 0.2366 10(6) 0.1589 17 0.1290

1.6627e-6 6.2009e-6 1.0996e-6

16641 0.2918 19 1.6017 10(7) 0.6094 17 0.6866

6.8632e-6 2.8814e-5 3.6833e-6

66049 1.6299 36 10.675 10(7) 2.6054 17 3.1166

8.0457e-5 1.3499e-4 1.6439e-5

263169 9.9345 70 73.228 9(8) 11.803 17 15.154

8.2749e-4 3.5128e-3 6.7764e-5

Table 3 shows the corresponding result for 3D. We see again the mesh-independent
convergence of C–to–R and PMHSS. The direct method and PMHSS are not tested
for the largest problem size due to very long factorization times.

The experiments in Table 8 deserve special attention. The matrices correspond to
RBF discretizations with tuned shape parameters of the radial basis functions that
optimize the underlying discretization error. We note that size 900 is considered fairly
large in the context of RBF. Due to the very ill-conditioned matrices, the direct solu-
tion method fails to solve the systems. Again, due to the ill-conditioning, the norm of
the residual is not representative for the achieved accuracy in the solution and there-
fore is not included. In Table 8 we present results for 30 iterations of C–to–R -GCG
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Table 3 Problem 1: 3D, FEM, M-mass matrix, C = L+ iωM; inner solver AGMG

Problem Direct ILU-QMR C–to–R -GCGMR PMHSS-GMRES
size time

iter time err. iter time err. iter time err.

ω = 0.01

4913 0.5755 69 0.2761 3(4) 0.2133 3 0.1226

1.3967e-4 8.1647e-05 7.5096e-07

35937 34.608 138 4.522 3(5) 1.2087 3 4.1468

3.4811e-4 1.2793e-3 4.7588e-06

274625 – 278 87.563 3(6) 12.982 – –

ω = 1

4913 0.6597 72 0.2958 6(4) 0.3673 6 0.2202

5.9542e-05 2.5354e-05 2.0718e-06

35937 33.771 136 4.6284 6(6) 2.1454 6 7.3506

4.9821e-4 1.9643e-4 1.3665e-05

274625 – 267 80.072 6(7) 24.335 – –

ω = 100

4913 0.5374 42 0.1818 11(3) 0.2125 18 0.6515

6.0743e-06 4.3167e-06 7.5454e-06

35937 33.129 78 2.5282 10(5) 2.3168 19 20.839

8.9689e-05 2.5178e-4 1.5175e-05

274625 – 149 46.315 10(6) 30.578 – –

and PMHSS-GMRES. We see that for the largest problem the time for C–to–R is
about twice larger than that for PMHSS, due to the fact that we solve two systems
with A + B . However, the convergence of PMHSS-GMRES stagnates already from
the first iterations, as illustrated in Fig. 5a.

In the lower part of Table 8 we present results when the preconditioners are based
on sparsified A and B blocks. The sparsification is performed by moving all positive
entries in A and B that are smaller than 5 10−3 to the corresponding main diago-
nal, preserving in this way the positive definiteness of the blocks. A portrait of the
sparsified matrix is shown in Fig. 5b.

Note that for Problem 4 PMHSS stagnates, so the time is not representative.
Table 9 shows results for three complex symmetric matrices from [30]. The

outcome is aligned with that of the other test problems.
The comparisons of the performance of the various solution techniques can be

summarized as follows.

(1) The AMG-preconditioned method C–to–R shows full robustness and conver-
gence, independent of the problem size. The PMHSS-preconditioned method
shows also robustness and optimal rate of convergence for nearly all tested
problems. It is seen that for ε = 0.001 and ω = 100 the number of iterations
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Table 4 Problem 2: 2D, FEM, C = K + i ωτM, ε = 1, M-mass matrix; inner solver AGMG

Problem Direct C–to–R C–two–R PMHSS-GMRES
size time

iter time err. iter time err. iter time err.

ω = 0.01

4225 0.0470 3(5) 0.0717 7(7) 0.1589 2 0.0164

2.0896e-8 4.4788e-12 1.0497e-9

16641 0.2476 3(6) 0.2259 7(7) 0.51517 2 0.0377

5.4488e-8 1.0898e-11 6.2437e-10

66049 1.5274 3(5) 0.8565 5(7) 1.5929 2 0.1998

7.3991e-8 7.7311e-9 2.8014e-10

263169 9.7766 3(6) 3.9865 5(7) 7.2498 2 0.9414

7.8179e-8 1.9918e-8 6.5723e-10

ω = 1

4225 0.0461 3(6) 0.0723 6(8) 0.2089 3 0.0135

1.3746e-6 1.4369e-11 3.6543e-9

16641 0.2480 3(6) 0.2280 6(8) 0.4714 3 0.0534

6.4117e-7 2.1348e-11 6.2376e-10

66049 1.5623 3(6) 0.8694 6(7) 1.7909 3 0.3468

5.7496e-7 1.7939e-10 1.7732e-10

263169 9.6558 3(6) 3.8978 5(7) 7.2043 3 1.1893

2.4242e-7 5.1919e-8 5.1323e-10

ω = 100

4225 0.0489 6(7) 0.1168 11(8) 0.2270 6 0.0272

3.4502e-7 2.4806e-10 2.1618e-8

16641 0.2440 5(7) 0.3699 10(9) 0.75855 5 0.0946

6.834e-7 2.7446e-10 8.6175e-8

66049 1.5722 4(7) 1.3181 8(9) 2.7422 5 0.3286

1.6873e-5 4.6072e-8 6.8803e-9

263169 9.6356 4(8) 6.0517 8(9) 13.021 4 1.5163

4.9863e-6 7.0361e-9 1.0156e-7

increase for larger meshsize h. This is due to the small viscosity parameter ε
and a relatively larger imaginary part of the complex matrix.

(2) For certain simple problems unpreconditioned QMR is very efficient and fast,
however its behaviour is not robust in general.

(3) The ILU-preconditioned QMR for M = I (Problem 1) exhibits mesh-
independent rate of convergence. The solution time, however, is not compet-
itive, compared to the other preconditioners. In the general case it shows the
expected behaviour of an ILU-preconditioned method. We see, for instance
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Table 5 Problem 2: 2D, FEM, C = K + i ωτM, ε = 0.001, M-mass matrix; direct inner solver

Problem Direct C–to–R C–two–R PMHSS-GMRES
size time

iter time err. iter time err. iter time err.

ω = 0.01

4225 0.0800 3(0) 0.2473 6(0) 0.3966 3 0.2352

5.9737e-5 1.2126e-8 1.9313e-5

16641 0.2595 3(0) 0.5696 6(0) 1.1328 3 0.3235

9.8495e-6 3.0229e-9 2.5607e-6

66049 1.5449 2(0) 0.8490 5(0) 2.0191 3 0.7897

0.0059 5.527e-8 5.2968e-7

263169 29.187 2(0) 1.0878 5(0) 2.7409 3 1.2342

0.0118 2.4269e-7 2.5907e-7

ω = 1

4225 0.0484 6(0) 0.3517 12(0) 0.6980 7 0.2430

2.6281e-4 1.7353e-8 6.8298e-7

16641 0.25744 6(0) 1.0028 11(0) 1.8666 6 0.5806

3.0986e-5 3.1909e-8 1.8314e-6

66049 1.5598 5(0) 1.9795 10(0) 3.4714 5 1.0717

1.8155e-4 5.6199e-8 2.9491e-5

263169 27.831 4(0) 1.937 8(0) 4.2821 4 1.8631

2.4054e-3 1.4156e-6 2.4289e-4

ω = 100

4225 0.1012 24(0) 1.2535 40(0) 2.8732 28 0.9310

4.4962e-5 3.0782e-8 8.2283e-6

16641 0.3831 15(0) 2.2864 25(0) 3.7851 20 2.261

1.6401e-4 2.4324e-7 5.5178e-6

66049 1.6727 11(0) 3.5482 19(0) 6.1852 15 3.6467

1.8430e-3 3.9131e-6 1.5487e-5

263169 27.448 9(0) 4.5502 16(0) 7.9045 12 4.9988

3.6719e-3 4.2998e-5 5.4274e-5

from Tables 2 and 3, that the iterations increase twice when the mesh is refined
from h to h/2.

(4) Modern sparse direct solvers are implemented very efficiently and can be out-
performed by preconditioned iterative methods only for large enough problems.
The notion ’large enough’ is computer- and implementation-dependent. The
experiments show, however, that the C–to–R method with AGMG as an inner
solver can be faster than the sparse direct method in Matlab even in 2D for not
very large problems.
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Table 6 Problem 2: 2D, FEM, C = M + τK + i ωτM, ε = 0.001, M-mass matrix; direct inner solver

Problem Direct C–to–R C–two–R PMHSS-GMRES
size time

iter time err. iter time err. iter time err.

ω = 0.01

4225 0.0483 3(0) 0.0514 5(0) 0.0917 2 0.0243

2.8285e-8 1.1641e-10 1.0454e-4

16641 0.2387 2(0) 0.0978 5(0) 0.1527 2 0.0397

1.7111e-4 3.8835e-10 6.6854e-5

66049 1.6961 2(0) 0.2385 5(0) 0.5956 2 0.1995

1.4181e-4 2.1835e-9 5.7479e-5

263169 65.123 2(0) 1.1008 5(0) 2.7705 2 0.9556

1.1121e-4 1.2507e-8 4.814e-5

ω = 1

4225 0.0538 5(0) 0.0649 9(0) 0.127 4 0.0389

4.9564e-6 3.2426e-10 8.7065e-5

16641 0.2574 4(0) 0.0909 7(0) 0.1861 4 0.0678

7.9416e-5 1.4279e-7 1.8878e-5

66049 1.6234 4(0) 0.4225 7(0) 0.7924 3 0.2456

1.1904e-5 1.1906e-8 1.2970e-3

263169 60.632 3(0) 1.5047 6(0) 3.1972 3 1.2285

1.3834e-3 5.2784e-7 5.1520e-4

ω = 100

4225 0.0501 20(0) 0.1123 32(0) 0.2111 25 0.1899

1.9517e-4 5.7998e-8 5.2046e.4

16641 0.24019 16(0) 0.3529 26(0) 0.57012 16 0.3358

4.3439e-4 3.1132e-7 8.3680e-4

66049 1.5825 12(0) 1.3102 20(0) 2.0338 11 0.8935

1.4694e-3 1.7939e-6 1.6232e-3

263169 60.102 9(0) 4.2618 15(0) 7.2431 8 3.2465

3.5112e-3 1.4380e-5 4.4112e-3

(5) With the particular choices of the method parameters α and V made here, the
PMHSS uses a sparse direct solver once per each iteration.

The theory for the convergence of PMHSS was previously developed for
complex symmetric matrices, but has been successfully extended and applied
to matrices that are not complex symmetric, cf. Tables 4, 5 and 6.

(6) C–to–R and PMHSS possess good parallelization properties. Both require
solutions of inner systems with real matrices of similar type, even identical for
α = 1 and V = A, for which efficient multilevel techniques are applicable.
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Table 7 Problem 3: 2D, FEM, τ = h, M-mass matrix; inner solver AGMG

Problem Direct ILU-QMR C–to–R PMHSS-GMRES
size time

iter time err. iter time err. iter time err.

Random right-hand side

4225 0.0696 8 0.2262 9(6) 0.1641 13 0.0801

3.3923e-4 6.3274e-4 1.1498e-4

16641 0.2534 11 1.303 9(6) 0.4912 14 0.4221

2.5876e-3 1.2436e-2 6.4089e-4

66049 1.6024 16 7.2485 9(6) 2.1323 15 2.1898

8.9767e-3 9.6769e-2 1.6452e-3

263169 10.013 21 38.663 9(6) 10.422 15 12.86

0.2114 0.6531 0.01264

Right-hand side: (1 + i)(A[1, 1 · · · 1]T )
4225 0.0958 9 0.2237 9(6) 0.1409 12 0.0743

2.2792e-8 8.1938e-7 4.5851e-7

16641 0.2772 11 1.3131 9(6) 0.5119 13 0.4474

1.5922e-6 1.4688e-5 1.4903e-6

66049 1.6526 16 7.2463 9(7) 2.2284 14 2.0032

5.4538e-6 2.7184e-5 1.9176e-6

263169 10.279 21 37.926 9(7) 10.506 14 12.166

4.1101e-5 1.0334e-4 5.4956e-6

(7) It is seen from the numerical results that, while having the same outer stopping
criterion, the norm of the error in the iterative solution obtained by PMHSS-
GMRES is in some cases noticeably smaller than the error of the iterative
solution, obtained by C–to–R -GCG. The reason for that is that even though
the residuals have been equally reduced, the error in the imaginary part of the
solution is larger than that in the real part of the solution. To compensate for

Table 8 Problem 4:
Schrödinger equation, direct
inner solver

Problem C–to–R -GCGMR PMHSS-GMRES
size

iter time iter time

Dense preconditioner

400 30(0) 0.1399 30 0.1109

625 30(0) 0.4094 30 0.1560

900 30(0) 0.7755 30 0.3041

Sparsified preconditioner

400 30(0) 0.2252 30 0.2244

625 30(0) 0.3801 30 0.2339

900 30(0) 0.8344 30 0.3867
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Table 9 Problem 5: inner solver AGMG

Problem Direct ILU-QMR C–to–R -GCGMR PMHSS-GMRES
size time

iter time err. iter time err. iter time err.

’mhd1280b’

1280 0.0037 1280 0.7764 2(0) 0.01875 2 0.0079

21.089 1.9986e-7 4.6214e-8

’mplate’

5962 1.3891 – – 8(0) 9.7639 12 8.0599

– 3.6131e-3 3.8309e-4

’windscreen’

22692 1.6853 – – 1(1) 0.2995 1 4.2994

– 1.8718e-13 9.7802e-13

this effect, we can perform a few additional iterations with C–to–R , applied
to the system (2), where the roles of A and B have been interchanged, thereby
using the already obtained solution as an initial guess, and continue with a
number of iterations with C–to–R applied to the system (3). The resulting
method is referred to as C–two–R . In Tables 4, 5 and 6 one can see the effect
of C–two–R , for a reduced relative outer stopping criterion 10−6.

Fig. 2 Problem 1: Convergence comparisons, FEM, problem size 66049, ω = 0.01
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Fig. 3 Problem 1: Convergence comparisons, FEM, problem size 66049, ω = 1

Fig. 4 Problem 1: Convergence comparisons, FEM, problem size 66049, ω = 100
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Fig. 5 Problem 4. a Dense preconditioner: number of iterations on the ’x-axes and Euclidean norm of the
computed residual on the ’y’-axes. b A portrait of a sparsified block A, matrix size 400
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6 Conclusions

For test problems of somewhat simpler kind and of relatively small size, it has been
seen that direct solution methods are competitive and the QMR method gives small-
est elapsed computer times. This holds for 2D problems of not too large problem
size and for problems involving the identity matrix as a dominating part. For large
scale problems, in particular, for 3D problems, direct methods can not compete with
iterative solution methods.

The QMR method and its ILU-preconditioned version turn out not to be robust,
i.e., not applicable for all test problems. Since we aim at a fully robust method, we
turn to the C–to–R method and the PMHSS method. For exact solution of the arising
inner systems of equations in a problem, where A and B are spsd, it has been shown
that the C–to–R method gives eigenvalues in an interval [a, 1], where a ≥ 1

2 and
the number a depends on the eigenvalues of B−1A and the preconditioning parame-
ter α. Hence, the condition number is bounded by 2. This holds if B−1A have real,
nonnegative eigenvalues. When an inner iteration method with a finite stopping crite-
rion is used, the resulting eigenvalues will be somewhat perturbed, depending on the
stopping criteria for the inner iterations. It is then advisable to use a flexible GMRES
([13]) or a variable preconditioned GCG ([14]) iteration method. Since there are only
few iterations, in practice mostly less than 12, there is no need to use a restarted
version of these methods.

Alternatively, based on the given eigenvalue bounds, one can use a Chebyshev
iteration method, thereby avoiding the computation of inner products and global
communication of them to all computer processor cores.

The PMHSS method results in complex eigenvalues located in a disc with center

at the unit value λ = 1, and with radius
√

α2+1
α+1 . For α = 1, the radius equals

1/
√

2. Hence, a condition number just based on the real eigenvalues, equals (1 +
1/
√

2)/(1 − 1/
√

2) = 3 + 2
√

2 ≈ 6. Since the eigenvalues are complex, the actual
rate of convergence will be relatively slower than the method, based on this condition
number. The special case of the method, which is equivalent to using A + B as
a preconditioner to C has more favourable properties and converges fast when the
arising systems with A+ B are solved by a direct method. This, however, makes the
method less competitive for 3D and ill-conditioned problems. In general, the method
can be expected to converge slower than the C–to–R method due to the following
two reasons.

(i) The eigenvalues in the PMHSS method are complex even for spd (spsd)
matrices A, B .

(ii) The eigenvalues are located in a slightly larger domain than for the C–to–R
method.

Additionally, the PMHSS method still needs some complex arithmetic computa-
tions in the iterations.

The numerical tests in [19], the arising inner systems are solved via a direct
solution method. Since the matrices are assumed to be symmetric and positive def-
inite, a Cholesky factorization method was used. The implementation in [19] is
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computationally less efficient since there the parameter α is not equal to 1 and two
inner systems must be solved. The use of the special version of the method, as imple-
mented here, is however quite efficient. Then, for α = 1 only one inner system must
be solved.

In the implementation in this paper, a direct method for the solution of the inner
system in PMHSS is used. It is unclear how sensitive the eigenspectrum will be for
inexact (iterative) solution of these systems. However, if the inner systems are solved
with a multilevel or AMG preconditioned method, under certain considerations, one
can obtain a nearly optimal order, O(h−d), d = 2, 3 of computational complexity.
Such tests are not included here. We note that in latest release of AGMG handles also
complex matrices.

Both the special version of the PMHSS method and the C–to–R method are
applicable also in the case where the matrices A and B are nonsymmetric, that is,
when A−1B has complex eigenvalues.

As a general conclusion, both the theoretical and numerical results show that
the iterative methods, C–to–R and PMHSS are most generally applicable and that
the preconditioned C–to–R method has a significant potential, in that it shows
robustness and numerical stability for broader classes of problems. Also, for not too
simple problems, it may outperform other methods of choice for complex symmetric
matrices. The use of the C–two–R version of the method can in some cases signif-
icantly improve the accuracy of the iterative solution at a relatively small amount of
additional computations and no additional effort to implement it.
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