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Abstract Recently Miyajima presented algorithms to compute componentwise veri-
fied error bounds for the solution of full-rank least squares problems and underdeter-
mined linear systems. In this paper we derive simpler and improved componentwise
error bounds which are based on equalities for the error of a given approximate solu-
tion. Equalities are not improvable, and the expressions are formulated in a way that
direct evaluation yields componentwise and rigorous estimates of good quality. The
computed bounds are correct in a mathematical sense covering all sources of errors,
in particular rounding errors. Numerical results show a gain in accuracy compared to
previous results.

Keywords Least squares problems · Underdetermined linear systems · INTLAB ·
Componentwise error estimates · Normal equations · Extra-precise residual
evaluation
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1 Introduction and notation

For the solution of least squares problems and underdetermined linear systems a num-
ber of (normwise) backward stable algorithms are available [6, 7], which are usually
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based on a QR-decomposition of the matrix. Although numerical approximations
are usually reliable, it seems desirable to provide rigorous error bounds, taking into
account all errors, in particular rounding errors.

Such mathematically rigorous error bounds are mandatory in so-called computer-
assisted proofs, where parts of a proof depend on the numerical solution of certain
problems [5]. To maintain mathematical rigor, a numerical solution is accompanied
by mathematically correct error bounds.

Famous examples of computer-assisted proofs are Tucker’s paper [17], who was
awarded the 2004 EMS prize by the European Mathematical Society for “giving a
rigorous proof that the Lorenz attractor exists for the parameter values provided by
Lorenz. This was a long standing challenge to the dynamical system community, and
was included by Smale in his list of problems for the new millennium. The proof
uses computer estimates with rigorous bounds based on higher dimensional interval
arithmetics.”

As another example Sahinidis and Tawaralani [15] received the 2006 Beale-
Orchard-Hays Prize for their package BARON which (citation) “incorporates tech-
niques from automatic differentiation, interval arithmetic, and other areas to yield an
automatic, modular, and relatively efficient solver for the very difficult area of global
optimization”.

Let A ∈ K
m×n, b ∈ K

m, K ∈ {R,C}. If A is rank-deficient, then the pseu-
doinverse does not depend continuously on the matrix data. This case is outside the
scope of our methods because rigorous bounds are computed utilizing the speed of
finite precision floating-point operations. For the moment we assume A to have full
rank. Note, however, that this fact will be verified a posteriori by our methods. If this
verification fails, then no bounds are computed. Thus computed bounds are always
correct.

The 2-norm solution of the least squares problem is A+b with A+ denoting the
Moore-Penrose pseudoinverse. Similarly, for A ∈ K

n×m, b ∈ K
n, the minimum of

‖x‖2 subject to Ax = b is achieved for x = A+b. To avoid confusion, we specify
rectangular matrices always such that m ≥ n.

Mathematically, the least squares problem can be solved by an augmented linear
system1 (

A −I

0 AH

) (
x

w

)
=

(
b

0

)
, (1.1)

where I denotes the identity matrix and 0 denotes the zero matrix (vector) of proper
dimension, respectively. Assume in the following that ‖A‖ is of the order 1 for some
norm. Then the condition number of the matrix in (1.1) is of the order cond(A)2. As
shown by Björck [2] it can be reduced to about cond(A) by scaling −I ; however, this
is not used in the following.

For the least squares problem the solution vector of (1.1) satisfies AHw = 0
and x = A+b. Our verification methods are based on an economy-size QR-

1Sometimes (e.g. in [1, 4]) the symmetric version of (1.1), obtained by interchanging the column blocks
in the matrix, is used. However, this may lead to less accurate results, see the Appendix.
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decomposition of A, that isA = QR for unitaryQ ∈ K
m×n and triangularR ∈ K

n×n.
Assume an approximate inverse S of (an approximate factor) R is given together with
approximations x̃ of A+b and w̃ near the kernel of AH , i.e. x̃, w̃ are approximate
solutions of (1.1). Define X := AS, so that based on our assumptions X can be
expected to be not too far from orthogonality. Suppose ‖I − XTX‖p ≤ α < 1 for
some p ∈ {1, 2,∞}. Then A has full rank, and bounds for A+b− x̃ based on S, x̃, w̃

can be computed. All remarks apply, mutatis mutatandis, to underdetermined linear
systems.

Previously bounds for the error A+b− x̃ were derived by a sequence of estimates
[10, 11, 14]. All those estimates are solely based on the approximations S, x̃, w̃. For
example, (4.8) in [14] states2

∥∥A+b − x̃
∥∥
p
≤

∥∥∥SXT ρx̃

∥∥∥
p
+

∥∥∥SST ρw̃∥∥∥
p
+ α‖S‖p

1 − α
·
(∥∥∥XT ρx̃

∥∥∥
p
+

∥∥∥ST ρw∥∥∥
p

)
forp ∈ {1, 2,∞}

(1.2)

where ρx̃ := b − Ax̃ + w̃ and ρw̃ := AT w̃. Based on his paper [10], Miyajima gave
in [11] the following componentwise error estimate:

∣∣A+b − x̃
∣∣ ≤ ∣∣∣SST

(
AT �x̃ − �w̃

)∣∣∣+
∥∥ST

(
AT �x̃ − �w̃

∥∥∞
1 − α

|S|
∣∣∣I −XT X

∣∣∣ e, (1.3)

where e denotes the vector of 1′s of proper dimension, and comparison and abso-
lute values are to be understood componentwise. Similar estimates are given for
underdetermined systems, namely (3.8) in [14] states the normwise bound

∥∥A+b − x̃
∥∥
p
≤ √

m‖ρw̃‖p +
∥∥∥YT Sρx̃

∥∥∥
p
+

α
∥∥YT

∥∥
p

1 − α
‖Sρx̃‖p forp ∈ {1,∞},

(1.4)
and Miyajima [11] proves the componentwise bound

∣∣A+b − x̃
∣∣ ≤ ‖�w̃‖2e +

∣∣∣YT S�x̃

∣∣∣ ‖S�x̃‖∞
1 − α

∣∣∣YT
∣∣∣ |E|e (1.5)

using ρw̃ := x̃ − AT w̃, ρx̃ := Ax̃ − b, an approximate inverse S of RT for an
approximate decomposition AT ≈ QR and Y := SA.

In this paper we derive simple expressions equal to A+b− x̃, also solely based on
S, x̃, w̃. Those expressions are formulated in a way that componentwise and rigorous
estimates of good quality can be computed. Note that mathematically S, x̃, w̃ are
arbitrary quantities (of proper dimension); however, if they are of poor quality, then
the bounds are of poor quality as well or no bounds may be computed at all.

2For a moment we restrict the attention to real problems.
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For a matrix M ∈ K
m×n and 1 ≤ i ≤ m denote by Mi∗ ∈ K

n the i-th row of M .
For 1 ≤ p ≤ ∞, we define the vector of row-wise p-norms of M by

v := ‖M‖vecp ∈ R
m by vi := ‖Mi∗‖p for 1 ≤ i ≤ m . (1.6)

The following application of Hölder’s inequality is useful to obtain component-
wise error bounds.

Lemma 1.1 Let M ∈ K
m×n, z ∈ K

n, and 1 ≤ p, q ≤ ∞ with 1/p + 1/q = 1. Then

|Mz| ≤ ‖z‖p · ‖M‖vecq , in particular |Mz| ≤ ‖z‖∞ · |M|e .

The most common choices for practical purposes are p ∈ {1, 2,∞}.
Let E ∈ K

n×n with ‖E‖p ≤ α < 1 be given. Then it is well-known that I − E is
nonsingular, ∥∥∥(I − E)−1

∥∥∥
p
≤ 1

1 − α
(1.7)

and

(I −E)−1 = I + (I −E)−1E . (1.8)

2 Main results

We begin with the componentwise error bounds for least squares problems.

Theorem 2.1 Let A ∈ K
m×n, b ∈ K

m, S ∈ K
n×n with m ≥ n be given. Define

X := AS ∈ K
m×n and E := I − XHX, and suppose ‖E‖∞ ≤ α < 1. Let x̃ ∈ K

n

and w̃ ∈ K
m be given and define

�x̃ := b − Ax̃ + w̃ and �w̃ := AHw̃ and δ := XH�x̃ − SH�w̃. (2.1)

Then

A+b − x̃ = S(I − E)−1δ. (2.2)

Therefore

∣∣A+b − x̃
∣∣ ≤ ‖δ‖∞

1 − α
· |S|x and

∣∣A+b − x̃
∣∣ ≤ ‖δ‖2

1 − α
· ‖S‖vec2 , (2.3)

as well as

|A+b− x̃−Sδ| ≤ ‖Eδ‖∞
1 − α

· |S|x and
∣∣A+b − x̃ − Sδ

∣∣ ≤ ‖Eδ‖2

1 − α
· ‖S‖vec2 . (2.4)
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Proof It is well-known that
∥∥I −XHX

∥∥∞ < 1 implies that X, and by X = AS

also A and X have full rank. Using A+A = In, A+ (
A+)H

AH = A+, A+ = SX+,

X+ = (
XHX

)−1
XH and

(
XHX

)−1 = (I −E)−1 yields

A+b − x̃ = A+�x̃ −A+ (
A+)H

AHw̃

= SX+�x̃ − SX+ (
X+)H

SH�w̃

= S
(
XHX

)−1
XH�x̃ − S

(
XHX

)−1
SH�w̃

= S(I −E)−1δ. (2.5)

Applying (1.7), Lemma 1.1 and (1.8) prove the left estimates in (2.3) and (2.4).
Furthermore ∥∥∥(I − E)−1

∥∥∥
2
≤ 1

1 − ‖E‖2
≤ 1

1 − α
(2.6)

using ‖E‖2 ≤ √‖E‖1‖E‖∞ = ‖E‖∞ and EH = E prove the right estimates and
thus the result.

Note that (2.2) states an equality for the error A+b− x̃ and is thus not improvable.
The only overestimation in (2.3) and (2.4) is introduced by the application of (1.7),
Lemma 1.1 and (1.8). Practical experience suggest that this overestimation is not too
large.

Also note that the quantities X, �x̃, �w̃ and δ are computed using S, x̃ and w̃. Thus
all estimates in Theorem 2.1, as those in [10, 11, 14], are solely based on S, x̃, w̃.

Practical examples suggest that the leftmost bounds are usually the best ones,
in particular better than using Lemma 1.1 with p = 1 and q = ∞. Once the
left bound in (2.3) or (2.4) is computed, the additional effort to compute the right
bound is marginal. In any case the computing time is small compared to the QR-
decomposition. So it seems advisable to compute both bounds in (2.3) or (2.4) and to
take the componentwise minimum.

For S being an approximate inverse of R, the condition numbers of A and S can
be expected to be of the same order. Therefore the quality of (2.2) depends mainly on
SSH�w̃, implicitly included in S(I −E)−1δ. This seems unavoidable. But the condi-
tion number of SSH is of the order cond(A)2. Thus in double precision and cond(A)
beyond 108 bounds of good quality are only possible if �w̃ is very small. This, in turn,
is only achievable by representing the approximation w̃ in two terms w̃1 + w̃2. Sim-
ilarly, for underdetermined linear systems the approximation x̃ is represented in two
terms x̃1 + x̃2. For good bounds, both x̃ and w̃ should be improved by some residual
iteration ensuring that both residuals �x̃ and �w̃ are very small, see the next section.

The second estimate (2.4) can be interpreted as improving the approximation x̃ by
some residual iteration but leaving the approximation x̃ and correction Sδ in separate
parts. The method was introduced in [12] and became later [16] known as “staggered
correction”. Both is only meaningful if an accurate dot product is available. Note that
the first summand in Miyajima’s bound (1.3) is equal to |Sδ|, but the formulation is
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unfortunate for numerical evaluation. Moreover, our equality (2.2) allows to use the
term Sδ without absolute value in the left of (2.4).

A sample Matlab/INTLAB code to compute the bounds (1.2), (1.3), (2.3) and
(2.4) for least squares problems is given in the Appendix. For underdetermined linear
systems we proceed similarly.

Note that the fact that A has full rank is not assumed a priori, but follows from α <

1. Despite this, there is no further assumption, in particular not on the approximations
S, x̃, w̃. Thus one might be inclined to define w̃ := Ax̃ − b so that �x̃ = 0. This
is the best choice if x̃ is equal to the solution A+b. Otherwise, however, a good
approximation x̃ of A+b does not ensure that Ax̃ − b is near the kernel of AH .
Similarly, one might set w̃ := 0 implying �w̃ = 0. However, then �x̃ = b − Ax̃ is in
general not small.

Componentwise error estimates for underdetermined linear systems are estab-
lished similar to Theorem 2.1.

Theorem 2.2 Let A ∈ K
n×m, b ∈ K

n, S ∈ K
n×n with m ≥ n be given. Define

Y := SA ∈ K
n×m and E := I − YYH , and suppose ‖E‖∞ ≤ α < 1. Let x̃ ∈ K

m

and w̃ ∈ K
n be given and define

�x̃ := b − Ax̃ and �w̃ := AHw̃ − x̃ and δ := S�x̃ − Y�w̃. (2.7)

Then

A+b− x̃ − �w̃ = YH (I − E)−1δ (2.8)

as well as

∣∣A+b − x̃ − �w̃
∣∣ ≤ min

{ ‖δ‖∞
1 − α

·
∣∣∣YH

∣∣∣ x ,
‖δ‖2

1 − α
· ‖YH ‖vec2

}
, (2.9)

where the minimum is to be understood componentwise. Moreover,

∣∣∣A+b − x̃ − �w̃ − YHδ

∣∣∣ ≤ min

{ ‖Eδ‖∞
1 − α

·
∣∣∣YH

∣∣∣ x ,
‖Eδ‖2

1 − α
·
∥∥∥YH

∥∥∥vec
2

}
. (2.10)

Proof As before we conclude that A, S and Y have full rank. Using A+AAH = AH ,

A+ = Y+S, A+A = Y+Y , Y+ = YH
(
YYH

)−1
and

(
YYH

)−1 = (I − E)−1 yields

A+b − x̃ − �w̃ = A+�x̃ +A+Ax̃ −AHw̃

= A+�x̃ −A+A�w̃
= Y+S�x̃ − Y+Y�w̃

= YH
(
YYH

)−1
δ

= YH (I −E)−1δ. (2.11)
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As in the proof of Theorem 2.1 we use (1.7), Lemma 1.1, (1.8) and (2.6) to prove the
result.

Again the equality (2.8) is the main part of the theorem. It is formulated in a
way such that the derived estimates (2.9) and (2.10) are of good quality. In case of
underdetermined linear systems the quality can be expected to be often better than for
least squares problems: |S|x could be replaced by |YH |x, where cond(S) ≈ cond(A),
but Y is nearly unitary.

The other remarks following Theorem 2.1 apply accordingly, where now AT ≈
QR and S is an approximate inverse of RT . In particular, as has been mentioned
before, good bounds rely on good approximations.

3 Computational results

In the following we report computational results, all performed in IEEE 754 double
precision arithmetic [8] equivalent to about 16 decimal digits precision in Mat-
lab [9]. To obtain mathematically rigorous results, the estimates are bounded by
interval arithmetic using INTLAB [13], the Matlab toolbox for reliable comput-
ing. For least squares problems and underdetermined linear systems we compare
the bounds

[Ru12] Normwise bounds (1.2) and (1.4) [(4.8) and (3.8) in [14]],
[Mi12] Componentwise bounds (1.3) and (1.5) [taken from [11]],
new1 Componentwise bounds as in (2.3) and (2.9),

new2 Componentwise bounds as in (2.4) and (2.10).

(3.1)

For the new bounds always the minimum is taken of the left and the right bound
in (2.3), (2.9), (2.4) and (2.10), respectively. The new bounds (2.4) and (2.10) are
implemented in the routine verifylss in Version 7 of INTLAB.

All bounds for all methods in (3.1) rely solely on x̃, w̃ and S. Based on those
floating-point quantities, interval arithmetic is used to compute rigorous bounds for
the other quantities X, Y,E, α, ρx̃, ρw̃ and δ and for computing the final bounds.
Thus the prerequisites for all methods are the same. In particular all methods suc-
ceed or fail to compute rigorous bounds depending on α being strictly less than one
or not.

For all methods S is an approximate inverse (by Matlab’s inv) of the fac-
tor R or RT of the approximate QR-factorization of A or AT , respectively, and
x̃ and w̃ are improved by the residual iterations (5.7) and (5.3) in [14], respec-
tively. As has been mentioned earlier we improve the quality of all bounds by using
x̃1 + x̃2 and w̃1 + w̃2 for least squares and for underdetermined problems, respec-
tively. Then accurate dot products are used to compute inclusions of the residuals
ρx̃ = b − Ax̃1 − Ax̃2 + w̃ and ρw̃ = AHw̃ in case of least squares problems,
and similarly for underdetermined systems. This is the common base for all methods
in (3.1).
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For an interval [a, b] �= 0 we define the “number of correct digits” by
− log10[(b−a)/|a+b|]. We say an interval with a, b being adjacent double precision
floating-point numbers is of “maximum accuracy”. For such intervals the number
of correct digits is between 15.65 and 15.95, depending on the distance to the next
power of 2.

We first test random least squares problems with full matrix of different dimen-
sions and condition numbers. Random rectangular matrices of specified condition
number are generated via singular values [7]. Since verified lower and upper bounds
for the solution vector are calculated, we can display in Table 1 the minimum number
and median number of correct digits of the componentwise inclusions. The median
number of correct digits of the new methods is often close to maximum accuracy, so
we refrain from displaying the maximum.

For 1000 test cases each we test the four methods. Then the minimum and median
number of correct digits of all 1000 m solution components is displayed. As can be
seen, Miyajima’s bounds are better than [Ru12] for well-conditioned problems, and
worse for ill-conditioned problems. The new bounds are always at least as good as
both the previous ones, often near maximum accuracy. As expected, the second new
bound is never worse than the first one.

Table 1 Computational results for random least squares problems of the methods in (3.1)

m n cond(A) min # corr. digits median # corr. digits

[Ru12] [Mi12] new1 new2 [Ru12] [Mi12] new1 new2

1000 50 1e2 11.7 15.7 15.7 15.7 15.3 15.8 15.8 15.8

1000 50 1e5 10.4 15.4 15.7 15.7 15.3 15.8 15.8 15.8

1000 50 1e10 10.5 5.8 12.1 13.9 15.3 11.1 15.8 15.8

1000 50 1e11 10.3 4.2 12.1 12.7 15.3 9.2 15.8 15.8

1000 50 1e12 5.8 2.8 5.8 7.7 15.1 7.2 15.7 15.8

1000 50 1e13 0.0 0.0 0.0 0.1 8.6 5.1 8.9 10.4

1000 100 1e2 10.9 15.7 15.7 15.7 15.3 15.8 15.8 15.8

1000 100 1e5 10.2 14.8 15.7 15.7 15.3 15.8 15.8 15.8

1000 100 1e10 11.4 6.3 13.0 14.3 15.2 10.4 15.8 15.8

1000 100 1e11 10.5 3.8 12.1 12.9 15.2 8.5 15.8 15.8

1000 100 1e12 4.8 2.0 4.9 6.5 15.1 6.5 15.7 15.8

1000 100 1e13 0.0 0.0 0.0 0.0 6.9 4.4 7.2 8.4

1000 200 1e2 10.3 15.7 15.7 15.7 15.3 15.8 15.8 15.8

1000 200 1e5 10.6 14.2 15.7 15.7 15.3 15.8 15.8 15.8

1000 200 1e10 10.3 4.3 12.1 13.1 15.2 9.6 15.8 15.8

1000 200 1e11 10.2 2.4 11.4 12.0 15.2 7.7 15.8 15.8

1000 200 1e12 4.0 0.0 4.0 5.4 15.0 5.7 15.4 15.7

1000 200 1e13 0.0 0.0 0.0 0.0 4.3 3.3 4.7 5.6
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For underdetermined linear systems the results are displayed in Table 2. They
are, as expected, in general better than for least squares problems. Now Miyajima’s
componentwise estimates are always better than the previous bounds in [Ru12], and
with three exceptions the first new bound is better than Miyajima’s, whereas the
second new bound is again never worse than the first.

Finally we display results for larger sparse problems. Note that R and also S are of
size n × n, however, X = AS and Y = SA for over- and underdetermined systems,
respectively, are of size m × n and usually full. The direct computation of these
full matrices can be avoided as described in [14, Section 6]. Sparse test matrices are
taken from the Florida sparse matrix collection [3]. We use examples for least squares
problems and for underdetermined linear systems for both tests by treating A and
AT , respectively.

For the sparse problems we display only the minimum number of correct dig-
its. As can be seen in Tables 3 and 4 the new methods compute in all examples
inclusions of full accuracy. For least squares problems there is no difference to
Miyajima’s bounds as in (1.3), for underdetermined problems our bounds are
better.

The computing time of all methods is essentially proportional to the time to com-
pute the economy-size QR-decomposition, which requires O(mn2) floating-point

Table 2 Computational results for random underdetermined linear systems of the methods in (3.1)

n m cond(A) min # corr. digits median # corr. digits

[Ru12] [Mi12] new1 new2 [Ru12] [Mi12] new1 new2

50 1000 1e2 7.2 8.5 15.7 15.7 12.7 14.0 15.8 15.8

50 1000 1e5 6.4 7.7 15.7 15.7 12.7 14.0 15.8 15.8

50 1000 1e10 6.9 8.2 12.2 13.1 12.6 14.0 15.8 15.8

50 1000 1e11 6.7 8.1 12.2 12.8 12.6 14.0 15.8 15.8

50 1000 1e12 6.2 7.7 10.9 11.6 12.6 14.0 15.8 15.8

50 1000 1e13 2.8 4.4 4.1 5.1 12.5 13.9 15.1 15.7

100 1000 1e2 7.3 8.5 15.7 15.7 12.8 14.0 15.8 15.8

100 1000 1e5 6.7 7.9 15.7 15.7 12.7 14.0 15.8 15.8

100 1000 1e10 6.4 7.9 12.8 13.1 12.7 14.0 15.8 15.8

100 1000 1e11 6.6 7.9 11.8 12.2 12.7 14.0 15.8 15.8

100 1000 1e12 7.6 8.9 11.5 12.1 12.7 14.0 15.8 15.8

100 1000 1e13 4.2 5.9 5.3 6.3 12.5 13.9 14.8 15.5

200 1000 1e2 7.1 8.2 15.7 15.7 12.9 14.0 15.8 15.8

200 1000 1e5 7.3 8.6 15.7 15.7 12.8 14.0 15.8 15.8

200 1000 1e10 5.9 7.3 11.8 12.1 12.7 14.0 15.8 15.8

200 1000 1e11 6.6 8.0 11.8 12.0 12.7 14.0 15.8 15.8

200 1000 1e12 6.9 8.1 10.4 10.7 12.7 14.0 15.7 15.8

200 1000 1e13 0.0 0.0 0.0 0.0 12.0 13.6 13.3 14.2
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Table 3 Computational results for sparse least squares problems of the methods in (3.1)

m n density[%] Matrix min # corr. digits

[Ru12] [Mi12] new1 new2

37932 331 1.09 JGD Taha/abtaha2 13.4 15.7 15.7 15.7

14596 209 1.68 JGD Taha/abtaha1 11.6 15.7 15.7 15.7

29493 11822 0.03 Sumner/graphics 10.5 15.2 15.7 15.7

10595 4929 0.09 HB/gemat1 7.8 15.7 15.7 15.7

12061 2262 0.09 LPnetlib/lp 80bau3b 9.2 15.7 15.7 15.7

13525 3000 0.12 LPnetlib/lp fit2p 11.6 15.7 15.7 15.7

25067 1118 0.52 LPnetlib/lp osa 07 11.7 15.7 15.7 15.7

54797 2337 0.25 LPnetlib/lp osa 14 11.1 15.7 15.7 15.7

63516 507 1.27 Mittelmann/rail507 11.2 15.7 15.7 15.7

10757 124 6.82 Meszaros/air03 12.8 15.7 15.7 15.7

16819 4400 0.20 Meszaros/model10 8.6 15.7 15.7 15.7

123409 73 10.04 Meszaros/nw14 12.4 15.7 15.7 15.7

61521 4050 0.11 Meszaros/rlfddd 10.2 15.7 15.7 15.7

63076 3173 0.25 Meszaros/stat96v4 8.7 15.7 15.7 15.7

184756 190 23.68 JGD BIBD/bibd 20 10 12.6 15.7 15.7 15.7

319770 231 12.12 JGD BIBD/bibd 22 8 12.0 15.7 15.7 15.7

Table 4 Computational results for sparse underdetermined linear systems of the methods in (3.1)

n m density[%] Matrix min # corr. digits

[Ru12] [Mi12] new1 new2

331 37932 1.09 JGD Taha/abtaha2 8.9 9.8 15.7 15.7

209 14596 1.68 JGD Taha/abtaha1 7.3 8.5 15.7 15.7

11822 29493 0.03 Sumner/graphics 6.9 8.1 15.7 15.7

4929 10595 0.09 HB/gemat1 6.5 8.2 15.7 15.7

2262 12061 0.09 LPnetlib/lp 80bau3b 9.5 10.5 15.7 15.7

3000 13525 0.12 LPnetlib/lp fit2p 9.8 10.5 15.7 15.7

1118 25067 0.52 LPnetlib/lp osa 07 7.5 9.2 15.7 15.7

2337 54797 0.25 LPnetlib/lp osa 14 7.4 9.0 15.7 15.7

507 63516 1.27 Mittelmann/rail507 6.4 8.2 15.7 15.7

124 10757 6.82 Meszaros/air03 6.1 7.6 15.7 15.7

4400 16819 0.20 Meszaros/model10 7.0 8.4 15.7 15.7

73 123409 10.04 Meszaros/nw14 3.8 6.1 15.7 15.7

4050 61521 0.11 Meszaros/rlfddd 5.1 6.4 15.7 15.7

3173 63076 0.25 Meszaros/stat96v4 7.5 8.2 15.7 15.7

190 184756 23.68 JGD BIBD/bibd 20 10 7.6 8.2 15.7 15.7

231 319770 12.12 JGD BIBD/bibd 22 8 6.9 7.7 15.7 15.7
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operations. Note this is significantly better than the O((m+ n)3) flops to solve (1.1),
in particular if m � n.

Acknowledgments The author thanks Florian Bünger for his fruitful comments on a preliminary version
of this manuscript, and two anonymous referees for their thorough reading and stimulating remarks.

Appendix

We try to explain a phenomenon which has been noted in [14, Section 7, in par-
ticular Figure 7.1]. Sometimes, as in [1, 4], the augmented linear system (1.1) is
symmetrized into (

−I A

AH 0

) (
w

x

)
=

(
b

0

)
(4.1)

Suppose the condition number of a matrix C is 10k , and an approximate solution x̃

of a linear system Cx = c is obtained in double precision by Gaussian elimination
with partial pivoting. Then, according to the well-known rule of thumb in numerical
analysis, the number of correct digits of x̃ should be about 16− k. Practical evidence
suggests that this is indeed true for the augmented system (4.1).

The matrix of the augmented system (1.1) exchanges the two block columns of
the matrix, so the condition number does not change. However, practical experience
suggests that the solution of (1.1) has significantly more than 16 − k correct digits,
contradicting the mentioned rule of thumb.

As a typical example, we generate a random 500 × 100 matrix A with condi-
tion number cond2(A) = σmax(A)/σmin(A) = 1010 with right hand side b= e. The
true condition number of both the matrix in the symmetric (4.1) and the unsymmet-
ric system (1.1) is 1020, computed by some multiple-precision package, so that an
approximate solution is expected to have no correct digit.

Algorithm verifylss in INTLAB implements our new methods and computes
an inclusion X of the true solution (see the code in Table 5). Note that this includes
the proof that A has full rank. As can be seen in the displayed results, the maximum
relative error 2 · 10−16 of the inclusion X implies that all components of the inclusion
X are correct to the last digit.

Next (cf. Table 5) the symmetric linear system (4.1) is generated and solved, pro-
ducing the approximate solution xsym. The median relative error relerrsym (see
Table 6) of the relevant components against the inclusion is 1, which means that, as
expected, in the median the approximate solution of the symmetric system (4.1) has
no correct digit.

Finally, the unsymmetric linear system (1.1) is generated and solved, producing
the approximate solution xunsym. The median relative error relerrunsym of
the relevant components against the inclusion is about 10−4, which means that in
the median the approximate solution of the unsymmetric system has about 4 correct
digits. This contradicts the mentioned rule of thumb.

The reason seems to be the following. Suppose that A is equilibrated with a norm
of order 1. The backslash operator in Matlab uses Gaussian elimination with partial



320 Numer Algor (2014) 66:309–322

Table 5 Sample code to test the augmented linear systems (1.1) and (4.1)

pivoting. Thus in the first elimination block in (1.1) only pivots of the matrix A

are used, whereas in the symmetric system (4.1) pivots out of the identity are used.
Seemingly this destroys the structure, so that the ill-conditioning of the symmetric
system appears.

Another statement, which is generally true, also proves to have exceptions. Usually
total pivoting produces more accurate results than partial pivoting. More precisely,
vast practical experience shows that Gaussian elimination with partial pivoting is

Table 6 Sample result of the code in Table 5 testing the augmented linear systems (1.1) and (4.1)
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Table 7 Sample Matlab/INTLAB code to compute the bounds (1.2), (1.3), (2.3) and (2.4) for least squares
problems

in most cases a stable algorithm, but theoretically it is highly unstable due to the
possibility of exponential pivot growth.3

In our example, Gaussian elimination with total pivoting produces for both the
unsymmetric system (1.1) and the symmetric system (4.1) the same result because
the matrices are permutations of each other. However, it is likely that the result with

3As is known, there are instances where this happens in practice as well [19].
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total pivoting is the same as for partial pivoting of the symmetric system. Thus the
approximation produced by total pivoting has no correct digit, in contrast to partial
pivoting with about 4 correct digits.

These statements seem to be true in general, not just for the displayed exam-
ple. Note that the condition number of the least squares problem [18] is basically
cond(A)2 times the norm of the residual Ax̃ − b; the point here was to show that
the general rule of thumb for linear systems does not necessarily apply to structured
matrices, so that using the unsymmetric system (1.1) is preferable to the symmetrized
system (4.1).

Table 7 shows the sample Matlab/INTLAB code to compute the bounds (1.2),
(1.3), (2.3) and (2.4) for least squares problems. The routine resid iter lsqr
implements the residual iteration (5.7) in [14], Dot is an INTLAB routine to
compute accurate approximations or inclusions of dot product expressions.
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