ORIGINAL PAPER

An inexact line search approach using modified nonmonotone strategy for unconstrained optimization

Keyvan Amini ·Masoud Ahookhosh · Hadi Nosratipour

Received: 13 May 2012 / Accepted: 14 May 2013 / Published online: 10 June 2013 © Springer Science+Business Media New York 2013

Abstract This paper concerns with a new nonmonotone strategy and its application to the line search approach for unconstrained optimization. It has been believed that nonmonotone techniques can improve the possibility of finding the global optimum and increase the convergence rate of the algorithms. We first introduce a new nonmonotone strategy which includes a convex combination of the maximum function value of some preceding successful iterates and the current function value. We then incorporate the proposed nonmonotone strategy into an inexact Armijo-type line search approach to construct a more relaxed line search procedure. The global convergence to first-order stationary points is subsequently proved and the *R*-linear convergence rate are established under suitable assumptions. Preliminary numerical results finally show the efficiency and the robustness of the proposed approach for solving unconstrained nonlinear optimization problems.

Keywords Unconstrained optimization · Armijo-type line search · Nonmonotone technique · Theoretical convergence

K. Amini (\boxtimes) · H. Nosratipour Department of Mathematics, Faculty of Science, Razi University, Kermanshah, Iran e-mail: kamini@razi.ac.ir

H. Nosratipour e-mail: hadi.nosratipour@gmail.com

M. Ahookhosh Faculty of Mathematics, University of Vienna, Nordbergstrasse 15, 1090 Vienna, Austria e-mail: masoud.ahookhosh@univie.ac.at

1 Introduction

Consider the following unconstrained nonlinear optimization problem

Minimize
$$
f(x)
$$
, subject to $x \in \mathbb{R}^n$, (1)

where $f : \mathbf{R}^n \to \mathbf{R}$ is a twice continuously differentiable function. There are many iterative methods to solve the problem [\(1\)](#page-1-0). Most of these methods could be divided into two general classes, namely line search and trust-region frameworks (see [\[18\]](#page-28-0)). Trust-region methods try to find a neighborhood around the current step x_k in which a quadratic model should be agreed with the objective function. On the other hand, line search methods proceed as follows: get a point x_k , find a step direction d_k and search a suitable steplength α_k along this direction. Then the line search procedure generates a new point as $x_{k+1} = x_k + \alpha_k d_k$. In steplength computation process, the ideal choice would be the global minimizer of the following univariate function

$$
\phi(\alpha) = f(x_k + \alpha d_k). \tag{2}
$$

The traditional monotone line search approaches depart from x_k and then find a steplength α_k along the direction d_k such that descent condition $\phi(\alpha_k) < \phi(0)$ holds. The approach that is used to find a steplength α_k have been called the line search. The exact line search framework, for finding a steplength α_k , can be summarized in solving the following one dimensional optimization problem

$$
\varphi(\alpha_k) = \text{Minimize } \phi(\alpha), \quad \text{subject to } \alpha > 0. \tag{3}
$$

Firstly, when the iterate x_k is far from the solution of the problem, it is not logical to solve this equation exactly. Secondly, by solving [\(3\)](#page-1-1) exactly, we get the maximum benefit from the direction d_k , but an exact minimization leads us to solve a nonlinear equations which is expensive and unnecessary, especially for large-scale problems. Finally, in practice, we need that a steplength α_k guarantees a sufficient reduction in function values that induces the global convergence properties of the approach. Therefore, some inexact conditions for determining an acceptable steplength α_k have been proposed, namely the Armijo condition, the Wolfe condition and the Goldstein condition. Among all of these rules, the Armijo rule is the most popular condition that can be stated as follows

$$
\phi(\alpha_k) \le \phi(0) + \delta \alpha_k \phi'(0), \tag{4}
$$

where $\delta \in (0, 1)$. For the sake of simplicity, we abbreviate $f(x_k)$ by f_k , $\nabla f(x_k)$ by g_k , $\nabla^2 f(x_k)$ by G_k , and any approximation of Hessian matrix by B_k . Hence, we can rewrite [\(4\)](#page-1-2) by

$$
f(x_k + \alpha_k d_k) \le f_k + \delta \alpha_k g_k^T d_k. \tag{5}
$$

From [\(5\)](#page-1-3) and the descent condition of the search direction d_k , $g_k^T d_k < 0$, we can deduce that $f(x_{k+1}) \leq f(x_k)$, so the traditional Armijo rule guarantees the monotonicity of the sequence $\{f_k\}$.

In 1982, Chamberlain et al. in [\[9\]](#page-28-1) proposed a watchdog technique for constrained optimization, in which some standard line search conditions were relaxed to overcome the Marotos effect. Motivated by this idea, Grippo, Lampariello and Lucidi in [\[12\]](#page-28-2) presented a nonmonotone Armijo-type line search technique for the Newton method. They also proposed a truncated Newton method with nonmonotone line search for unconstrained optimization, see [\[13\]](#page-28-3). In their nonmonotone Armijo-type line search, a steplength α_k is accepted if it satisfies the following condition

$$
f(x_k + \alpha_k d_k) \le f_{l(k)} + \delta \alpha_k g_k^T d_k, \tag{6}
$$

where $\delta \in (0, 1)$ and

$$
f_{l(k)} = \max_{0 \le j \le m(k)} \{f_{k-j}\}, \quad k = 0, 1, 2, \cdots,
$$
 (7)

where $m(0) = 0$ and $0 \leq m(k) \leq min\{m(k-1) + 1, N\}$ with $N \geq 0$. Their conclusions are overall favorable, especially when are applied to very nonlinear problems in the presence of a narrow curved valley. Nonmonotone techniques have been distinguished by the fact that they do not enforce strict monotonicity to the objective function values at successive iterates. It has been proved that nonmonotone techniques can improve both the possibility of finding the global optimum and the convergence rate of the sequence generated by these procedures $[1, 2, 4, 12, 14, 20, 21,$ $[1, 2, 4, 12, 14, 20, 21,$ $[1, 2, 4, 12, 14, 20, 21,$ $[1, 2, 4, 12, 14, 20, 21,$ $[1, 2, 4, 12, 14, 20, 21,$ $[1, 2, 4, 12, 14, 20, 21,$ $[1, 2, 4, 12, 14, 20, 21,$ $[1, 2, 4, 12, 14, 20, 21,$ $[1, 2, 4, 12, 14, 20, 21,$ $[1, 2, 4, 12, 14, 20, 21,$ $[1, 2, 4, 12, 14, 20, 21,$ $[1, 2, 4, 12, 14, 20, 21,$ $[1, 2, 4, 12, 14, 20, 21,$ [24\]](#page-29-2). Inspired by these interesting properties many authors have focused in employing nonmonotone techniques in wide variety of optimization areas.

Although the traditional nonmonotone line search technique [\(6\)](#page-2-0) has many advantages, this rule also consists of some drawbacks as well (see for example [\[10,](#page-28-8) [24\]](#page-29-2)). Some of these can be listed as follows:

- Although the method is generating *R*-linearly convergent iterates for strongly convex function, the iterates may not satisfy the condition [\(6\)](#page-2-0) for sufficiently large *k*, with any fixed bound *N* on the memory.
- A good function value generated in any iterate is essentially discarded due to the max term in (7) .
- In some cases, the numerical results is very dependent on the choice of *N*.

There are some proposals to overcome these disadvantages, see [\[3,](#page-28-9) [15,](#page-28-10) [22–](#page-29-3)[24\]](#page-29-2), which have introduced a new formula instead of $f_{l(k)}$ in [\(6\)](#page-2-0). Theoretical and computational results have indicated that these reformation can improve the efficiency of the Armijo-type line search techniques. In the next section, we introduce a new nonmonotone strategy inheriting the outstanding results properties of traditional nonmonotone strategy and improve its computational results due to an appropriate use of current information of function value.

The rest of paper is organized as follows: In Section [2,](#page-3-0) we introduce a new nonmonotone strategy and then investigate the global convergence along with *R*-linear convergence rate of the proposed algorithm under some classical assumptions. Preliminarily numerical results in Section [3](#page-10-0) indicate that the proposed algorithm is promising. Finally, some conclusions are delivered in Section [4.](#page-27-0)

2 New algorithms: motivation and theory

We first introduce a new nonmonotone strategy, draw it in algorithmic framework, investigate some convergence properties of the proposed nonmonotone strategy for the Armijo-type line search procedure and then prove the global convergence to first-order stationary points under suitable conditions. Since the new nonmonotone strategy can be regarded as a variant of the nonmonotone strategy of Grippo et al. [\[12\]](#page-28-2), we expect similar properties and significant similarities in their proof for line search method. We also establish *R*-linear convergence rate for the proposed algorithm in the sequel.

It is known that the best convergence results can be obtained by a stronger nonmonotone strategy when iterates are far from the optimum, and by a weaker nonmonotone technique whenever iterates are close to the optimum, (see [\[24\]](#page-29-2)). Furthermore, we believe that the traditional nonmonotone strategy [\(4\)](#page-1-2) just uses the current function value f_k in the calculation of the max term so that the prominent information f_k is almost ignored. Hence it seems that, near to the optimum, the traditional nonmonotone technique has not shown a suitable behavior, compared with the monotone version. On the other hand, the maximum feature is one of the most important information factors among the recent successful iterates, and we do not attend to lost this valuable information. In order to overcome the above mentioned disadvantages and introduce a more relaxed nonmonotone strategy, we define

$$
R_k = \eta_k f_{l(k)} + (1 - \eta_k) f_k,
$$
\n(8)

where $0 \le \eta_{min} \le \eta_{max} \le 1$ and $\eta_k \in [\eta_{min}, \eta_{max}]$. It is obvious that one can obtain a stronger nonmonotone strategy whenever η_k is close to 1 and can obtain a weaker nonmonotone strategy whenever η_k is close to 0. Therefore, by choosing an adaptive η_k , the approach not only can increase the effect of $f_{l(k)}$ far from the optimum but also can reduce it close to the optimum. Then the new Armijo-type line search can be defined by

$$
f(x_k + \alpha_k d_k) \le R_k + \delta \alpha_k g_k^T d_k, \tag{9}
$$

where d_k is a descent direction.

Now, we can outline our new nonmonotone Armijo-type line search algorithm as follows:

Note that if in Algorithm 1 one sets $N = 0$ or $\eta_k = 0$ for arbitrary $k \in \mathbb{N}$, Algorithm 1 reduces to the traditional Armijo line search algorithm.

Throughout this paper, we consider the following assumptions in order to analyze the convergence results of the proposed algorithm:

(**H1**) The level set $L(x_0) = \{x \in \mathbb{R}^n | f(x) \le f(x_0), x_0 \in \mathbb{R}^n \}$ is bounded.
(**H2**) The gradient $g(x)$ of $f(x)$ is Lipschitz continuous over an open conve

The gradient $g(x)$ of $f(x)$ is Lipschitz continuous over an open convex *S* that contains $L(x_0)$; i.e., there exists a positive constant L such that

$$
||g(x) - g(y)|| \le L||x - y||,
$$

for all $x, y \in S$.

 $\textcircled{2}$ Springer

Algorithm 1: New nonmonotone Armijo-type line search algorithm (NMLS-N)

Input: $x_0 \in \mathbb{R}^n$, $0 < \rho < 1$, $0 < \delta < \frac{1}{2}$, $0 < \gamma_1 < s < \gamma_2$, $0 \le \eta_{min} \le \eta_0 \le \eta_{max} \le 1$, $\epsilon > 0$, $N \ge 0$. **Begin** $k \leftarrow 0$; Compute $R_0 = f(x_0)$; **While** ($||g_k|| \ge \epsilon$) {**Start of outer loop**} {**Determination of search ditrction**} Generate a descent direction *dk*; *α* = *s*; **While** $(f(x_k + \alpha d_k) > R_k + \delta \alpha^T d_k)$ {**Start of backtraking loop**} *α* ← *ρα*; **End While** {**End of inner loop**} $\alpha_k \leftarrow \alpha;$ $x_{k+1} \leftarrow x_k + \alpha_k d_k;$ Choose $\eta_{k+1} \in (\eta_{min}, \eta_{max})$; Determine $f_{l(k+1)}$ by [\(7\)](#page-2-1); Compute R_{k+1} by [\(8\)](#page-3-1); $k \leftarrow k + 1$; **End While** {**End of outer loop**} **End**

Furthermore, in order to guarantee the global convergence of the iterative scheme $x_{k+1} = x_k + \alpha_k d_k$, we need that a direction d_k satisfies the following sufficient descent conditions

$$
g_k^T d_k \le -c_1 \|g_k\|^2 \tag{10}
$$

and

$$
||d_k|| \le c_2 ||g_k||,\tag{11}
$$

where c_1 and c_2 are two positive real-valued constants.

Since $f_k \leq f_{l(k)}$, we have

$$
f_k \le \eta_k f_{l(k)} + (1 - \eta_k) f_k = R_k. \tag{12}
$$

Therefore, the right hand side of the proposed line search is is not smaller than the standard Armijo rule. Hence it is possibly permitted to the new algorithm to gain a larger steplength. This fact may reduce the total number of iterates and the total number of function evaluations. In more details, we assume that $\tilde{\alpha}$ and α represent the steplengths satisfying the standard Armijo rule and the new Armijo-type line search procedure respectively. Then from [\(12\)](#page-4-0), we can get

$$
f(x_k + \tilde{\alpha}_k d_k) - R_k \le f(x_k + \tilde{\alpha}_k d_k) - f_k \le \delta \tilde{\alpha}_k g_k^T d_k.
$$

This implies that $\tilde{\alpha}$ satisfies the condition [\(9\)](#page-3-2), so α at least is as large as $\tilde{\alpha}$ suggesting $\tilde{\alpha} \leq \alpha$. Using [\(12\)](#page-4-0), it can be easily seen that

$$
\frac{R_k - f(x_k + \alpha d_k) + \delta \alpha g_k^T d_k}{\alpha} \geq \frac{f_k - f(x_k + \alpha d_k) + \delta \alpha g_k^T d_k}{\alpha}.
$$

Now, by using the Taylor expansion and recalling that $\Vert d_k \Vert$ is bounded we obtain

$$
\lim_{\alpha \to 0^+} \frac{f_k - f(x_k + \alpha d_k) + \delta \alpha g_k^T d_k}{\alpha} = \lim_{\alpha \to 0^+} \frac{f_k - (f_k + \alpha g_k^T d_k + o(\alpha || d_k ||)) + \delta \alpha g_k^T d_k}{\alpha}
$$

$$
= -(1 - \delta) g_k^T d_k > 0,
$$

where the last inequality follows from $0 < \delta < \frac{1}{2}$. Therefore, there exists a steplength $\alpha_k > 0$ such that

$$
f(x_k + \alpha d_k) \le R_k + \delta \alpha g_k^T d_k, \text{ for all } \alpha \in [0, \acute{\alpha}_k].
$$
 (13)

Thus, by setting $\vec{\alpha_k} = \min\{s, \vec{\alpha_k}\}\}$, we have

$$
f(x_k + \alpha d_k) \le R_k + \delta \alpha g_k^T d_k, \text{ for all } \alpha \in [0, \alpha'_k].
$$
 (14)

Therefore, the relation [\(9\)](#page-3-2) and so the backtracking loop of the algorithm are welldefined.

In order to establish the global convergence of the proposed algorithm, the two following results are necessary.

Lemma 1 *Suppose that the condition* [\(10\)](#page-4-1) *holds and the sequence* {*xk*} *is generated by Algorithm 1. Then the sequence* {*fl(k)*} *is non-increasing.*

Proof Using the definition R_k and $f_{l(k)}$, we have

$$
R_k = \eta_k f_{l(k)} + (1 - \eta_k) f_k \leq \eta_k f_{l(k)} + (1 - \eta_k) f_{l(k)} = f_{l(k)}.
$$
 (15)

This leads to

$$
f(x_k + \alpha_k d_k) \le R_k + \delta \alpha_k \nabla f(x_k)^T d_k \le f_{l(k)} + \delta \alpha_k g_k^T d_k.
$$
 (16)

The preceding inequality and the descent condition $g_k^T d_k < 0$ indicate that

$$
f_{k+1} \le f_{l(k)}.\tag{17}
$$

On the other hand, from [\(7\)](#page-2-1), we get

$$
f_{l(k+1)} = \max_{0 \le j \le m(k+1)} \{ f_{k+1-j} \}
$$

$$
\le \max_{0 \le j \le m(k)+1} \{ f_{k+1-j} \} = \max \{ f_{l(k)}, f_{k+1} \}.
$$

This fact together with [\(17\)](#page-5-0) complete the proof.

Corollary 1 *Suppose that* (*H1*) *and* [\(10\)](#page-4-1) *hold and the sequence* $\{x_k\}$ *be generated by Algorithm 1, then the sequence* $\{f_{l(k)}\}$ *is convergent.*

Proof Lemma 2 and $f_{l(0)} = f_0$ suggest that the sequence $\{x_{l(k)}\}$ remains in level set *L(x₀)*. Since $f(x_k) \le f(x_{l(k)})$, then the sequence $\{x_k\}$ remains in *L(x₀)*. Now, (H1) together with Lemma 2 imply that the sequence $\{f_{l(k)}\}$ is convergent. together with Lemma 2 imply that the sequence $\{f_{l(k)}\}$ is convergent.

The subsequent outcome suggests that the sequence $\{f_k\}$ is convergent to an accumulation point of its subsequence $\{f_{l(k)}\}.$

 \Box

Lemma 2 *Suppose that* (*H1*) *and* (*H2*) *hold, the direction* d_k *satisfies* [\(10\)](#page-4-1) *and* [\(11\)](#page-4-2) *and the sequence* {*xk*} *be generated by Algorithm 1. Then we have*

$$
\lim_{k \to \infty} f_{l(k)} = \lim_{k \to \infty} f(x_k). \tag{18}
$$

Proof From [\(7\)](#page-2-1), [\(9\)](#page-3-2) and [\(15\)](#page-5-1), for $k > N$, we obtain

$$
f(x_{l(k)}) = f(x_{l(k)-1} + \alpha_{l(k)-1} d_{l(k)-1})
$$

\n
$$
\leq R_{l(k)-1} + \delta \alpha_{l(k)-1} g_{l(k)-1}^T d_{l(k)-1}
$$

\n
$$
\leq f(x_{l(l(k)-1)}) + \delta \alpha_{l(k)-1} g_{l(k)-1}^T d_{l(k)-1}.
$$

The preceding inequality together with Corollary 1, $\alpha_k > 0$ and $g_k^T d_k < 0$ imply that

$$
\lim_{k \to \infty} \alpha_{l(k)-1} g_{l(k)-1}^T d_{l(k)-1} = 0.
$$
\n(19)

Using [\(10\)](#page-4-1) and [\(11\)](#page-4-2), we have $\alpha_k g_k^T d_k \le -c_1 \alpha_k \|g_k\|^2 \le -\left(c_1/c_2^2\right) \alpha_k \|d_k\|^2$, for all *k*. This fact along with $\alpha_k < \gamma_2$ and [\(19\)](#page-6-0) suggest that

$$
\lim_{k \to \infty} \alpha_{l(k)-1} \| d_{l(k)-1} \| = 0.
$$
 (20)

We now prove that $\lim_{k\to\infty} \alpha_k ||d_k|| = 0$. Let $\hat{l}_k = l(k+N+2)$. First, by induction, we show that, for any $j \geq 1$, we have

$$
\lim_{k \to \infty} \alpha_{\hat{I}(k)-j} \| d_{\hat{I}(k)-j} \| = 0 \tag{21}
$$

and

$$
\lim_{k \to \infty} f\left(x_{\hat{I}(k)-j}\right) = \lim_{k \to \infty} f\left(x_{l(k)}\right). \tag{22}
$$

If $j = 1$, since $\{\hat{l}_k\} \subseteq \{l(k)\}\$, the relation [\(21\)](#page-6-1) directly follows from [\(20\)](#page-6-2). The condi-tion [\(21\)](#page-6-1) indicates that $||x_{\hat{i}(k)} - x_{\hat{i}(k)-1}|| \to 0$. This fact along with the fact that $f(x)$ is uniformly continuous on L_0 imply that [\(22\)](#page-6-3) holds, for $j = 1$. Now, we assume that (21) and (22) hold, for a given *j*. Then, using (9) and (15) , we obtain

$$
f(x_{\hat{l}(k)-j}) \leq R_{\hat{l}(k)-j-1} + \delta \alpha_{\hat{l}(k)-j-1} g_{\hat{l}(k)-j-1}^T d_{\hat{l}(k)-j-1}
$$

$$
\leq f(x_{l(\hat{l}(k)-j-1)}) + \delta \alpha_{\hat{l}(k)-j-1} g_{\hat{l}(k)-j-1}^T d_{\hat{l}(k)-j-1}.
$$

Following the same arguments employed for deriving [\(20\)](#page-6-2), we deduce

$$
\lim_{k \to \infty} \alpha_{\hat{I}(k) - (j+1)} \| d_{\hat{I}(k) - (j+1)} \| = 0.
$$

This means that

$$
\lim_{k \to \infty} \left\| x_{\hat{I}(k) - j} - x_{\hat{I}(k) - (j+1)} \right\| = 0.
$$

This fact together with uniformly continuous property of $f(x)$ on $L(x_0)$ and [\(22\)](#page-6-3) indicate that

$$
\lim_{k \to \infty} f\left(x_{\hat{I}(k) - (j+1)}\right) = \lim_{k \to \infty} f\left(x_{\hat{I}(k) - j}\right) = \lim_{k \to \infty} f\left(x_{I(k)}\right). \tag{23}
$$

Thus, we conclude that [\(21\)](#page-6-1) and [\(22\)](#page-6-3) hold for any $j \geq 1$.

On the other hand, for any $k \in \mathbb{N}$, we have

$$
x_{k+1} = x_{\hat{i}(k)} - \sum_{j=1}^{\hat{i}(k)-k-1} \alpha_{\hat{i}(k)-j} d_{\hat{i}(k)-j}.
$$
 (24)

From definition $l(k)$, we have $\hat{l}(k) - k - 1 = l(k + N + 2) - k - 1 \le N + 1$. Thus, (21) and (24) suggest

$$
\lim_{k \to \infty} \|x_{k+1} - x_{\hat{I}(k)}\| = 0.
$$
\n(25)

Since $\{f(x_{l(k)})\}$ admits a limit, it follows from [\(25\)](#page-7-1) and the uniform continuity of $f(x)$ on $L(x_0)$ that

$$
\lim_{k\to\infty} f(x_k) = \lim_{k\to\infty} f\left(x_{\hat{I}(k)}\right) = \lim_{k\to\infty} f\left(x_{I(k)}\right).
$$

Therefore, [\(18\)](#page-6-4) holds and the proof is completed.

Corollary 2 *Suppose that (H1) and (H2) hold, dk satisfies* [\(10\)](#page-4-1) *and* [\(11\)](#page-4-2) *and the sequence* {*xk*} *be generated by Algorithm 1. Then we have*

$$
\lim_{k \to \infty} R_k = \lim_{k \to \infty} f(x_k). \tag{26}
$$

Proof From [\(12\)](#page-4-0) and [\(15\)](#page-5-1), we obtain

$$
f_k \leq R_k \leq f_{l(k)}.
$$

As a consequence, Lemma 2 completes the proof.

At this stage, the next result implies that the steplength α_k has a lower bound which is necessary to establish the global convergence of the proposed algorithm.

Lemma 3 *Suppose that (H2) holds and the sequence* {*xk*} *be generated by Algorithm 1. Then we have*

$$
\alpha_k \ge \min\left\{\gamma_1 \rho, \left(\frac{2(1-\delta)\rho}{L}\right) \frac{|g_k^T d_k|}{\|d_k\|^2}\right\}.
$$
 (27)

Proof If $\alpha_k/\rho \ge \gamma_1$, then $\alpha_k \ge \gamma_1 \rho$, which gives [\(27\)](#page-7-2). So we can let $\alpha_k/\rho < \gamma_1$, by the definition α_k and [\(12\)](#page-4-0), we obtain

$$
f(x_k + \alpha_k/\rho \, d_k) > R_k + \delta \frac{\alpha_k}{\rho} \, g_k^T d_k \ge f(x_k) + \delta \frac{\alpha_k}{\rho} \, g_k^T d_k. \tag{28}
$$

Using (H2) and Lipschitz continuous property of $g(x)$, we can write

$$
f(x_k + \alpha d_k) - f(x_k) = \alpha g_k^T d_k + \int_0^\alpha \left[\nabla f(x_k + t d_k) - \nabla f(x_k) \right]^T d_k dt
$$

$$
\leq \alpha g_k^T d_k + \int_0^\alpha L \|d_k\|^2 t dt
$$

$$
= \alpha g_k^T d_k + \frac{1}{2} L \alpha^2 \|d_k\|^2.
$$

 $\textcircled{2}$ Springer

 \Box

 \Box

Setting $\alpha = \alpha_k/\rho$ in the prior inequality and combining it with [\(28\)](#page-7-3) indicate that [\(27\)](#page-7-2) holds. This completes the proof. holds. This completes the proof.

Summarizing our theoretical results ensure the global convergence of the algorithm to first-order stationary points that are not local maximum points. More precisely, we wish to prove that, under stated assumptions of this section, all limit points x_* of the generated sequence $\{x_k\}$ by the algorithm are stisfying

$$
g(x_*) = 0,\t(29)
$$

irrespective of the position of the starting point x_0 .

Theorem 1 *Suppose that* (*H1*) and (*H2*) *hold, the direction* d_k *satisfies* [\(10\)](#page-4-1) and [\(11\)](#page-4-2) *and the sequence* {*xk*} *is generated by Algorithm 1. Then we have*

$$
\lim_{k \to \infty} \|g_k\| = 0. \tag{30}
$$

Furthermore, there isn't any limit point of the sequence {*xk*} *that be a local maximum of* $f(x)$ *.*

Proof We first show

$$
f_{k+1} \le R_k - \beta \|g_k\|^2, \tag{31}
$$

where β is defined by

$$
\beta = \min \left\{ \delta c_1 \gamma_1 \rho, \frac{2\delta (1 - \delta) \rho c_1^2}{L c_2^2} \right\}.
$$
\n(32)

If $\alpha_k \ge \rho \gamma_1$, it follows from [\(9\)](#page-3-2) and [\(10\)](#page-4-1) that

$$
f_{k+1} \leq R_k + \delta \alpha_k g_k^T d_k \leq R_k - \delta \alpha_k c_1 \|g_k\|^2 \leq R_k - \delta c_1 \gamma_1 \rho \|g_k\|^2, \qquad (33)
$$

which implies that (31) holds.

Now, let $\alpha_k < \rho \gamma_1$. Using [\(9\)](#page-3-2) and [\(27\)](#page-7-2), one can obtain

$$
f_{k+1} \leq R_k - \left(\frac{2\delta(1-\delta)\rho}{L}\right) \left(\frac{g_k^T d_k}{\|d_k\|}\right)^2.
$$

Using (10) and (11) , we get

$$
f_{k+1} \le R_k - \left(\frac{2\delta(1-\delta)\rho c_1^2}{Lc_2^2}\right) \|g_k\|^2.
$$
 (34)

This indicates that (31) holds.

By setting *β* as [\(32\)](#page-8-1), it follows that $β > 0$. Also by [\(31\)](#page-8-0), we can obtain

$$
R_k - f_{k+1} \ge \beta \|g_k\|^2 \ge 0.
$$

This fact along with Corollary 2 give [\(30\)](#page-8-2). The proof of this fact that no limit point of $\{x_k\}$ is local maximum of $f(x)$ is similar to proof given by Grippo et al. in [\[12\]](#page-28-2) so the details are omitted. This completes the proof. the details are omitted. This completes the proof.

The primary aim of what follows is to study the convergence rate of the sequence generated by Algorithm 1. Similar to [\[10\]](#page-28-8), we state the *R*-linear convergence of the sequence generated by Algorithm 1.

In 2002, Dai in [\[10\]](#page-28-8) proved the *R*-linearly convergence rate of the nonmonotone max-based line search scheme (6) , when the objective function $f(x)$ is strongly convex [\[10\]](#page-28-8). Zhang and Hager in [\[24\]](#page-29-2) extend this property for their proposed nonmonotone line search algorithm for uniformly convex functions. Motivated by these ideas, similar to Dai in [\[10\]](#page-28-8), we establish the *R*-linearly convergence of the sequence generated by Algorithm 1 for strongly convex functions.

Recall that the objective function *f* is a strongly convex function if there exists a scalar *ω* such that

$$
f(x) \ge f(y) + \nabla f(y)^{T} (x - y) + \frac{1}{2\omega} \|x - y\|^{2},
$$
 (35)

for all $x, y \in \mathbb{R}^n$. In order to establish the *R*-linearly convergence rate, we need the following lemmas.

Lemma 4 *Suppose that (H1) and (H2) hold, the direction* d_k *satisfies [\(10\)](#page-4-1)* and [\(11\)](#page-4-2) *and the sequence* $\{x_k\}$ *be generated by Algorithm 1. Then, for any* $l \geq 1$ *,*

$$
\max_{1 \le i \le N} f(x_{Nl+i}) \le \max_{1 \le i \le N} f(x_{N(l-1)+i}) + \delta \max_{0 \le i \le N-1} \left[\alpha_{Nl+i} g_{Nl+i}^T d_{Nl+i} \right]. \tag{36}
$$

Proof Using [\(15\)](#page-5-1), we have

$$
f(x_{Nl+1}) \le R_{Nl} + \delta \alpha_{Nl} g_{Nl}^T d_{Nl}
$$

\n
$$
\le \max_{1 \le i \le m(Nl)} f(x_{Nl-i}) + \delta \alpha_{Nl} g_{Nl}^T d_{Nl}.
$$

The rest of the proof is similar to Lemma 2.1 in [\[10\]](#page-28-8).

Lemma 5 *Suppose that* (*H1*) *and* (*H2*) *hold, the direction* d_k *satisfies* [\(10\)](#page-4-1) *and* [\(11\)](#page-4-2) *and the sequence* {*xk*} *be generated by Algorithm 1. Then there exists a constant* $c_3 > 1$ *such that*

$$
||g_{k+1}|| \le c_3 ||g_k||. \tag{37}
$$

 \Box

 \Box

Proof To find a proof, see the Theorem 2.1 in [\[10\]](#page-28-8).

Lemma 6 *Suppose that (H1) and (H2) hold, f (x) be a strongly convex function, the direction dk satisfies* [\(10\)](#page-4-1) *and* [\(11\)](#page-4-2) *and the sequence* {*xk*} *be generated by Algorithm 1. Then there exist constants* $c_4 > 0$ *and* $c_5 \in (0, 1)$ *such that*

$$
f(x_k) - f(x_*) \le c_4 c_5^k \big[f(x_1) - f(x_*) \big],\tag{38}
$$

for all $k \in \mathbb{N}$ *.*

Proof Using Lemma 4 and Lemma 5 all conditions of Theorem 3.1 of [\[10\]](#page-28-8) hold. Therefore, the conclusion can be proved in a similar way. Thus, the details are omitted. \Box

Theorem 2 *Suppose that* (*H1*), (*H2*) *and* [\(35\)](#page-9-0) *hold, the direction* d_k *satisfies* [\(10\)](#page-4-1) *and* [\(11\)](#page-4-2) *and the sequence* $\{x_k\}$ *be generated by Algorithm 1. Then the sequence* $\{x_k\}$ *converges to the stationary point x*[∗] *at least R-linearly.*

Proof Recall that the sequence $\{x_k\}$ converges to x_* *R*-linearly if there exists a sequence of nonnegative scalars $\{v_k\}$ such that, for all $k \in \mathbb{N}$,

$$
||x_k - x_*|| \le v_k,\tag{39}
$$

where the sequence $\{v_k\}$ converges Q-linearly to zero. We first introduce a sequence $\{v_k\}$, then prove its Q-linearly convergence. Lemma 5 together with substituting $y =$ x_* and $x = x_k$ in [\(35\)](#page-9-0) imply that

$$
||x_k - x_*||^2 \le 2\omega(f(x_k) - f(x_*)) \le [2\omega c_4(f(x_1) - f(x_*))]c_5^k = rc_5^k, \quad (40)
$$

where $r = [2\omega c_4(f_1 - f_*)]$. By setting $v_k = rc_5^k$, we get that $v^* = 0$. We also have

$$
\lim_{k \to \infty} \frac{\nu_{k+1} - \nu_*}{\nu_k - \nu_*} = c_5 < 1. \tag{41}
$$

Therefore, the sequence $\{x_k\}$ converges to x_* at least *R*-linearly.

It is known that while the the Newton method has the quadratic convergence rate close to the optimum, the quasi-Newton approaches can take the superlinear convergence rate on some suitable conditions, see [\[18\]](#page-28-0). It is not hard to show that the present algorithm can reduced to the Newton methods or the quasi-Newton approaches similar to what established in Nocedal and Wright in [\[18\]](#page-28-0) under some classical assumptions.

3 Preliminary computational experiments

This section reports extensive numerical results obtained by testing the proposed algorithm, NMLS-N, compared with the standard Armijo line search in [\[7\]](#page-28-11), MLS-A, the nonmonotone line search of Grippo et al. in [\[12\]](#page-28-2), NMLS-G, and the nonmonotone line search of Hager and Zhang in [\[24\]](#page-29-2), NMLS-H. We provide three different classes of directions in our comparisons, namely the Barzilai-Borwein, LBFGS and truncated Newton (TN) directions. First part of our comparisons includes using the recently proposed modified two-point stepsize gradient direction of Babaie-Kafaki and Fatemi, [\[8\]](#page-28-12) for all algorithms. In the second part, the search direction d_k is determined by the well-known limited quasi-Newton approach L-BFGS [\[16,](#page-28-13) [19\]](#page-28-14), and in the third part, the search direction d_k is computed by the truncated Newton algorithm proposed in Chapter 6 of [\[18\]](#page-28-0) with some reformations.

The computational results exploit standard unconstrained test functions from Andrei in $[5]$ and Moré et al. in $[17]$. The starting points are the standard ones provided by the mentioned papers. We perform our experiments in double precision arithmetic format ine MATLAB 7.4 programming environment. All codes are written in the same subroutine where computes the steplength α_k by the variant Armijo-type

 \Box

conditions with the identical parameters $s = 1$, $\delta = 10^{-4}$ and $\rho = 0.5$ for the modified Barzilai-Borwein and truncated Newton directions and $s = 1$, $\delta = 10^{-3}$ and $\rho = 0.5$ for the LBFGS direction, which are selected respectively the same as what proposed in [\[8\]](#page-28-12) and [\[12\]](#page-28-2). Like NMLS-G, NMLS-N takes advantage of $N = 10$ to calculate the nonmonotone term $f_{l(k)}$. From Algorithm 1, it is clear that the number of iterates and gradient evaluations are the same, so we considered the number of iterates and function evaluations to compare the algorithms.

3.1 Implementations including a modified Barzilai-Borwein direction

This subsection reports the results of the considered directions where the search directions are generated by the modified two-point stepsize gradient algorithm in [\[8\]](#page-28-12) on a set of 107 unconstrained optimization test problems. We rename the considered algorithms by MLS-A1, NMLS-G1, NMLS-H1 and NMLS-N1, respectively. We here briefly summarize how the search direction, $\mathbf{d}_{\mathbf{k}} = -\lambda_{\mathbf{k}} \mathbf{g}_{\mathbf{k}}$, is generated by the following procedure:

Procedure 1: Calculation of direction $\mathbf{d}_{\mathbf{k}} = -\lambda_{\mathbf{k}} \mathbf{g}_{\mathbf{k}}$

Begin

If
$$
k = 1
$$

\n $\lambda_1 \leftarrow ||g_k||_{\infty}^{-1}$;
\nElse
\nSelect $r > 0$, $C > 0$,
\n $\vartheta \leftarrow 10^{-5}$; $\varepsilon \leftarrow 10^{-30}$; $s_{k-1} \leftarrow x_k - x_{k-1}$; $y_{k-1} \leftarrow g_k - g_{k-1}$;
\n $h_{k-1} \leftarrow C + \max \left\{ -\frac{s_{k-1}^T y_{k-1}}{||s_{k-1}||^2}, 0 \right\} ||g_k||^{-r}$; $\bar{y}_{k-1} \leftarrow y_{k-1} + h_{k-1} ||g_k||^r s_{k-1}$;
\n $\bar{\lambda}_k \leftarrow \frac{s_{k-1}^T s_{k-1}}{s_{k-1}^T \bar{y}_{k-1}}$; $\bar{\lambda}_k \leftarrow \frac{s_{k-1}^T s_{k-1}}{6(f_{k-1}-f_k) + 4g_k^T s_{k-1} + 2g_{k-1}^T s_{k-1}}$;
\nIf $s_{k-1}^T y_{k-1} < \vartheta$ or $f_k - (f_{k-1} + g_{k-1}^T s_{k-1}) < \vartheta$ or $\tilde{\lambda}_k < 0$ then
\n $\lambda_k \leftarrow \max \left\{ \varepsilon, \min \left\{ \frac{1}{\varepsilon}, \tilde{\lambda}_k \right\} \right\}$
\nElse
\n $\lambda_k \leftarrow \max \left\{ \varepsilon, \min \left\{ \frac{1}{\varepsilon}, \bar{\lambda}_k \right\} \right\}$
\nEnd
\nEnd
\nEnd
\nEnd

Our preliminary numerical experiments have showed that the best convergence results are obtained by η_k close to 1, whenever the iterates are far from the optimum, and by η_k close to 0, whenever the iterates are close to the optimum. It is wellknown that, in optimization areas, the best criterion to measure the closeness of the current point x_k to the optimum x_* is to assess the first-order optimality condition, so $\|g_k\|_{\infty}$ ≤ 10⁻³ can be used as a criteria for the closeness to the optimum. Therefore, NMLS-N exploits the the starting parameter $\eta_0 = 0.95$ and update it by

$$
\eta_{k+1} = \begin{cases} \frac{2}{3}\eta_k + 0.01 & \|g_k\|_{\infty} \le 10^{-3}, \\ \max\left\{\frac{99}{100}\eta_k, 0.5\right\} & otherwise. \end{cases}
$$
(42)

We easily can see that the algorithm for problems with the large number iterates, more than 65 iterates, starts with $\eta_0 = 0.95$ and slightly decrease it in about 65 iterates to receive $\eta_k \approx 0.5$ and then preserves $\eta_k = 0.5$ unless the condition $\|g_k\|_{\infty} \leq 10^{-3}$ holds. After getting this condition, η_k will be decreased quickly by the formula $\eta_k = \frac{2}{3}\eta_{k-1} + 0.01$ to finally fixed about $\eta_k = 0.03$. On the other hand, for problems with the total iterates less than 65, the algorithm begins with $\eta_0 = 0.95$ and slightly decreases it to eventually the condition $\|g_k\|_{\infty} \leq 10^{-3}$ holds and then decline η_k quickly due to $\eta_k = \frac{2}{3}\eta_{k-1} + 0.01$. Therefore, the algorithm, in both cases, starts with a stronger nonmonotone strategy whenever the iterates are far from the optimum and employs a slightly weaker technique in middle of performance and finally take advantages of a weaker nonmonotone technique close to the optimum, when the condition $\|g_k\|_{\infty} \le 10^{-3}$ holds. For the algorithm NMLS-H, we also select $\eta_0 = 0.85$ as proposed by Zhang and Hager in [\[24\]](#page-29-2). Furthermore, in our implementations the algorithms stop if

$$
||g_k||_{\infty} \le 10^{-6} (1 + |f_k|)
$$

except for problem E. Hiebert, which will stop at $k = 0$ with this criterion. For this problem, the stopping criterion is

$$
\|g_k\|_\infty \le 10^{-6} \|g_0\|_\infty
$$

or the number of iterates exceeds 40000. An "Fail"in the tables means that the corresponding algorithm fails to find the problems optimum because the number of iterations exceeds 40000.

The obtained results are shown in Table [1,](#page-14-0) where we report the number of iterations (n_i) and the number of function evaluations (n_f) .

The results of Table [1](#page-14-0) suggest that the proposed algorithm has promising behaviour encountering with medium-scale and large-scale unconstrained optimization problems and it is superior to other considered algorithms in the most cases. For this collection of methods, the obtained results of Table [2](#page-14-0) indicate the percentage of the test problems in which a method is the fastest.

In this point, to have a more reliable comparison and demonstrate the overall behaviour of the present algorithms and get more insight about the performance of considered codes, the performance of all codes, based on both n_i and n_f , have been respectively assessed in Figs. [1](#page-16-0) and [2](#page-16-1) by applying the performance profile proposed from Dolan and Moré in $[11]$. In the procedure of Dolan and Moré, the profile of each code is measured considering the ratio of its computational outcome versus the best numerical outcome of all codes. This profile offers a tool for comparing the performance of iterative processes in statistical structure. In particular, let *S* is set of all

Quad. QF1 3000 1189*/*2716 1186*/*2059 1491*/*2718 1003*/*1905

Table 1 Numerical results with a modified Barzilai-Borwein direction

Table 1 (continued)

Table 2 Comparing the results of Table [1](#page-14-0)

	MLS-A1	NMLS-G1	NMLS-H1	NMLS-N1
Iterates (ni)	48.6%	50.5 $%$	43.8%	65.7%
Function evaluations (n_f)	39 $%$	61 %	52.4%	62.8%

Fig. 1 Iteration performance profiles for a modified Barzilai-Borwein direction

algorithms and P is a set of test problems, with n_s solvers and n_p problems. For each problem p and solver s , $t_{p,s}$ is the computation result regarding to the performance index. Then, the following performance ratio is defined

$$
r_{p,s} = \frac{t_{p,s}}{\min\left\{t_{p,s} : s \in S\right\}}.
$$

Fig. 2 Function evaluations performance profiles for a modified Barzilai-Borwein direction

If algorithm *s* is not convergent for a problem *p*, the procedure sets $r_{p,s} = r_{fail}$, where r_{fail} should be strictly larger than any performance ratio [\(33\)](#page-8-3). For any factor *τ* , the overall performance of algorithm *s* is given by

$$
\rho_s(\tau) = \frac{1}{n_p} \text{size} \bigg\{ p \in \mathcal{P} : r_{p,s} \leq \tau \bigg\}.
$$

In fact $\rho_s(\tau)$ is the probability of algorithm $s \in S$ that a performance ratio $r_{p,s}$ is within a factor $\tau \in \mathbb{R}^n$ of the best possible ratio. The function $\rho_s(\tau)$ is the distribution function for the performance ratio. Especially, $\rho_s(1)$ gives the probability that algorithm *s* wins over all other algorithms, and $\lim_{\tau \to r_{fail}} \rho_s(\tau)$ gives the probability of that algorithm *s* solve a problem. Therefore, this performance profile can be considered as a measure of the efficiency and the robustness among the algorithms. In Figs. [1,](#page-16-0) [2,](#page-16-1) [3](#page-17-0) and [4,](#page-18-0) the x-axis shows the number *τ* while the y-axis inhibits $P(r_{p,s} \leq \tau : 1 \leq s \leq n_s).$

In one hand, Fig. [1](#page-16-0) compares the mentioned algorithms in the sense of the total number of iterates. It can be easily seen that NMLS-N1 is the best algorithm in the sense of the most wins on more than 65 $\%$ of the test functions. One also can see that NMLS-N1 solves approximately all test functions. On the other hand, Fig. [2](#page-16-1) represents a comparison among the considered algorithms regarding the total number of function evaluations. The results of Fig. [2](#page-16-1) indicate that the performance of NMLS-N1 is better than other present algorithms. In details, the new algorithm is the best algorithm on more than 62 % of all cases. Further more one can observe that the results of NMLS-G1 and NMLS-N1 is approximately the same regarding the number of function evaluations.

Fig. 3 Iteration performance profiles for the LBFGS direction

Fig. 4 Function evaluations performance profiles for the LBFGS direction

3.2 Implementations with the LBFGS direction

In this subsection, we implement Algorithm 1 on a set of 107 unconstrained optimization test problems used in previous subsection when the employed direction is a limited memory quasi-Newton direction, namely LBFGS. We rename the considered algorithms by MLS-A2, NMLS-G2, NMLS-H2 and NMLS-N2, respectively. This direction is determined by the following quasi-Newton formula

$$
d_k=-H_kg_k,
$$

where H_k is a quasi-Newton approximation of the inverse matrix G_k^{-1} generated by the well-known LBFGS approach developed by Nocedal in [\[19\]](#page-28-14) and Liu and Nocedal in $[16]$. Let H_0 be a symmetric and positive definite starting matrix and $m = \min\{k, 5\}$. Then the limited memory version of H_k is defined by

$$
H_{k+1} = (V_k^T \cdots V_{k-m}^T) H_0(V_{k-m} \cdots V_k)
$$

+ $\rho_{k-m} (V_k^T \cdots V_{k-m+1}^T) s_{k-m} s_{k-m}^T (V_{k-m+1} \cdots V_k)$
+ $\rho_{k-m+1} (V_k^T \cdots V_{k-m+2}^T) s_{k-m+1} s_{k-m+1}^T (V_{k-m+2} \cdots V_k)$
:
+ $\rho_k s_k s_k^T$.

where $\rho_k = 1/y_k^T s_k$ and $V_k = I - \rho_k y_k s_k^T$. The LBFGS code is available from the web page [http://www.ece.northwestern.edu/](http://www.ece.northwestern.edu/~nocedal/software.html)∼nocedal/software.html.

We are rewritten this code in MATLAB and exploit it to generate the search direction *dk*.

Similar arguments raised in Section [3.1,](#page-11-0) in the algorithm NMLS-N, parameter*ηk* is initially set with $\eta_0 = 0.90$ and then be updated as follows

$$
\eta_{k+1} = \begin{cases} \frac{2}{3}\eta_k + 0.01 & \|g_k\| \le 10^{-2}, \\ \max\left\{\frac{99}{100}\eta_k, 0.5\right\} \text{ otherwise.} \end{cases}
$$

For the algorithm NMLS-H, we also select $\eta_0 = 0.85$ as proposed by Zhang and Hager in [\[24\]](#page-29-2). For all algorithms, stopping criterion is

$$
||g_k||_{\infty} \leq 10^{-6}.
$$

or the algorithm stops when the number of iterates exceeds the maximum number of iterates, 40000.

The results obtained are reported in Table [3.](#page-21-0) In details, these results clearly suggest that the proposed algorithm has promising behaviour encountering with mediumscale and large-scale unconstrained optimization problems and it is superior to other considered algorithms in the most cases. The percentage of most wins for considered algorithms thanks to Table [3](#page-21-0) is reported in Table [4.](#page-21-0) We also demonstrate the obtained results of Table [3](#page-21-0) by performance profiles which can be observed in Figs. [3](#page-17-0) and [4.](#page-18-0)

The Fig. [3](#page-17-0) compares the mentioned algorithms in the sense of the total number of iterates. It can be easily seen from the that NMLS-N2 is the best algorithm in the sense of most wins on more than 72 % of the test functions. Meanwhile, NMLS-N2 is competitive with NMLS-G2 and NMLS-H2, but in most cases it grows up faster than these algorithms. It means that in the cases that NMLS-N2 has not the best results, its implementation is close to the performance index of the best algorithm. One also can see that NMLS-N2 solves approximately all test functions. Also, Fig. [4](#page-18-0) represents a comparison among the considered algorithms regarding the total number of function evaluations. The results of Fig. [4](#page-18-0) indicate that the performance of NMLS-N2 is better than other present algorithms. In details, the new algorithm is the best algorithm on more than 68 % of all cases. Therefore, one can conclude that the behaviour of the proposed Armijo-type algorithm with the LBFGS direction is more efficient and robust than the other considered line search algorithms for solving unconstrained optimization problems.

3.3 Implementations including a truncated Newton direction

This subsection reports some computational experiments with a truncated Newton direction (TN) on a set of some unconstrained optimization test problems, where the algorithms are called MLS-A3, NMLS-G3, NMLS-H3 and NMLS-N3. The algorithms are tested on all of 107 test problems that was used for other directions, but for most of the test problems the results are the same. Then in Table [5,](#page-23-0) we just report the results that the different outputs obtained by the algorithms.

We here briefly summarize how search directions of the truncated Newton method are generated by the following procedure:

The truncated Newton algorithm requires the computation or estimation of matrixvector products $G_k p_j$ involving the Hessian matrix of the objective function. An

Prob. name	Dim	MLS-A2 n_i/n_f	NMLS-G2 n_i/n_f	NMLS-H2 n_i/n_f	NMLS-N2 n_i/n_f
Beale	2	21/26	21/26	21/26	21/26
Bro. b. scaled	$\mathfrak{2}$	18/22	18/22	18/22	18/22
Full Hess. FH1	$\sqrt{2}$	31/36	31/36	31/36	31/36
Full Hess. FH2	2	8/11	8/11	8/11	8/11
Powell b. scal.	2	61/140	170/387	172/448	294/611
Helical valley	3	75/123	35/47	44/55	35/47
Gaussian func.	3	5/8	5/8	5/8	5/8
Box three-dim.	3	35/52	35/52	35/52	35/52
Gulf r. and dev.	3	529/799	79/117	90/163	84/116
Staircase 1	$\overline{4}$	14/19	14/19	14/19	14/19
Staircase 2	4	14/19	14/19	14/19	14/19
Bro. a. Dennis	4	41/60	41/60	41/60	41/60
Wood	4	46/59	46/59	133/171	121/161
Biggs EXP6	6	186/250	55/61	65/80	55/61
GENHUMPS	10	23/73	23/73	23/73	23/73
Penalty I	10	11185/11293	11399/11612	11306/11422	11269/11489
Penalty II	10	Fail	664/1260	645/1058	442/887
Variably dim.	10	18/40	18/40	18/40	18/40
Watson	31	19823/19892	13994/15596	12120/13834	11082/14260
HARKERP2	50	16764/16773	Fail	Fail	22614/54947
ARGLINB	100	3/41	3/41	3/41	3/41
Diag. 3	100	69/76	69/76	69/76	72/77
E. Rosenbrock	100	170/277	96/159	63/94	78/123
FLETCBV3	100	Fail	38366/39764	22224/22676	7923/8199
SINQUAD	100	3971/10124	349/2276	564/3305	1111/5211
Trigonometric	100	83/100	68/117	69/80	60/76
Diag. 2	500	120/121	120/121	120/121	114/118
DIXON3DQ	1000	2648/2651	2648/2651	2648/2651	2498/2532
E. Beale	10000	20/23	20/23	20/23	20/23
Fletcher	1000	2553/3237	13350/13807	5963/6228	3892/4320
G. Rosenbrock	1000	Fail	9946/13003	7932/10183	7982/10146
Par. per. quad.	1000	179/193	179/193	179/193	188/208
Hager	1000	48/52	48/52	48/52	48/52
HIMMELH	1000	34/39	14/21	34/39	29/35
BDQRTIC	1000	111/126	111/126	111/126	123/151
$EG2$	1000	Fail	133/371	91/239	63/117
POWER	1000	12622/12643	12622/12643	10933/10955	11258/11374
P. trid. quad.	5000	610/623	610/623	610/623	588/607
Alm. per. quad.	5000	599/612	599/612	599/612	579/591

Table 3 Numerical results with the LBFGS direction

Prob. name	Dim	MLS-A2 n_i/n_f	NMLS-G2 n_i/n_f	NMLS-H ₂ n_i/n_f	NMLS-N2 n_i/n_f
E. Hiebert	5000	Fail	1886/5439	1912/5938	2287/6347
Fletcher	5000	10936/13305	19439/21858	Fail	39435/169519
G. trid. 2	5000	60/81	59/81	91/126	59/81
DENSCHNB	5000	98/99	69/75	149/279	83/103
DENSCHNF	5000	5568/70359	5747/52868	1736/15712	580/5420
NONSCOMP	5000	1205/1781	1116/1549	3324/4890	2577/4698
POWER	5000	30097/30120	90097/30120	30264/30288	31064/31337
FLETCHCR	5000	Fail	15820/81850	11604/76350	9386/91278
LIARWHD	5000	45/61	45/61	47/65	45/61
CUBE	5000	3648/6664	3660/5590	10451/15413	14131/25914
TRIDIA	5000	2004/2017	2004/2017	2004/2017	1969/1997
DIXMAANA	9000	8/12	8/12	8/12	8/12
DIXMAANB	9000	8/12	8/12	8/12	8/12
DIXMAANC	9000	9/14	9/14	9/14	9/14
DIXMAAND	9000	11/17	11/17	11/17	11/17
DIXMAANE	9000	437/441	437/441	437/441	413/419
DIXMAANF	9000	272/276	272/276	272/276	276/288
DIXMAANG	9000	243/248	243/248	243/248	237/250
DIXMAANH	9000	269/275	269/275	269/275	233/242
DIXMAANI	9000	2517/2521	2517/2521	2517/2521	2761/2814
DIXMAANJ	9000	376/380	376/380	376/380	355/363
DIXMAANK	9000	333/338	333/338	333/338	327/333
DIXMAANL	9000	326/332	326/332	326/332	277/285
ARWHEAD	10000	9/26	9/26	9/26	9/26
BDEXP	10000	26/27	26/27	26/27	26/27
Broyden trid.	10000	50/55	50/55	50/55	50/55
BIGGSB1	10000	18/29	18/29	18/29	18/29
COSINE	10000	27/29	27/29	27/29	27/29
Diagonal 4	10000	5/12	5/12	5/12	5/12
Diagonal 5	$10000\,$	5/6	5/6	5/6	5/6
Diagonal 7	10000	5/7	5/7	5/7	5/7
Diagonal 8	10000	5/8	5/8	5/8	5/8
DQDRTIC	10000	12/21	12/21	12/21	12/21
ENGVAL1	10000	45/87	45/87	31/45	31/45
EDENSCH	10000	25/30	25/30	25/30	25/30
E. BD1	10000	15/18	15/18	14/16	15/18
E. Cliff	$10000\,$	175/2485	49/202	136/1554	49/202
E. DENSCHNB	10000	6/9	6/9	6/9	6/9

Table 3 (continued)

Table 5 Numerical results of truncated Newton algorithm

Procedure 2: Truncated Newton direction (TN)

```
Given initial parameters z_0 \leftarrow 0, r_0 \leftarrow g_k, p_0 \leftarrow -g_kBegin
     \epsilon_k \leftarrow \min(0.5/(k+1), ||g_k||) ||g_k||;For j = 0, 1, 2, \ldotsIf p_j^T G_k p_j \leq 0If j \leftarrow 0d_k ← -g_k;
                Else
                     d_k \leftarrow z_j;
                End
           End
           \lambda_j \leftarrow r_j^T r_j / p_j^T G_k p_j;z_{j+1} \leftarrow z_j + \lambda_j p_j;r_{j+1} \leftarrow r_j + \lambda_j G_k p_j;\textbf{If } ||r_{j+1}|| \leq \epsilon_kd_k \leftarrow z_{j+1};End
           \beta_{j+1} \leftarrow r_{j+1}^T r_{j+1} / r_j^T r_j;p_{j+1} \leftarrow -r_{j+1} + \beta'_{j+1} p_j;End
End
```
estimation of this term can be obtained using the following finite difference scheme proposed in [\[6\]](#page-28-18):

$$
G_k d_j = \frac{\nabla f(x_k + \delta d_j) - \nabla f(x_k)}{\delta},\tag{43}
$$

where

$$
\delta = \frac{2\sqrt{\varepsilon_m}(1 + \|x_k\|)}{\|d_j\|} \tag{44}
$$

and ε_m is the machine epsilon. Similar arguments raised in Section [3.1,](#page-11-0) in the algorithm NMLS-N, the parameter η_k is initially set to $\eta_0 = 0.95$ and then will be updated by the formula [\(42\)](#page-12-0). For the algorithm NMLS-H, we also select $\eta_0 = 0.85$ as proposed by Zhang and Hager in [\[24\]](#page-29-2). For all algorithms, stopping criterion is

$$
||g_k||_{\infty} \le 10^{-6} ||g_0||_{\infty},
$$

a The number of gradient evaluations

Fig. 5 Iteration performance profiles for the truncated Newton direction

or the algorithm stops when the number of iterates exceeds the maximum number of iterates, 40000.

We now give an overview of the numerical experiments of Table [5.](#page-23-0) For most of the test problems, the initial step is accepted by the algorithms, which means that the truncated Newton direction satisfies the line search condition with full steplength, $\alpha_k = 1$. Therefore, the results obtained of the algorithms are identical and thus omitted in Table [5.](#page-23-0) In details, these results suggest that the proposed algorithm has promising behaviour encountering with medium-scale and large-scale unconstrained

Fig. 6 Gradient evaluations performance profiles for the truncated Newton direction

Fig. 7 Function evaluations performance profiles for the truncated Newton direction

optimization problems and it is superior to the other considered algorithms in the most cases. Table [6](#page-25-0) shows the percentage of the best results.

The results of this table suggest that NMLS-N3 has better performance in comparison with the other considered algorithms. We also demonstrate the obtained results of Table [6](#page-25-0) by performance profiles in Figs. [5,](#page-26-0) [6](#page-26-1) and [7,](#page-27-1) where respectively compare the number of iterations, gradient evaluations and function evaluations.

Summarizing the results of Figs. [5,](#page-26-0) [6](#page-26-1) and [7](#page-27-1) implies that NMLS-N3 is superior to the other presented algorithms respect to the number of iterations, function evaluations and gradient evaluations, However, in many cases the results of all algorithm is the same.

4 Concluding remarks

It is well-known the traditional nonmonotone strategy contains some drawbacks and some efforts in order to overcome theses drawbacks have been done but not enough. Hence, we present a new nonmonotone Armijo-type line search technique for solving unconstrained optimization problems. The introduced nonmonotone strategy takes advantage of a convex combination of the traditional max-term nonmonotone strategy and the current function value to propose a tighter nonmonotone strategy based on effective usage of the current function value. Furthermore, the new line search approach exploits an adaptive technique to make the new nonmonotone strategy stronger far from the optimum and to prepare it weaker close to the optimum. Under some classical assumptions, the approach is convergent to first-order stationary points, irrespective of the chosen starting point. The *R*-linear convergence rate is also established for strongly convex functions. Preliminary numerical results for the modified Barzilai-Borwein direction, the LBFGS direction and the truncated Newton direction on the large set of standard test functions indicate that the proposed line search technique has efficient performances and promising behavior for solving unconstrained optimization problems.

We believe that there is considerable scope for modifying and adapting the basic ideas presented in this paper. For future works, first of all, other inexact line searches like Wolfe-type or Goldestain-type various can be employed. The next application can be a combination of this strategy with trust-region framework and its variants. Finally, more comprehensive research on finding an adaptive process for the parameter *η* can be done. It will be a matter of subsequent studies.

Acknowledgments The authors are grateful for the valuable comments and suggestions of two anonymous referees. The authors also would like to thank the research council of University of Vienna and Razi University for supporting this research.

References

- 1. Ahookhosh, M., Amini, K.: An efficient nonmonotone trust-region method for unconstrained optimization. Numer. Algoritm. **59**(4), 523–540 (2012)
- 2. Ahookhosh, M., Amini, K.: A nonmonotone trust region method with adaptive radius for unconstrained optimization. Comput. Math. Appl. **60**(3), 411–422 (2010)
- 3. Ahookhosh, M., Amini, K., Bahrami, S.: A class of nonmonotone Armijo-type line search method for unconstrained optimization. Optimization **61**(4), 387–404 (2012)
- 4. Ahookhosh, M., Amini, K., Peyghami, M.R.: A nonmonotone trust-region line search method for large-scale unconstrained optimization. Appl. Math. Model. **36**(1), 478–487 (2012)
- 5. Andrei, N.: An unconstrained optimization test functions collection. Adv. Model. Optim. **10**(1), 147– 161 (2008)
- 6. Andrei, N.: Accelerated conjugate gradient algorithm with finite difference Hessian/vector product approximation for unconstrained optimization. J. Comput. Appl. Math. **230**, 570–582 (2009)
- 7. Armijo, L.: Minimization of functions having Lipschitz continuous first partial derivatives. Pac. J. Math. **16**, 1–3 (1966)
- 8. Babaie-Kafaki, S., Fatemi, M.: A modified two-point stepsize gradient algorithm for unconstrained minimization. Optim. Methods Softw. **1**, 1–11 (2012)
- 9. Chamberlain, R.M., Powell, M.J.D., Lemarechal, C., Pedersen, H.C.: The watchdog technique for forcing convergence in algorithm for constrained optimization. Math. Program. Stud. **16**, 1–17 (1982)
- 10. Dai, Y.H.: On the nonmonotone line search. J. Optim. Theory Appl. **112**(2), 315–330 (2002)
- 11. Dolan, E., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. **91**, 201–213 (2002)
- 12. Grippo, L., Lampariello, F., Lucidi, S.: A nonmonotone line search technique for Newton's method. SIAM J. Numer. Anal. **23**, 707–716 (1986)
- 13. Grippo, L., Lampariello, F., Lucidi, S.: A truncated Newton method with nonmonotone line search for unconstrained optimization. J. Optim. Theory Appl. **60**(3), 401–419 (1989)
- 14. Grippo, L., Lampariello, F., Lucidi, S.: A class of nonmonotone stabilization methods in unconstrained optimization. Numer. Math. **59**, 779–805 (1991)
- 15. Hu, S.L., Huang, Z.H., Lu, N.: A non-monotone line search algorithm for unconstrained optimization. J. Sci. Comput. **42**(1), 38–53 (2010)
- 16. Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale optimization. Math. Program. **45**, 503–528 (1989)
- 17. Moré, J.J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained optimization software. ACM Transform. Math. Softw. **7**(1), 17–41 (1981)
- 18. Nocedal, J., Wright, J.S.: Numerical Optimization, 2nd edn. Springer, New York (2006)
- 19. Nocedal, J.: Updating quasi-Newton matrices with limited storage. Math. Comput. **35**, 773–782 (1980)
- 20. Panier, E.R., Tits, A.L.: Avoiding the Maratos effect by means of a nonmonotone linesearch. SIAM J. Numer. Anal. **28**, 1183–1195 (1991)
- 21. Shi, Z.J., Shen, J.: Convergence of nonmonotone line search method. J. Comput. Appl. Math. **193**, 397–412 (2006)
- 22. Shi, Z.J., Wang, S.: Modified nonmonotone Armijo line search for descent method. Numer. Algoritm. **57**(1), 1–25 (2011)
- 23. Toint, Ph.L.: An assessment of nonmonotone linesearch technique for unconstrained optimization. SIAM J. Sci. Comput. **17**, 725–739 (1996)
- 24. Zhang, H.C., Hager, W.W.: A nonmonotone line search technique and its application to unconstrained optimization. SIAM J. Optim. **14**(4), 1043–1056 (2004)