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Abstract This paper concerns with a new nonmonotone strategy and its applica-
tion to the line search approach for unconstrained optimization. It has been believed
that nonmonotone techniques can improve the possibility of finding the global opti-
mum and increase the convergence rate of the algorithms. We first introduce a new
nonmonotone strategy which includes a convex combination of the maximum func-
tion value of some preceding successful iterates and the current function value. We
then incorporate the proposed nonmonotone strategy into an inexact Armijo-type
line search approach to construct a more relaxed line search procedure. The global
convergence to first-order stationary points is subsequently proved and the R-linear
convergence rate are established under suitable assumptions. Preliminary numerical
results finally show the efficiency and the robustness of the proposed approach for
solving unconstrained nonlinear optimization problems.
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1 Introduction

Consider the following unconstrained nonlinear optimization problem

Minimize f (x), subject to x ∈ Rn, (1)

where f : Rn → R is a twice continuously differentiable function. There are
many iterative methods to solve the problem (1). Most of these methods could be
divided into two general classes, namely line search and trust-region frameworks
(see [18]). Trust-region methods try to find a neighborhood around the current step
xk in which a quadratic model should be agreed with the objective function. On the
other hand, line search methods proceed as follows: get a point xk , find a step direc-
tion dk and search a suitable steplength αk along this direction. Then the line search
procedure generates a new point as xk+1 = xk + αkdk . In steplength computation
process, the ideal choice would be the global minimizer of the following univariate
function

φ(α) = f (xk + αdk). (2)

The traditional monotone line search approaches depart from xk and then find a
steplength αk along the direction dk such that descent condition φ(αk) < φ(0) holds.
The approach that is used to find a steplength αk have been called the line search.
The exact line search framework, for finding a steplength αk, can be summarized in
solving the following one dimensional optimization problem

ϕ(αk) = Minimize φ(α), subject to α > 0. (3)

Firstly, when the iterate xk is far from the solution of the problem, it is not logical
to solve this equation exactly. Secondly, by solving (3) exactly, we get the maximum
benefit from the direction dk , but an exact minimization leads us to solve a nonlinear
equations which is expensive and unnecessary, especially for large-scale problems.
Finally, in practice, we need that a steplength αk guarantees a sufficient reduction
in function values that induces the global convergence properties of the approach.
Therefore, some inexact conditions for determining an acceptable steplength αk have
been proposed, namely the Armijo condition, the Wolfe condition and the Goldstein
condition. Among all of these rules, the Armijo rule is the most popular condition
that can be stated as follows

φ(αk) ≤ φ(0)+ δαkφ
′(0), (4)

where δ ∈ (0, 1). For the sake of simplicity, we abbreviate f (xk) by fk , ∇f (xk) by
gk , ∇2f (xk) by Gk , and any approximation of Hessian matrix by Bk . Hence, we can
rewrite (4) by

f (xk + αkdk) ≤ fk + δαkg
T
k dk. (5)

From (5) and the descent condition of the search direction dk, gTk dk < 0, we
can deduce that f (xk+1) < f (xk), so the traditional Armijo rule guarantees the
monotonicity of the sequence {fk}.
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In 1982, Chamberlain et al. in [9] proposed a watchdog technique for con-
strained optimization, in which some standard line search conditions were relaxed
to overcome the Marotos effect. Motivated by this idea, Grippo, Lampariello and
Lucidi in [12] presented a nonmonotone Armijo-type line search technique for the
Newton method. They also proposed a truncated Newton method with nonmono-
tone line search for unconstrained optimization, see [13]. In their nonmonotone
Armijo-type line search, a steplength αk is accepted if it satisfies the following
condition

f (xk + αkdk) ≤ fl(k) + δαkg
T
k dk, (6)

where δ ∈ (0, 1) and

fl(k) = max
0≤j≤m(k)

{fk−j }, k = 0, 1, 2, · · · , (7)

where m(0) = 0 and 0 ≤ m(k) ≤ min{m(k − 1)+ 1, N} with N ≥ 0. Their conclu-
sions are overall favorable, especially when are applied to very nonlinear problems
in the presence of a narrow curved valley. Nonmonotone techniques have been dis-
tinguished by the fact that they do not enforce strict monotonicity to the objective
function values at successive iterates. It has been proved that nonmonotone tech-
niques can improve both the possibility of finding the global optimum and the conver-
gence rate of the sequence generated by these procedures [1, 2, 4, 12, 14, 20, 21,
24]. Inspired by these interesting properties many authors have focused in employing
nonmonotone techniques in wide variety of optimization areas.

Although the traditional nonmonotone line search technique (6) has many advan-
tages, this rule also consists of some drawbacks as well (see for example [10, 24]).
Some of these can be listed as follows:

• Although the method is generating R-linearly convergent iterates for strongly
convex function, the iterates may not satisfy the condition (6) for sufficiently
large k, with any fixed bound N on the memory.

• A good function value generated in any iterate is essentially discarded due to the
max term in (7).

• In some cases, the numerical results is very dependent on the choice of N .

There are some proposals to overcome these disadvantages, see [3, 15, 22–24],
which have introduced a new formula instead of fl(k) in (6). Theoretical and com-
putational results have indicated that these reformation can improve the efficiency
of the Armijo-type line search techniques. In the next section, we introduce a new
nonmonotone strategy inheriting the outstanding results properties of traditional non-
monotone strategy and improve its computational results due to an appropriate use of
current information of function value.

The rest of paper is organized as follows: In Section 2, we introduce a new non-
monotone strategy and then investigate the global convergence along with R-linear
convergence rate of the proposed algorithm under some classical assumptions. Pre-
liminarily numerical results in Section 3 indicate that the proposed algorithm is
promising. Finally, some conclusions are delivered in Section 4.
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2 New algorithms: motivation and theory

We first introduce a new nonmonotone strategy, draw it in algorithmic framework,
investigate some convergence properties of the proposed nonmonotone strategy for
the Armijo-type line search procedure and then prove the global convergence to
first-order stationary points under suitable conditions. Since the new nonmono-
tone strategy can be regarded as a variant of the nonmonotone strategy of Grippo
et al. [12], we expect similar properties and significant similarities in their proof for
line search method. We also establish R-linear convergence rate for the proposed
algorithm in the sequel.

It is known that the best convergence results can be obtained by a stronger
nonmonotone strategy when iterates are far from the optimum, and by a weaker
nonmonotone technique whenever iterates are close to the optimum, (see [24]). Fur-
thermore, we believe that the traditional nonmonotone strategy (4) just uses the
current function value fk in the calculation of the max term so that the promi-
nent information fk is almost ignored. Hence it seems that, near to the optimum,
the traditional nonmonotone technique has not shown a suitable behavior, com-
pared with the monotone version. On the other hand, the maximum feature is one
of the most important information factors among the recent successful iterates, and
we do not attend to lost this valuable information. In order to overcome the above
mentioned disadvantages and introduce a more relaxed nonmonotone strategy, we
define

Rk = ηkfl(k) + (1 − ηk)fk, (8)

where 0 ≤ ηmin ≤ ηmax ≤ 1 and ηk ∈ [ηmin, ηmax]. It is obvious that one can obtain
a stronger nonmonotone strategy whenever ηk is close to 1 and can obtain a weaker
nonmonotone strategy whenever ηk is close to 0. Therefore, by choosing an adaptive
ηk , the approach not only can increase the effect of fl(k) far from the optimum but
also can reduce it close to the optimum. Then the new Armijo-type line search can
be defined by

f (xk + αkdk) ≤ Rk + δαkg
T
k dk, (9)

where dk is a descent direction.
Now, we can outline our new nonmonotone Armijo-type line search algorithm as

follows:
Note that if in Algorithm 1 one sets N = 0 or ηk = 0 for arbitrary k ∈ N,

Algorithm 1 reduces to the traditional Armijo line search algorithm.
Throughout this paper, we consider the following assumptions in order to analyze

the convergence results of the proposed algorithm:

(H1) The level set L(x0) = {x ∈ Rn|f (x) ≤ f (x0), x0 ∈ Rn} is bounded.
(H2) The gradient g(x) of f (x) is Lipschitz continuous over an open convex S that

contains L(x0); i.e., there exists a positive constant L such that

‖g(x) − g(y)‖ ≤ L‖x − y‖,
for all x, y ∈ S.
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Algorithm 1: New nonmonotone Armijo-type line search algorithm (NMLS-N)

Input: x0 ∈Rn, 0<ρ < 1, 0<δ< 1
2 , 0<γ1 <s <γ2, 0≤ ηmin ≤ η0 ≤ ηmax ≤ 1, ε > 0, N ≥ 0.

Begin
k ← 0;
Compute R0 = f (x0);
While (‖gk‖ ≥ ε ) {Start of outer loop}

{Determination of search ditrction}
Generate a descent direction dk;
α = s;
While (f (xk + αdk) > Rk + δαT dk) {Start of backtraking loop}

α ← ρα;
End While {End of inner loop}
αk ← α;
xk+1 ← xk + αkdk;
Choose ηk+1 ∈ (ηmin, ηmax);
Determine fl(k+1) by (7);
Compute Rk+1 by (8);
k ← k + 1;

End While {End of outer loop}
End

Furthermore, in order to guarantee the global convergence of the iterative scheme
xk+1 = xk + αkdk , we need that a direction dk satisfies the following sufficient
descent conditions

gTk dk ≤ −c1‖gk‖2 (10)

and

‖dk‖ ≤ c2‖gk‖, (11)

where c1 and c2 are two positive real-valued constants.
Since fk ≤ fl(k), we have

fk ≤ ηkfl(k) + (1 − ηk)fk = Rk. (12)

Therefore, the right hand side of the proposed line search is is not smaller than
the standard Armijo rule. Hence it is possibly permitted to the new algorithm to gain
a larger steplength. This fact may reduce the total number of iterates and the total
number of function evaluations. In more details,we assume that α̃ and α represent the
steplengths satisfying the standard Armijo rule and the new Armijo-type line search
procedure respectively. Then from (12), we can get

f (xk + α̃kdk)− Rk ≤ f (xk + α̃kdk)− fk ≤ δα̃kg
T
k dk.

This implies that α̃ satisfies the condition (9), so α at least is as large as α̃ suggesting
α̃ ≤ α. Using (12), it can be easily seen that

Rk − f (xk + αdk)+ δαgTk dk

α
≥ fk − f (xk + αdk)+ δαgTk dk

α
.
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Now, by using the Taylor expansion and recalling that ‖dk‖ is bounded we obtain

lim
α→0+

fk−f(xk+αdk)+δαgTk dk

α
= lim

α→0+
fk−

(
fk+αgTk dk+o(α‖dk‖)

)+δαgTk dk

α

= −(1 − δ)gTk dk > 0,

where the last inequality follows from 0 < δ < 1
2 . Therefore, there exists a steplength

άk > 0 such that

f (xk + αdk) ≤ Rk + δαgTk dk, for all α ∈ [0, άk]. (13)

Thus, by setting ´́αk = min{s, άk}, we have

f (xk + αdk) ≤ Rk + δαgTk dk, for all α ∈ [0, ´́αk]. (14)

Therefore, the relation (9) and so the backtracking loop of the algorithm are well-
defined.

In order to establish the global convergence of the proposed algorithm, the two
following results are necessary.

Lemma 1 Suppose that the condition (10) holds and the sequence {xk} is generated
by Algorithm 1. Then the sequence {fl(k)} is non-increasing.

Proof Using the definition Rk and fl(k), we have

Rk = ηkfl(k) + (1 − ηk)fk ≤ ηkfl(k) + (1 − ηk)fl(k) = fl(k). (15)

This leads to

f (xk + αkdk) ≤ Rk + δαk∇f (xk)
T dk ≤ fl(k) + δαkg

T
k dk. (16)

The preceding inequality and the descent condition gTk dk < 0 indicate that

fk+1 ≤ fl(k). (17)

On the other hand, from (7), we get

fl(k+1) = max
0≤j≤m(k+1)

{
fk+1−j

}

≤ max
0≤j≤m(k)+1

{
fk+1−j

} = max
{
fl(k), fk+1

}
.

This fact together with (17) complete the proof.

Corollary 1 Suppose that (H1) and (10) hold and the sequence {xk} be generated by
Algorithm 1, then the sequence {fl(k)} is convergent.

Proof Lemma 2 and fl(0) = f0 suggest that the sequence {xl(k)} remains in level set
L(x0). Since f (xk) ≤ f (xl(k)), then the sequence {xk} remains in L(x0). Now, (H1)
together with Lemma 2 imply that the sequence {fl(k)} is convergent.

The subsequent outcome suggests that the sequence {fk} is convergent to an
accumulation point of its subsequence {fl(k)}.
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Lemma 2 Suppose that (H1) and (H2) hold, the direction dk satisfies (10) and (11)
and the sequence {xk} be generated by Algorithm 1. Then we have

lim
k→∞fl(k) = lim

k→∞f (xk). (18)

Proof From (7), (9) and (15), for k > N , we obtain

f
(
xl(k)

) = f
(
xl(k)−1 + αl(k)−1 dl(k)−1

)

≤ Rl(k)−1 + δαl(k)−1 g
T
l(k)−1dl(k)−1

≤ f
(
xl(l(k)−1)

) + δαl(k)−1 g
T
l(k)−1dl(k)−1.

The preceding inequality together with Corollary 1, αk > 0 and gTk dk < 0 imply that

lim
k→∞αl(k)−1g

T
l(k)−1dl(k)−1 = 0. (19)

Using (10) and (11), we have αkg
T
k dk ≤ −c1αk‖gk‖2 ≤ − (

c1/c2
2
)
αk‖dk‖2, for all

k. This fact along with αk < γ2 and (19) suggest that

lim
k→∞αl(k)−1

∥∥dl(k)−1
∥∥ = 0. (20)

We now prove that limk→∞ αk‖dk‖ = 0. Let l̂k = l(k+N+2). First, by induction,
we show that, for any j ≥ 1, we have

lim
k→∞ α

l̂(k)−j

∥∥∥dl̂(k)−j

∥∥∥ = 0 (21)

and
lim
k→∞f

(
x
l̂(k)−j

)
= lim

k→∞f
(
xl(k)

)
. (22)

If j = 1, since {l̂k} ⊆ {l(k)}, the relation (21) directly follows from (20). The condi-
tion (21) indicates that ‖x

l̂(k)
− x

l̂(k)−1‖ → 0. This fact along with the fact that f (x)
is uniformly continuous on L0 imply that (22) holds, for j = 1. Now, we assume that
(21) and (22) hold, for a given j . Then, using (9) and (15), we obtain

f
(
x
l̂(k)−j

) ≤ R
l̂(k)−j−1 + δα

l̂(k)−j−1g
T

l̂(k)−j−1
d
l̂(k)−j−1

≤ f
(
x
l(l̂(k)−j−1)

)
+ δα

l̂(k)−j−1g
T

l̂(k)−j−1
d
l̂(k)−j−1.

Following the same arguments employed for deriving (20), we deduce

lim
k→∞α

l̂(k)−(j+1)

∥∥∥dl̂(k)−(j+1)

∥∥∥ = 0.

This means that

lim
k→∞

∥∥∥xl̂(k)−j
− x

l̂(k)−(j+1)

∥∥∥ = 0.

This fact together with uniformly continuous property of f (x) on L(x0) and (22)
indicate that

lim
k→∞f

(
x
l̂(k)−(j+1)

)
= lim

k→∞f
(
x
l̂(k)−j

)
= lim

k→∞f
(
xl(k)

)
. (23)

Thus, we conclude that (21) and (22) hold for any j ≥ 1.
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On the other hand, for any k ∈ N, we have

xk+1 = x
l̂(k)

−
l̂(k)−k−1∑

j=1

α
l̂(k)−j

d
l̂(k)−j

. (24)

From definition l(k), we have l̂(k)− k − 1 = l(k +N + 2)− k − 1 ≤ N + 1. Thus,
(21) and (24) suggest

lim
k→∞

∥∥∥xk+1 − x
l̂(k)

∥∥∥ = 0. (25)

Since {f (xl(k))} admits a limit, it follows from (25) and the uniform continuity of
f (x) on L(x0) that

lim
k→∞f (xk) = lim

k→∞f
(
x
l̂(k)

)
= lim

k→∞f
(
xl(k)

)
.

Therefore, (18) holds and the proof is completed.

Corollary 2 Suppose that (H1) and (H2) hold, dk satisfies (10) and (11) and the
sequence {xk} be generated by Algorithm 1. Then we have

lim
k→∞Rk = lim

k→∞f (xk). (26)

Proof From (12) and (15), we obtain

fk ≤ Rk ≤ fl(k).

As a consequence, Lemma 2 completes the proof.

At this stage, the next result implies that the steplength αk has a lower bound which
is necessary to establish the global convergence of the proposed algorithm.

Lemma 3 Suppose that (H2) holds and the sequence {xk} be generated by Algorithm
1. Then we have

αk ≥ min

{

γ1ρ,

(
2(1 − δ)ρ

L

) ∣∣gTk dk
∣∣

∥∥dk
∥∥2

}

. (27)

Proof If αk/ρ ≥ γ1, then αk ≥ γ1ρ, which gives (27). So we can let αk/ρ < γ1, by
the definition αk and (12), we obtain

f (xk + αk/ρ dk) > Rk + δ
αk

ρ
gTk dk ≥ f (xk)+ δ

αk

ρ
gTk dk. (28)

Using (H2) and Lipschitz continuous property of g(x), we can write

f (xk + αdk)− f (xk) = αgTk dk +
∫ α

0

[
∇f (xk + tdk)−∇f (xk)

]T
dk dt

≤ αgTk dk +
∫ α

0
L‖dk‖2 t dt

= αgTk dk +
1

2
Lα2‖dk‖2.
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Setting α = αk/ρ in the prior inequality and combining it with (28) indicate that (27)
holds. This completes the proof.

Summarizing our theoretical results ensure the global convergence of the algo-
rithm to first-order stationary points that are not local maximum points. More
precisely, we wish to prove that, under stated assumptions of this section, all limit
points x∗ of the generated sequence {xk} by the algorithm are stisfying

g(x∗) = 0, (29)

irrespective of the position of the starting point x0.

Theorem 1 Suppose that (H1) and (H2) hold, the direction dk satisfies (10) and (11)
and the sequence {xk} is generated by Algorithm 1. Then we have

lim
k→∞‖gk‖ = 0. (30)

Furthermore, there isn’t any limit point of the sequence {xk} that be a local maximum
of f (x).

Proof We first show

fk+1 ≤ Rk − β ‖gk‖2, (31)

where β is defined by

β = min

{

δc1γ1ρ,
2δ(1 − δ)ρc2

1

Lc2
2

}

. (32)

If αk ≥ ργ1, it follows from (9) and (10) that

fk+1 ≤ Rk + δαkg
T
k dk ≤ Rk − δαkc1‖gk‖2 ≤ Rk − δc1γ1ρ‖gk‖2, (33)

which implies that (31) holds.
Now, let αk < ργ1. Using (9) and (27), one can obtain

fk+1 ≤ Rk −
(

2δ(1 − δ)ρ

L

)(
gTk dk

‖dk‖

)2

.

Using (10) and (11), we get

fk+1 ≤ Rk −
(

2δ(1 − δ)ρc2
1

Lc2
2

)

‖gk‖2. (34)

This indicates that (31) holds.
By setting β as (32), it follows that β > 0. Also by (31), we can obtain

Rk − fk+1 ≥ β ‖gk‖2 ≥ 0.

This fact along with Corollary 2 give (30). The proof of this fact that no limit point
of {xk} is local maximum of f (x) is similar to proof given by Grippo et al. in [12] so
the details are omitted. This completes the proof.
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The primary aim of what follows is to study the convergence rate of the sequence
generated by Algorithm 1. Similar to [10], we state the R-linear convergence of the
sequence generated by Algorithm 1.

In 2002, Dai in [10] proved the R-linearly convergence rate of the nonmono-
tone max-based line search scheme (6), when the objective function f (x) is strongly
convex [10]. Zhang and Hager in [24] extend this property for their proposed non-
monotone line search algorithm for uniformly convex functions. Motivated by these
ideas, similar to Dai in [10], we establish the R-linearly convergence of the sequence
generated by Algorithm 1 for strongly convex functions.

Recall that the objective function f is a strongly convex function if there exists a
scalar ω such that

f (x) ≥ f (y)+∇f (y)T (x − y)+ 1

2ω
‖x − y‖2, (35)

for all x, y ∈ Rn. In order to establish the R-linearly convergence rate, we need the
following lemmas.

Lemma 4 Suppose that (H1) and (H2) hold, the direction dk satisfies (10) and (11)
and the sequence {xk} be generated by Algorithm 1. Then, for any l ≥ 1,

max
1≤i≤N

f (xNl+i ) ≤ max
1≤i≤N

f (xN(l−1)+i)+ δ max
0≤i≤N−1

[
αNl+i g

T
Nl+idNl+i

]
. (36)

Proof Using (15), we have

f (xNl+1) ≤ RNl + δαNl g
T
NldNl

≤ max
1≤i≤m(Nl)

f (xNl−i)+ δαNl g
T
NldNl.

The rest of the proof is similar to Lemma 2.1 in [10].

Lemma 5 Suppose that (H1) and (H2) hold, the direction dk satisfies (10) and (11)
and the sequence {xk} be generated by Algorithm 1. Then there exists a constant
c3 > 1 such that

‖gk+1‖ ≤ c3‖gk‖. (37)

Proof To find a proof, see the Theorem 2.1 in [10].

Lemma 6 Suppose that (H1) and (H2) hold, f (x) be a strongly convex function, the
direction dk satisfies (10) and (11) and the sequence {xk} be generated by Algorithm
1. Then there exist constants c4 > 0 and c5 ∈ (0, 1) such that

f (xk)− f (x∗) ≤ c4c
k
5

[
f (x1)− f (x∗)

]
, (38)

for all k ∈ N.

Proof Using Lemma 4 and Lemma 5 all conditions of Theorem 3.1 of [10] hold.
Therefore, the conclusion can be proved in a similar way. Thus, the details are
omitted.
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Theorem 2 Suppose that (H1), (H2) and (35) hold, the direction dk satisfies (10)
and (11) and the sequence {xk} be generated by Algorithm 1. Then the sequence {xk}
converges to the stationary point x∗ at least R-linearly.

Proof Recall that the sequence {xk} converges to x∗ R-linearly if there exists a
sequence of nonnegative scalars {νk} such that, for all k ∈ N,

‖xk − x∗‖ ≤ νk, (39)

where the sequence {νk} converges Q-linearly to zero. We first introduce a sequence
{νk}, then prove its Q-linearly convergence. Lemma 5 together with substituting y =
x∗ and x = xk in (35) imply that

‖xk − x∗‖2 ≤ 2ω(f (xk)− f (x∗)) ≤
[
2ωc4(f (x1)− f (x∗))

]
c5

k = rc5
k, (40)

where r = [2ωc4(f1 − f∗)]. By setting νk = rc5
k , we get that ν∗ = 0. We also have

lim
k→∞

νk+1 − ν∗
νk − ν∗

= c5 < 1. (41)

Therefore, the sequence {xk} converges to x∗ at least R-linearly.

It is known that while the the Newton method has the quadratic convergence
rate close to the optimum, the quasi-Newton approaches can take the superlinear
convergence rate on some suitable conditions, see [18]. It is not hard to show that
the present algorithm can reduced to the Newton methods or the quasi-Newton
approaches similar to what established in Nocedal and Wright in [18] under some
classical assumptions.

3 Preliminary computational experiments

This section reports extensive numerical results obtained by testing the proposed
algorithm, NMLS-N, compared with the standard Armijo line search in [7], MLS-A,
the nonmonotone line search of Grippo et al. in [12], NMLS-G, and the non-
monotone line search of Hager and Zhang in [24], NMLS-H. We provide three
different classes of directions in our comparisons, namely the Barzilai-Borwein,
LBFGS and truncated Newton (TN) directions. First part of our comparisons
includes using the recently proposed modified two-point stepsize gradient direc-
tion of Babaie-Kafaki and Fatemi, [8] for all algorithms. In the second part,
the search direction dk is determined by the well-known limited quasi-Newton
approach L-BFGS [16, 19], and in the third part, the search direction dk is com-
puted by the truncated Newton algorithm proposed in Chapter 6 of [18] with some
reformations.

The computational results exploit standard unconstrained test functions from
Andrei in [5] and Moré et al. in [17]. The starting points are the standard ones pro-
vided by the mentioned papers. We perform our experiments in double precision
arithmetic format ine MATLAB 7.4 programming environment. All codes are written
in the same subroutine where computes the steplength αk by the variant Armijo-type
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conditions with the identical parameters s = 1, δ = 10−4 and ρ = 0.5 for the mod-
ified Barzilai-Borwein and truncated Newton directions and s = 1, δ = 10−3 and
ρ = 0.5 for the LBFGS direction, which are selected respectively the same as what
proposed in [8] and [12]. Like NMLS-G, NMLS-N takes advantage of N = 10 to
calculate the nonmonotone term fl(k). From Algorithm 1, it is clear that the number
of iterates and gradient evaluations are the same, so we considered the number of
iterates and function evaluations to compare the algorithms.

3.1 Implementations including a modified Barzilai-Borwein direction

This subsection reports the results of the considered directions where the search
directions are generated by the modified two-point stepsize gradient algorithm in [8]
on a set of 107 unconstrained optimization test problems. We rename the consid-
ered algorithms by MLS-A1, NMLS-G1, NMLS-H1 and NMLS-N1, respectively.
We here briefly summarize how the search direction, dk = −λkgk, is generated by
the following procedure:

Procedure 1: Calculation of direction dk = −λkgk

Begin
If k = 1

λ1 ← ‖gk‖−1∞ ;
Else

Select r > 0, C > 0,
ϑ ← 10−5; ε ← 10−30; sk−1 ← xk − xk−1; yk−1 ← gk − gk−1;

hk−1 ← C + max

{
− sTk−1yk−1

‖sk−1‖2 , 0

}
‖gk‖−r ; ȳk−1 ← yk−1 + hk−1‖gk‖r sk−1;

λ̄k ← sTk−1sk−1

sTk−1ȳk−1
; λ̃k ← sTk−1sk−1

6(fk−1−fk)+4gTk sk−1+2gTk−1sk−1
;

If sTk−1yk−1 < ϑ or fk −
(
fk−1 + gTk−1sk−1

)
< ϑ or λ̃k < 0 then

λk ← max
{
ε,min

{
1
ε
, λ̃k

}}

Else
λk ← max

{
ε,min

{
1
ε
, λ̄k

}}

End
End

End

Our preliminary numerical experiments have showed that the best convergence
results are obtained by ηk close to 1, whenever the iterates are far from the optimum,
and by ηk close to 0, whenever the iterates are close to the optimum. It is well-
known that, in optimization areas, the best criterion to measure the closeness of the
current point xk to the optimum x∗ is to assess the first-order optimality condition, so
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‖gk‖∞ ≤ 10−3 can be used as a criteria for the closeness to the optimum. Therefore,
NMLS-N exploits the the starting parameter η0 = 0.95 and update it by

ηk+1 =

⎧
⎪⎨

⎪⎩

2
3ηk + 0.01 ‖gk‖∞ ≤ 10−3,

max
{

99
100ηk, 0.5

}
otherwise.

(42)

We easily can see that the algorithm for problems with the large number iterates, more
than 65 iterates, starts with η0 = 0.95 and slightly decrease it in about 65 iterates to
receive ηk ≈ 0.5 and then preserves ηk = 0.5 unless the condition ‖gk‖∞ ≤ 10−3

holds. After getting this condition, ηk will be decreased quickly by the formula
ηk = 2

3ηk−1 +0.01 to finally fixed about ηk = 0.03. On the other hand, for problems
with the total iterates less than 65, the algorithm begins with η0 = 0.95 and slightly
decreases it to eventually the condition ‖gk‖∞ ≤ 10−3 holds and then decline ηk
quickly due to ηk = 2

3ηk−1 + 0.01. Therefore, the algorithm, in both cases, starts
with a stronger nonmonotone strategy whenever the iterates are far from the optimum
and employs a slightly weaker technique in middle of performance and finally take
advantages of a weaker nonmonotone technique close to the optimum, when the con-
dition ‖gk‖∞ ≤ 10−3 holds. For the algorithm NMLS-H, we also select η0 = 0.85
as proposed by Zhang and Hager in [24]. Furthermore, in our implementations the
algorithms stop if

‖gk‖∞ ≤ 10−6(1 + |fk|)
except for problem E. Hiebert, which will stop at k = 0 with this criterion. For this
problem, the stopping criterion is

‖gk‖∞ ≤ 10−6‖g0‖∞
or the number of iterates exceeds 40000. An “Fail”in the tables means that the cor-
responding algorithm fails to find the problems optimum because the number of
iterations exceeds 40000.

The obtained results are shown in Table 1, where we report the number of
iterations (ni ) and the number of function evaluations (nf ).

The results of Table 1 suggest that the proposed algorithm has promising
behaviour encountering with medium-scale and large-scale unconstrained optimiza-
tion problems and it is superior to other considered algorithms in the most cases. For
this collection of methods, the obtained results of Table 2 indicate the percentage of
the test problems in which a method is the fastest.

In this point, to have a more reliable comparison and demonstrate the overall
behaviour of the present algorithms and get more insight about the performance of
considered codes, the performance of all codes, based on both ni and nf , have been
respectively assessed in Figs. 1 and 2 by applying the performance profile proposed
from Dolan and Moré in [11]. In the procedure of Dolan and Moré, the profile of
each code is measured considering the ratio of its computational outcome versus the
best numerical outcome of all codes. This profile offers a tool for comparing the per-
formance of iterative processes in statistical structure. In particular, let S is set of all
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Table 1 Numerical results with a modified Barzilai-Borwein direction

Prob. name Dim MLS-A1 NMLS-G1 NMLS-H1 NMLS-N1

ni /nf ni /nf ni /nf ni /nf

Beale 2 66/137 48/76 46/75 47/78

Bro. b. scaled 2 Fail Fail Fail Fail

CUBE 2 237/669 138/566 73/168 101/354

Full Hess. FH1 2 94/227 97/174 91/162 87/140

Full Hess. FH2 2 14/19 15/18 19/22 15/18

Powell b. scal. 2 Fail 1587/21114 4169/63231 1227/10770

Helical valley 3 346/747 150/249 114/199 147/246

Gaussian func. 3 5/15 5/15 5/15 5/15

Box three-dim. 3 878/2224 35/50 176/310 35/50

Gulf r. and dev. 3 12237/40973 1630/5676 1968 6445 5602/18258

Bro. a. Dennis 4 74/133 118/176 74/107 97/143

Wood 4 1679/41885 319/592 714/2442 298/604

Biggs EXP6 6 4677/12697 993/1999 1106/2233 2629/6207

Staircase 1 8 166/382 147/513 169/749 73/110

Staircase 2 8 285/667 105/257 124/369 73/110

HARKERP2 10 3027/7465 1097/1998 1097/1998 1403/2922

Penalty I 15 243/747 40/54 38/67 38/52

Variably dim. 20 1/2 1/2 1/2 1/2

Watson 31 Fail Fail Fail Fail

Penalty II 40 625/1780 269/731 308/1149 191/477

POWER 40 594/1339 873/1521 586/1059 557/1125

DIXON3DQ 100 1029/2366 1389/2609 1269/2397 1164/2508

E. Rosenbrock 100 74/176 69/171 71/178 66/169

GENHUMPS 100 21388/312963 26667/75691 30873/73364 18114/49126

SINQUAD 100 Fail 281/1606 214/1506 165/1581

FLETCHCR 200 2943/6856 3300/5282 3375/5901 2867/5849

ARGLINB 500 Fail 118/1891 146/724 65/378

E. Hiebert 500 Fail Fail Fail 39482/406023

G. W. a. Holst 500 38223/83761 35726/70095 34782/66675 33792/65893

BDQRTIC 1000 58/87 56/69 66/82 55/69

BIGGSB1 1000 9047/22706 22189/38256 24403/45306 7455/17346

G. Rosenbrock 1000 29030/64082 25957/50930 24445/46074 24422/46553

Par. per. quad. 1000 394/902 302/439 397/542 403/784

POWER 1000 12622/12643 12622/12643 10933/10955 11258/11374

Trigonometric 1000 79/146 78/102 73/95 66/101

EG2 3000 Fail 2043/24239 Fail 491/5291

E. Penalty 3000 9551/9553 9550/9551 9550/9551 9550/9551

Per. quad. 3000 870/1976 988/1703 758/1366 777/1579

Quad. QF1 3000 1189/2716 1186/2059 1491/2718 1003/1905
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Table 1 (continued)

Prob. name Dim MLS-A1 NMLS-G1 NMLS-H1 NMLS-N1

ni /nf ni /nf ni /nf ni /nf

Alm. per. quad. 5000 1520/3569 1971/3573 1738/3224 1497/2994

EDENSCH 5000 14/18 12/13 12/13 12/13

E. Powell 5000 4185/10285 277/650 295/632 2804/6423

E. Wood 5000 51/66 52/60 52/60 52/60

E. W. a. Holst 5000 361/1009 142/375 132/363 133/339

NONDQUAR 5000 8397/20860 5191/9094 7136/13716 11761/27874

Per. quad. diag. 5000 3140/8888 924/1765 951/1954 1770/5062

Per. trid. quad. 5000 1176/2767 2641/4760 1987/3716 1792/3684

TRIDIA 5000 8726/22021 12671/24084 15282/28908 16918/35958

E. Beale 6000 82/163 74/118 57/92 55/82

DIXMAANA 9000 25/26 25/26 25/26 25/26

DIXMAANB 9000 23/24 23/24 23/24 23/24

DIXMAANC 9000 25/26 25/26 25/26 25/26

DIXMAAND 9000 27/28 27/28 27/28 27/28

DIXMAANE 9000 858/1985 1143/1908 1029/1845 1441/3189

DIXMAANF 9000 939/2221 1185/1925 1217/2089 961/2056

DIXMAANG 9000 724/1595 1056/1686 908/1544 1176/2585

DIXMAANH 9000 754/1727 684/1102 1620/2867 1834/4091

DIXMAANI 9000 4731/11772 10356/17848 7794/14362 9009/21052

DIXMAANJ 9000 454/989 623/1029 726/1258 599/1223

DIXMAANK 9000 478/972 489/781 644/1059 451/871

DIXMAANL 9000 377/805 380/586 426/674 317/626

ARWHEAD 10000 3/4 3/4 3/4 3/4

BDEXP 10000 17/18 17/18 17/18 17/18

Broyden trid. 10000 37/50 98/110 51/55 79/89

COSINE 10000 8/9 8/9 8/9 8/9

Diagonal 2 10000 294/578 203/324 361/694 258/445

Diagonal 3 10000 23/29 20/24 21/24 20/24

Diagonal 4 10000 17/18 17/18 17/18 17/18

Diagonal 5 10000 5/6 5/6 5/6 5/6

Diagonal 7 10000 9/10 9/10 9/10 9/10

Diagonal 8 10000 8/10 8/10 8/10 8/10

DQDRTIC 10000 171/325 85/112 102/141 87/117

ENGVAL1 10000 22/24 21/22 21/22 21/22

E. BD1 10000 20/24 17/18 17/18 17/18

E. Cliff 10000 9/11 11/12 11/12 11/12

E. DENSCHNB 10000 19/20 19/20 19/20 19/20

E. DENSCHNF 10000 20/23 19/20 19/20 19/20

E. EP1 10000 4/10 4/10 4/10 4/10
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Table 1 (continued)

Prob. name Dim MLS-A1 NMLS-G1 NMLS-H1 NMLS-N1

ni /nf ni /nf ni /nf ni /nf

E. Himmelblau 10000 24/26 24/25 24/25 24/25

E. Maratos 10000 205/459 40/77 45/109 40/77

E. PSC1 10000 26/27 26/27 26/27 26/27

E. QP1 10000 1/2 1/2 1/2 1/2

E. QP2 10000 1/2 1/2 1/2 1/2

E. TET 10000 11/15 12/15 12/15 12/15

E. trid. 1 10000 111/265 46/83 53/92 49/96

E. trid. 2 10000 6/11 6/11 6/11 6/11

E. F. a. Roth 10000 390/714 438/831 414/736 378/642

FLETCBV3 10000 516/517 516/517 516/517 516/517

Full Hess. FH3 10000 4/5 4/5 4/5 4/5

G. PSC1 10000 30/31 30/31 30/31 30/31

G. quartic 10000 12/13 12/13 12/13 12/13

G. trid. 1 10000 13/15 13/14 13/14 13/14

G. trid. 2 10000 47/66 77/93 83/95 71/88

Hager 10000 36/37 36/37 36/37 36/37

HIMMELBG 10000 48/49 48/49 48/49 48/49

HIMMELH 10000 13/15 14/15 14/15 14/15

INDEF 10000 185/1410 28/30 65/91 28/30

LIARWHD 10000 1493/4277 371 1225 312/981 311/953

MCCORMCK 10000 6948/8035 9951/10149 9534/9731 9951/10149

NONDIA 10000 6079/21233 16/51 16/53 16/52

NONSCOMP 10000 50/68 91/113 79/94 81/99

QUARTC 10000 1/2 1/2 1/2 1/2

Quad. QF2 10000 1791/4334 2927/5674 2588/4938 2045/3956

Raydan 1 10000 22/29 23/28 23/28 23/28

Raydan 2 10000 1/2 1/2 1/2 1/2

SINCOS 10000 26/27 26/27 26/27 26/27

VARDIM 10000 1/2 1/2 1/2 1/2

Table 2 Comparing the results of Table 1

MLS-A1 NMLS-G1 NMLS-H1 NMLS-N1

Iterates (ni ) 48.6 % 50.5 % 43.8 % 65.7 %

Function evaluations (nf ) 39 % 61 % 52.4 % 62.8 %
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Fig. 1 Iteration performance profiles for a modified Barzilai-Borwein direction

algorithms and P is a set of test problems, with ns solvers and np problems. For each
problem p and solver s, tp,s is the computation result regarding to the performance
index. Then, the following performance ratio is defined

rp,s = tp,s

min

{
tp,s : s ∈ S

} .
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Fig. 2 Function evaluations performance profiles for a modified Barzilai-Borwein direction
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If algorithm s is not convergent for a problem p, the procedure sets rp,s = rf ail,
where rf ail should be strictly larger than any performance ratio (33). For any factor
τ , the overall performance of algorithm s is given by

ρs(τ ) = 1

np
size

{
p ∈ P : rp,s ≤ τ

}
.

In fact ρs(τ ) is the probability of algorithm s ∈ S that a performance ratio rp,s
is within a factor τ ∈ Rn of the best possible ratio. The function ρs(τ ) is the dis-
tribution function for the performance ratio. Especially, ρs(1) gives the probability
that algorithm s wins over all other algorithms, and limτ→rf ail ρs(τ ) gives the prob-
ability of that algorithm s solve a problem. Therefore, this performance profile can
be considered as a measure of the efficiency and the robustness among the algo-
rithms. In Figs. 1, 2, 3 and 4, the x-axis shows the number τ while the y-axis inhibits
P(rp,s ≤ τ : 1 ≤ s ≤ ns).

In one hand, Fig. 1 compares the mentioned algorithms in the sense of the total
number of iterates. It can be easily seen that NMLS-N1 is the best algorithm in the
sense of the most wins on more than 65 % of the test functions. One also can see
that NMLS-N1 solves approximately all test functions. On the other hand, Fig. 2
represents a comparison among the considered algorithms regarding the total number
of function evaluations. The results of Fig. 2 indicate that the performance of NMLS-
N1 is better than other present algorithms. In details, the new algorithm is the best
algorithm on more than 62 % of all cases. Further more one can observe that the
results of NMLS-G1 and NMLS-N1 is approximately the same regarding the number
of function evaluations.
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Fig. 3 Iteration performance profiles for the LBFGS direction
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Fig. 4 Function evaluations performance profiles for the LBFGS direction

3.2 Implementations with the LBFGS direction

In this subsection, we implement Algorithm 1 on a set of 107 unconstrained opti-
mization test problems used in previous subsection when the employed direction is a
limited memory quasi-Newton direction, namely LBFGS. We rename the considered
algorithms by MLS-A2, NMLS-G2, NMLS-H2 and NMLS-N2, respectively. This
direction is determined by the following quasi-Newton formula

dk = −Hkgk,

where Hk is a quasi-Newton approximation of the inverse matrix G−1
k generated

by the well-known LBFGS approach developed by Nocedal in [19] and Liu and
Nocedal in [16]. Let H0 be a symmetric and positive definite starting matrix and
m = min{k, 5}. Then the limited memory version of Hk is defined by

Hk+1 =
(
V T
k · · ·V T

k−m

)
H0(Vk−m · · ·Vk)

+ ρk−m

(
V T
k · · ·V T

k−m+1

)
sk−ms

T
k−m(Vk−m+1 · · ·Vk)

+ ρk−m+1

(
V T
k · · ·V T

k−m+2

)
sk−m+1s

T
k−m+1(Vk−m+2 · · ·Vk)

...

+ ρksks
T
k .

where ρk = 1/yTk sk and Vk = I − ρkyks
T
k . The LBFGS code is available from the

web page http://www.ece.northwestern.edu/∼nocedal/software.html.
We are rewritten this code in MATLAB and exploit it to generate the search

direction dk .

http://www.ece.northwestern.edu/~nocedal/software.html
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Similar arguments raised in Section 3.1, in the algorithm NMLS-N, parameterηk
is initially set with η0 = 0.90 and then be updated as follows

ηk+1 =

⎧
⎪⎨

⎪⎩

2
3ηk + 0.01 ‖gk‖ ≤ 10−2,

max
{

99
100ηk, 0.5

}
otherwise.

For the algorithm NMLS-H, we also select η0 = 0.85 as proposed by Zhang and
Hager in [24]. For all algorithms, stopping criterion is

‖gk‖∞ ≤ 10−6.

or the algorithm stops when the number of iterates exceeds the maximum number of
iterates, 40000.

The results obtained are reported in Table 3. In details, these results clearly suggest
that the proposed algorithm has promising behaviour encountering with medium-
scale and large-scale unconstrained optimization problems and it is superior to other
considered algorithms in the most cases. The percentage of most wins for considered
algorithms thanks to Table 3 is reported in Table 4. We also demonstrate the obtained
results of Table 3 by performance profiles which can be observed in Figs. 3 and 4.

The Fig. 3 compares the mentioned algorithms in the sense of the total number
of iterates. It can be easily seen from the that NMLS-N2 is the best algorithm in the
sense of most wins on more than 72 % of the test functions. Meanwhile, NMLS-N2 is
competitive with NMLS-G2 and NMLS-H2, but in most cases it grows up faster than
these algorithms. It means that in the cases that NMLS-N2 has not the best results, its
implementation is close to the performance index of the best algorithm. One also can
see that NMLS-N2 solves approximately all test functions. Also, Fig. 4 represents a
comparison among the considered algorithms regarding the total number of function
evaluations. The results of Fig. 4 indicate that the performance of NMLS-N2 is better
than other present algorithms. In details, the new algorithm is the best algorithm
on more than 68 % of all cases. Therefore, one can conclude that the behaviour of
the proposed Armijo-type algorithm with the LBFGS direction is more efficient and
robust than the other considered line search algorithms for solving unconstrained
optimization problems.

3.3 Implementations including a truncated Newton direction

This subsection reports some computational experiments with a truncated Newton
direction (TN) on a set of some unconstrained optimization test problems, where the
algorithms are called MLS-A3, NMLS-G3, NMLS-H3 and NMLS-N3. The algo-
rithms are tested on all of 107 test problems that was used for other directions, but
for most of the test problems the results are the same. Then in Table 5, we just report
the results that the different outputs obtained by the algorithms.

We here briefly summarize how search directions of the truncated Newton method
are generated by the following procedure:

The truncated Newton algorithm requires the computation or estimation of matrix-
vector products Gkpj involving the Hessian matrix of the objective function. An



Numer Algor (2014) 66:49–78 69

Table 3 Numerical results with the LBFGS direction

Prob. name Dim MLS-A2 NMLS-G2 NMLS-H2 NMLS-N2

ni /nf ni /nf ni /nf ni /nf

Beale 2 21/26 21/26 21/26 21/26

Bro. b. scaled 2 18/22 18/22 18/22 18/22

Full Hess. FH1 2 31/36 31/36 31/36 31/36

Full Hess. FH2 2 8/11 8/11 8/11 8/11

Powell b. scal. 2 61/140 170/387 172/448 294/611

Helical valley 3 75/123 35/47 44/55 35/47

Gaussian func. 3 5/8 5/8 5/8 5/8

Box three-dim. 3 35/52 35/52 35/52 35/52

Gulf r. and dev. 3 529/799 79/117 90/163 84/116

Staircase 1 4 14/19 14/19 14/19 14/19

Staircase 2 4 14/19 14/19 14/19 14/19

Bro. a. Dennis 4 41/60 41/60 41/60 41/60

Wood 4 46/59 46/59 133/171 121/161

Biggs EXP6 6 186/250 55/61 65/80 55/61

GENHUMPS 10 23/73 23/73 23/73 23/73

Penalty I 10 11185/11293 11399/11612 11306/11422 11269/11489

Penalty II 10 Fail 664/1260 645/1058 442/887

Variably dim. 10 18/40 18/40 18/40 18/40

Watson 31 19823/19892 13994/15596 12120/13834 11082/14260

HARKERP2 50 16764/16773 Fail Fail 22614/54947

ARGLINB 100 3/41 3/41 3/41 3/41

Diag. 3 100 69/76 69/76 69/76 72/77

E. Rosenbrock 100 170/277 96/159 63/94 78/123

FLETCBV3 100 Fail 38366/39764 22224/22676 7923/8199

SINQUAD 100 3971/10124 349/2276 564/3305 1111/5211

Trigonometric 100 83/100 68/117 69/80 60/76

Diag. 2 500 120/121 120/121 120/121 114/118

DIXON3DQ 1000 2648/2651 2648/2651 2648/2651 2498/2532

E. Beale 10000 20/23 20/23 20/23 20/23

Fletcher 1000 2553/3237 13350/13807 5963/6228 3892/4320

G. Rosenbrock 1000 Fail 9946/13003 7932/10183 7982/10146

Par. per. quad. 1000 179/193 179/193 179/193 188/208

Hager 1000 48/52 48/52 48/52 48/52

HIMMELH 1000 34/39 14/21 34/39 29/35

BDQRTIC 1000 111/126 111/126 111/126 123/151

EG2 1000 Fail 133/371 91/239 63/117

POWER 1000 12622/12643 12622/12643 10933/10955 11258/11374

P. trid. quad. 5000 610/623 610/623 610/623 588/607

Alm. per. quad. 5000 599/612 599/612 599/612 579/591
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Table 3 (continued)

Prob. name Dim MLS-A2 NMLS-G2 NMLS-H2 NMLS-N2

ni /nf ni /nf ni /nf ni /nf

p. quad. diag. 5000 1087/1101 1044/1212 1229/1454 975/1351

E. Hiebert 5000 Fail 1886/5439 1912/5938 2287/6347

Fletcher 5000 10936/13305 19439/21858 Fail 39435/169519

G. trid. 2 5000 60/81 59/81 91/126 59/81

DENSCHNB 5000 98/99 69/75 149/279 83/103

DENSCHNF 5000 5568/70359 5747/52868 1736/15712 580/5420

NONSCOMP 5000 1205/1781 1116/1549 3324/4890 2577/4698

POWER 5000 30097/30120 90097/30120 30264/30288 31064/31337

FLETCHCR 5000 Fail 15820/81850 11604/76350 9386/91278

LIARWHD 5000 45/61 45/61 47/65 45/61

CUBE 5000 3648/6664 3660/5590 10451/15413 14131/25914

TRIDIA 5000 2004/2017 2004/2017 2004/2017 1969/1997

DIXMAANA 9000 8/12 8/12 8/12 8/12

DIXMAANB 9000 8/12 8/12 8/12 8/12

DIXMAANC 9000 9/14 9/14 9/14 9/14

DIXMAAND 9000 11/17 11/17 11/17 11/17

DIXMAANE 9000 437/441 437/441 437/441 413/419

DIXMAANF 9000 272/276 272/276 272/276 276/288

DIXMAANG 9000 243/248 243/248 243/248 237/250

DIXMAANH 9000 269/275 269/275 269/275 233/242

DIXMAANI 9000 2517/2521 2517/2521 2517/2521 2761/2814

DIXMAANJ 9000 376/380 376/380 376/380 355/363

DIXMAANK 9000 333/338 333/338 333/338 327/333

DIXMAANL 9000 326/332 326/332 326/332 277/285

ARWHEAD 10000 9/26 9/26 9/26 9/26

BDEXP 10000 26/27 26/27 26/27 26/27

Broyden trid. 10000 50/55 50/55 50/55 50/55

BIGGSB1 10000 18/29 18/29 18/29 18/29

COSINE 10000 27/29 27/29 27/29 27/29

Diagonal 4 10000 5/12 5/12 5/12 5/12

Diagonal 5 10000 5/6 5/6 5/6 5/6

Diagonal 7 10000 5/7 5/7 5/7 5/7

Diagonal 8 10000 5/8 5/8 5/8 5/8

DQDRTIC 10000 12/21 12/21 12/21 12/21

ENGVAL1 10000 45/87 45/87 31/45 31/45

EDENSCH 10000 25/30 25/30 25/30 25/30

E. BD1 10000 15/18 15/18 14/16 15/18

E. Cliff 10000 175/2485 49/202 136/1554 49/202

E. DENSCHNB 10000 6/9 6/9 6/9 6/9
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Table 3 (continued)

Prob. name Dim MLS-A2 NMLS-G2 NMLS-H2 NMLS-N2

ni /nf ni /nf ni /nf ni /nf

E. DENSCHNF 10000 13/22 13/22 13/22 13/22

E. EP1 10000 4/13 4/13 4/13 4/13

E. Himmelblau 10000 11/18 11/18 11/18 11/18

E. Maratos 10000 179/314 203/333 178/277 175/367

E. Powell 10000 38/47 38/47 38/47 38/47

E. Penalty 10000 79/120 79/120 79/120 86/108

E. PSC1 10000 11/17 11/17 11/17 11/17

E. QP1 10000 25/41 25/41 25/41 25/41

E. QP2 10000 203/327 130/238 147/211 117/214

E. TET 10000 9/13 9/13 9/13 9/13

E. Wood 10000 46/59 46/59 147/197 141/216

E. W. a. Holst 10000 111/161 114/167 110/150 77/108

E. trid. 1 10000 17/20 17/20 17/20 17/20

E. trid. 2 10000 30/33 30/33 30/33 31/37

Full Hess. FH3 10000 4/19 4/19 4/19 4/19

G. PSC1 10000 34/41 34/41 34/41 34/41

G. quartic 10000 55/77 38/61 34/39 38/61

G. trid. 1 10000 22/26 22/26 22/26 22/26

G. W. a. Holst 10000 Fail 22647/33690 16254/22580 16253/22990

HIMMELBG 10000 2/3 2/3 2/3 2/3

NONDQUAR 10000 2459/2475 2688/2785 4084/4276 3244/3630

Per. quad. 10000 1/4 1/4 1/4 1/4

QUARTC 10000 41/46 41/46 41/46 41/46

Quad. QF1 10000 924/937 924/937 924/937 924/946

Quad. QF2 10000 922/936 922/936 922/936 899/916

Raydan 2 10000 7/8 7/8 7/8 7/8

SINCOS 10000 11/17 11/17 11/17 11/17

TRIDIA 10000 2715/2729 2715/2729 2715/2729 2903/2942

VARDIM 10000 107/198 107/198 107/198 107/198

Table 4 Comparing the results of Table 3

MLS-A2 NMLS-G2 NMLS-H2 NMLS-N2

Iterates (ni ) 62.6 % 64.5 % 57.9 % 72.9 %

Function evaluations (ni ) 63.5 % 65.5 % 62.6 % 68.2 %



72 Numer Algor (2014) 66:49–78

Ta
bl

e
5

N
um

er
ic

al
re

su
lt

s
of

tr
un

ca
te

d
N

ew
to

n
al

go
ri

th
m

Pr
ob

.n
am

e
D

im
M

L
S-

A
3

N
M

L
S-

G
3

N
M

L
S-

H
3

N
M

L
S-

N
3

n
i

n
g

n
f

n
i

n
g

n
f

n
i

n
g

n
f

n
i

n
g

n
f

B
G

2
10

00
Fa

il
Fa

il
Fa

il
75

87
22

73
0

75
94

Fa
il

Fa
il

Fa
il

34
81

68
19

35
09

B
ig

gs
E

X
P6

6
15

24
5

30
76

7
15

26
0

17
65

2
35

58
1

17
66

0
17

65
2

35
58

1
17

66
0

17
65

2
35

58
1

17
66

0

C
U

B
E

10
00

31
21

6
62

43
3

31
21

9
31

06
5

62
13

1
31

06
6

31
06

5
62

13
1

31
06

6
31

06
5

62
13

1
31

06
6

D
ia

go
na

l1
50

00
Fa

il
Fa

il
Fa

il
38

00
76

98
38

14
38

00
76

98
38

14
38

00
76

98
38

14

D
ia

go
na

l2
10

00
15

41
30

85
15

45
30

73
61

50
30

75
30

73
61

50
30

75
30

73
61

50
30

75

20
00

50
50

10
10

3
50

55
35

38
70

81
35

41
35

38
70

81
35

41
35

38
70

81
35

41

10
00

28
12

56
64

28
24

11
35

23
06

11
43

16
1

36
0

17
1

16
1

36
0

17
1

E
.M

ar
at

os
50

00
22

98
46

36
23

10
14

85
30

06
14

94
15

1
34

0
16

1
15

1
34

0
16

1

10
00

0
23

84
48

08
23

96
14

69
29

74
14

78
15

1
34

0
16

1
15

1
34

0
16

1

E
.Q

P2

10
00

34
20

68
47

34
31

41
93

83
90

42
08

41
93

83
90

42
08

41
93

83
90

42
08

50
00

12
25

24
51

12
31

12
23

24
47

12
28

12
23

24
47

12
28

12
23

24
47

12
28

10
00

0
82

7
16

55
83

2
94

5
18

91
94

7
94

5
18

91
94

7
82

7
16

55
83

2

E
.t

ri
d.

2
50

00
Fa

il
Fa

il
Fa

il
13

1
26

3
13

2
13

1
26

3
13

2
10

1
20

3
17

4

E
.W

.a
.H

ol
st

10
00

65
53

13
10

8
65

57
33

88
67

77
33

90
33

88
67

77
33

90
33

88
67

77
33

90

Fl
et

ch
er

50
30

10
61

34
30

53
18

05
37

76
18

57
29

54
60

82
30

11
29

54
60

82
30

11

10
0

75
42

15
34

4
76

02
45

87
94

27
46

60
68

97
14

03
4

69
77

68
97

14
03

4
69

77

G
.t

ri
d.

1
50

00
Fa

il
Fa

il
Fa

il
47

95
48

47
95

48
47

95
48

G
.R

os
en

br
oc

k
10

0
18

78
2

47
31

6
18

79
9

19
23

0
48

19
8

19
24

6
19

23
0

48
19

8
19

24
6

19
23

0
48

19
8

19
24

6

G
.W

.a
.H

ol
st

10
0

30
18

6
62

49
2

30
34

1
29

26
4

60
32

8
29

33
0

29
91

1
61

68
8

30
02

7
29

90
4

61
68

4
30

01
6

G
E

N
H

U
M

PS
10

00
Fa

il
Fa

il
Fa

il
54

7
15

93
54

9
60

7
17

13
60

9
54

3
15

85
54

5



Numer Algor (2014) 66:49–78 73

Ta
bl

e
5

(c
on

ti
nu

ed
)

Pr
ob

.n
am

e
D

im
M

L
S-

A
3

N
M

L
S-

G
3

N
M

L
S-

H
3

N
M

L
S-

N
3

n
i

n
g

n
f

n
i

n
g

n
f

n
i

n
g

n
f

n
i

n
g

n
f

H
ag

er
50

00
Fa

il
Fa

il
Fa

il
30

5
61

1
30

9
30

5
61

1
30

9
28

3
56

7
29

3

50
00

51
10

3
54

72
14

5
73

72
14

5
73

72
14

5
73

N
O

N
D

Q
U

A
R

10
00

0
69

13
9

73
85

17
1

86
85

17
1

86
85

17
1

86

4
75

15
1

79
11

23
12

11
23

12
11

23
12

St
ai

rc
as

e
1

6
26

9
53

9
27

4
26

9
53

9
27

4
22

5
45

1
22

6
22

5
45

1
22

6

10
14

95
29

91
15

00
14

49
28

99
14

50
14

49
28

99
14

50
14

49
28

99
14

50

4
75

15
1

79
11

23
12

11
23

12
11

23
12

St
ai

rc
as

e
2

6
26

9
53

9
27

4
22

5
45

1
22

6
22

5
45

1
22

6
22

5
45

1
22

6

10
14

95
29

91
15

00
14

49
28

99
14

50
14

49
28

99
14

50
14

49
28

99
14

50

T
ri

go
no

m
et

ri
c

10
0

27
9

59
8

29
7

30
6

65
0

32
1

30
6

65
0

32
1

30
2

64
2

33
5



74 Numer Algor (2014) 66:49–78

Procedure 2: Truncated Newton direction (TN)

Given initial parameters z0 ← 0, r0 ← gk, p0 ← −gk
Begin

εk ← min(0.5/(k + 1), ‖gk‖)‖gk‖;
For j = 0, 1, 2, . . .

If pT
j Gkpj ≤ 0

If j ← 0
dk ← −gk ;

Else
dk ← zj ;

End
End
λj ← rTj rj /p

T
j Gkpj ;

zj+1 ← zj + λjpj ;
rj+1 ← rj + λjGkpj ;
If ‖rj+1‖ ≤ εk

dk ← zj+1;
End
βj+1 ← rTj+1rj+1/r

T
j rj ;

pj+1 ← −rj+1 + βj+1pj ;
End

End

estimation of this term can be obtained using the following finite difference scheme
proposed in [6]:

Gkdj = ∇f
(
xk + δdj

) −∇f (xk)

δ
, (43)

where

δ = 2
√
εm(1 + ‖xk‖)

‖dj‖ (44)

and εm is the machine epsilon. Similar arguments raised in Section 3.1, in the algo-
rithm NMLS-N, the parameter ηk is initially set to η0 = 0.95 and then will be
updated by the formula (42). For the algorithm NMLS-H, we also select η0 = 0.85
as proposed by Zhang and Hager in [24]. For all algorithms, stopping criterion is

‖gk‖∞ ≤ 10−6‖g0‖∞,

Table 6 Comparing the results of Table 6

MLS-A3 NMLS-G3 NMLS-H3 NMLS-N3

Iterates (ni ) 26.7 % 46.7 % 50 % 66.7 %

Gradient evaluations (ng a) 26.7 % 43.4 % 50 % 66.7 %

Function evaluations (ni ) 26.7 % 50 % 53.3 % 63.3 %

aThe number of gradient evaluations
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Fig. 5 Iteration performance profiles for the truncated Newton direction

or the algorithm stops when the number of iterates exceeds the maximum number of
iterates, 40000.

We now give an overview of the numerical experiments of Table 5. For most of
the test problems, the initial step is accepted by the algorithms, which means that the
truncated Newton direction satisfies the line search condition with full steplength,
αk = 1. Therefore, the results obtained of the algorithms are identical and thus
omitted in Table 5. In details, these results suggest that the proposed algorithm has
promising behaviour encountering with medium-scale and large-scale unconstrained
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Fig. 6 Gradient evaluations performance profiles for the truncated Newton direction
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Fig. 7 Function evaluations performance profiles for the truncated Newton direction

optimization problems and it is superior to the other considered algorithms in the
most cases. Table 6 shows the percentage of the best results.

The results of this table suggest that NMLS-N3 has better performance in compar-
ison with the other considered algorithms. We also demonstrate the obtained results
of Table 6 by performance profiles in Figs. 5, 6 and 7, where respectively compare
the number of iterations, gradient evaluations and function evaluations.

Summarizing the results of Figs. 5, 6 and 7 implies that NMLS-N3 is superior to
the other presented algorithms respect to the number of iterations, function evalua-
tions and gradient evaluations, However, in many cases the results of all algorithm is
the same.

4 Concluding remarks

It is well-known the traditional nonmonotone strategy contains some drawbacks
and some efforts in order to overcome theses drawbacks have been done but not
enough. Hence, we present a new nonmonotone Armijo-type line search technique
for solving unconstrained optimization problems. The introduced nonmonotone
strategy takes advantage of a convex combination of the traditional max-term non-
monotone strategy and the current function value to propose a tighter nonmonotone
strategy based on effective usage of the current function value. Furthermore, the new
line search approach exploits an adaptive technique to make the new nonmonotone
strategy stronger far from the optimum and to prepare it weaker close to the opti-
mum. Under some classical assumptions, the approach is convergent to first-order
stationary points, irrespective of the chosen starting point. The R-linear convergence
rate is also established for strongly convex functions. Preliminary numerical results
for the modified Barzilai-Borwein direction, the LBFGS direction and the truncated
Newton direction on the large set of standard test functions indicate that the proposed
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line search technique has efficient performances and promising behavior for solving
unconstrained optimization problems.

We believe that there is considerable scope for modifying and adapting the basic
ideas presented in this paper. For future works, first of all, other inexact line searches
like Wolfe-type or Goldestain-type various can be employed. The next application
can be a combination of this strategy with trust-region framework and its vari-
ants. Finally, more comprehensive research on finding an adaptive process for the
parameter η can be done. It will be a matter of subsequent studies.
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