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Abstract The continuation methods are efficient methods to trace solution curves
of nonlinear systems with parameters, which are common in many fields of science
and engineering. Existing continuation methods are unstable for some complicated
cases in practice, such as the case that solution curves are close to each other or the
case that the curve turns acutely at some points. In this paper, a more robust corrector
strategy—sphere corrector is presented. Using this new strategy, combining various
predictor strategies and various iterative methods with local quadratic or superlin-
ear convergence rates, robust continuation procedures for tracing curves are given.
When the predictor steplength is no more than the so-called granularity of solution
curves, our procedure of tracing solution curve can avoid “curve-jumping” and trace
the whole solution curve successfully. Numerical experiments illustrate our method
is more robust and efficient than the existing continuation methods.
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1 Introduction

In many fields, we often need to solve parameterized systems of nonlinear equations:

F(x, t) = 0, x ∈ Rn, t ∈ Rm,

and under some basic assumptions, such a system implicitly defines some curves or
manifolds of solution points, a basic and important problem in solving such param-
eterized systems is numerically tracing a curve among them from the given initial
point on it to the target point.

Sometimes, although the original problem does not include any parameters, to
construct a globally convergent method, one often introduces a parameter into the
system such that it becomes a parameterized problem. For example, finding solutions
of a nonlinear system without parameters is an important problem in applications,
and Newton’s method is a fundamental iterative method for finding successively
better approximation to the solution of the nonlinear system without parameters,
and it owns properties as follow: (1) Fast convergence rate. (2) Local convergence.
Generally speaking, Newton’s method possesses quadratic convergence rate, how-
ever, the convergence is guaranteed only when the initial point is close enough
to the solution point, and every iterative point is in convergence region. Variants
of Newton’s method, such as Newton-like methods and Quasi-Newton methods,
have fast and local quadratic or superlinear convergence rates also. For Newton’s
method and its variants, it is difficult to confirm whether the initial point satis-
fies the condition of local convergence for many nonlinear problems. Hence, it is
significant to study globally convergent algorithms, such as continuation methods
[1–4, 7, 11, 13, 20, 24], in which underdetermined systems with one parameter
arose.

In this paper, the main theme is to design a robust and efficient continuation
method to numerically trace solution curves of a parameterized system. For the
convenience of our discussion, we make the following assumptions:

– The map F : Rn+1 → Rn is smooth;
– there is a point u0 ∈ Rn+1 such that F(u0) = 0;
– the Jacobian matrix F ′(u0) has maximum rank.

Under these assumptions, the solution set of F contains a smooth curve c(s), where
s is the arclength, and there exists an open interval I such that for all α ∈ I ,

c(0) = u0, c
′(α) �= 0, rank

(
F ′ (c(α))

) = n.
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Although continuation methods have different forms, they have uniform basic
framework: predictor and corrector. In the predictor step, we can adopt different
strategies, mainly including two ways:

1. Interpolation Predictors [15]
This class of predictors is generated by using the calculated points in the

curve. Assume that the successive points ui, i = 0, 1, . . . , n along the solution
curve c(s) have already been generated, the task is to construct a interpolating
polynomial p(s) satisfying p(si ) = ui , and the standard interpolating polyno-
mial using Newton formula can be applied. In certain versions of the continu-
ation method, also the corresponding tangents F ′(u0), F

′(u1), . . . , F
′(un) are

available, and the Hermite interpolating polynomial can be applied to predict.
2. Talor Polynomial Predictors [16, 23]

This class of predictors is based on Taylor’s formula and generated by
exploiting the successive numerical difference at the point on the curves.

Suppose uk is the current point on the curve to be traced, vk+1 is the next
predictor point, hk+1 > 0 is the steplength, then the well-known Euler predictor
can be used:

vk+1 = uk + hk+1ζk, (1)

where ζk is the tangent vector to the solution curve c(s) at uk , and is locally
defined by the system {

F ′(uk)ζk = 0,
ζ�k ζk = 1.

This system has exactly two solutions which correspond to the two possible
directions of tracing the curve, to specify the direction of tracing, ζk is chosen
to satisfy the sign of the determinant of the matrix

(
F ′(uk)
ζ�k

)

stays constant.
In applying these two classes of strategy to find the predictor, we face a

tradeoff. The former needs less computational work, and the latter is more accu-
rate and stable. However, in this paper, we mainly study the different corrector
strategies, so we adopt the same predictor strategy: Euler predictor.

In the corrector step, we can adopt different strategies, combining suitable iterative
methods with local quadratic or superlinear convergence rates, to bring the predictor
point back to the solution curve. In practice, we often adopt corrector strategies as
follows:

1. Plane Corrector: Correct on the hyperplane that passes the predictor point
and erects the predictor direction.

The intersection of the hyperplane P , going through the predictor point vk+1
and erecting the current tangent vector ζk , with the solution curve is the corrector
point w need to be found, see Fig. 1a. The hyperplane P is defined by

P =
{
u ∈ Rn+1

∣∣∣ ζ Tk (u− vk+1) = 0
}
.
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Fig. 1 Two corrector strategies

The corrector procedure is the procedure for solving the system:
{
F(u) = 0,
ζ Tk (u− vk+1) = 0,

e.g. Newton’s method (or other suitable iterative methods with quadratic or
superlinear convergence rates)

u(i+1) = u(i) −
(
F ′(u(i))

ζ Tk

)−1 (
F(u(i))

ζ Tk (u(i) − vk+1)

)
, i = 0, 1, 2, . . .

with the starting point u(0) = vk+1.
2. Nearest Point Corrector: Take the point on the solution curve that is nearest

to the predictor point as the corrector point [3].
Let vk+1 be the predictor point and w be the solution of the minimization

problem

min
u

{∥∥u− vk+1
∥∥

∣∣∣ F(u) = 0
}
.

The corrector procedure is solving w, see Fig. 1b. A straightforward way of
solving the above minimization problem is Newton-type method

u(i+1) = u(i) −
(
F ′ (u(i)

))†
F

(
u(i)

)
, i = 0, 1, 2, . . .

where
(
F ′ (u(i)

))†
is the Moore-Penrose inverse of the matrix F ′(u(i)), with

the starting point u(0) = vk+1. This Newton step is different from the classical
Newton’s method only in the form of the Moore-Penrose inverse replacing the
classical inverse.

We have considerable continuation methods by combining various predictor
strategies, various corrector strategies and various iterative methods with quadratic
or superlinear convergence rates. All these methods can solve general problems in
practice. However, if solution curves are close to each other or the curve turns acutely
at some points, “curve-jumping”, which means the continuation method jumps from
a curve to another curve, may happen, these continuation methods are not robust for
comparatively big predictor steplength. In such cases, they can succeed in tracing the
curve only when the predictor steplength is very small, and thus the effectiveness of
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the curve-tracing will decrease. The algorithms in [10, 14, 17, 19] are designed for
tracking homotopy paths arising in homotopy continuation methods for solving poly-
nomial systems, this class of paths is monotone increasing with the parameter t and
different from the complicated curves mentioned above. Recently, there are also some
new strategies for continuation methods [6, 8, 9, 12, 15, 21, 22] are presented, and
most of these strategies focus on the improvement of the predictor or the steplength
control, however, the corrector step also plays an important role in the continuation
method, in this paper, we present a simple but robust and efficient corrector strategy.
Using this new strategy, combining various predictor strategies and various iterative
methods, we present a more robust and efficient continuation method: Euler-sphere
predictor-corrector method.

This paper is organized as follows. In Section 2, the new continuation method
equipped with Euler Predictor and Sphere Corrector is constructed, and also the con-
vergence theorem is presented. Numerical tests are demonstrated in Section 3 to
show our new continuation method is more robust and efficient than the classical
continuation methods.

2 A robust corrector strategy: sphere corrector

Let c(s) be the parameterized presentation of the solution curve and uk be a point
on it. Applying the above mentioned predictors in Section 1, for instance, the well-
known Euler predictor (1), we can obtain the predictor point vk+1.

The sphere, whose diameter is the straight line segment joining the points uk and
vk+1, intersects the solution curve c(s) at only one point w (besides the start point
uk), see Fig. 2. The sphere is defined by

{

u ∈ Rn+1
∣∣∣

∥∥∥∥u− uk + vk+1

2

∥∥∥∥

2

−
(
hk+1

2

)2

= 0

}

.

The corrector procedure is the method for finding the solution of the system

M(u) =
⎧
⎨

⎩

F(u) = 0,∥∥∥∥u− uk + vk+1

2

∥∥∥∥

2

−
(
hk+1

2

)2

= 0,
(2)

Fig. 2 Sphere Corrector
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e.g. Newton’s method, which takes the form:

u(i+1) = u(i) −
(
M ′ (u(i)

))−1
M

(
u(i)

)
, i = 1, 2, · · · .

or variants of Newton’s method.
We can now briefly describe how to generate the points along the curve c(s) under

the assumption that a point uk ∈ Rn+1 has been accepted such that ‖F(uk)‖ ≤ ε,
where ε is the given tolerance. To obtain a new point uk+1 along the curve, we first
make a predictor step, for instance, the well-known Euler predictor step (1), and then
choose a suitable iterative method with local quadratic or superlinear convergence
rates to get the solution, which is the next corrector point uk+1, of the system (2).

The following algorithm describes a particular version of the continuation method
equipped with the Euler predictor and sphere corrector.

Algorithm 1: Euler-Sphere Predictor-Corrector Method:

input

– The initial point u0 ∈ Rn+1 such that F(u0) = 0;
– The tolerance ε > 0;
– The initial steplength h > 0, the maximal steplength hmax > 0;
– The positive integers T and L for steplength adaptation.

begin
u = u0; print u.

repeat

– Predictor step. Calculate the tangent vector ζ to the solution curve at u, and
apply Euler predictor to obtain the predictor point v = u+ hζ ;

– Corrector step. Choose a suitable iterative method, such as Newton’s method
or Newton’s method with either “line search” or “trust region” step control, to
solve the nonlinear system (2),

– if the generated sequence by the iterative method converges to w, that
is ‖F(w)‖ ≤ ε, then set u = w and print u;

– Steplength adaptation.

– In the corrector step, if the iterative method converges in no more than
T steps, then h := min(Lh, hmax)

– If the iterative method in corrector step does not converge, then h :=
h/L;

until traversing is stopped.

To trace a curve successfully, we should adjust the steplength to make the sphere
intersect solution curves at only two points, including the start point.
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Lemma 1 Suppose F : Rn+1 → Rn is a smooth map, zero is its regular value, then
there exists a regular point u0 ∈ Rn+1 satisfying F(u0) = 0 and a scalar hmax > 0,
such that for any h ∈ (0, hmax], the system

M(u) =
⎧
⎨

⎩

F(u) = 0,∥∥∥∥u− u0 − h

2
ζ0

∥∥∥∥
2

−
(
h

2

)2

= 0,

where ζ0 is the tangent vector to the solution curve of F at u0, has only one
nonsingular solution w (besides u0,).

Proof Since 0 is a regular value of F, then there exists a point u0 ∈ Rn+1 such that
F(u0) = 0 and F ′(u0) is full row-rank. From the Implicit Function Theorem, the
solution set of F contains a smooth curve c(s), which is locally parameterized about
u0 with respect to the parameter s.

Firstly, we prove the existence of the solution w. u0 is a regular point of F, then
there is an open neighborhoodU(u0−δ, u0+δ) ⊂ Rn+1 of u0 such that F ′(u) is full
row-rank for any u ∈ U ∩ c(s). Since the predictor direction ζ0 points to the interior
of the sphere, there must exist a regular point of F in ∂U(u0, u0 + δ) ∩ c(s). From
the Implicit Function Theorem, there exists a scalar hmax > 0, and for any h < hmax,
the intersection point w of Bh, where

Bh =
{

u

∣∣∣
∥∥∥∥u− u0 − h

2
ζ0

∥∥∥∥

2

−
(
h

2

)2

= 0

}

, (3)

with the solution curve c(s) is a regular point, that is, w is a nonsingular solution of
the system M(u) = 0.

Secondly, we prove the uniqueness of the solution w. Suppose for any predictor
steplength h, the sphere intersects the solution curve at no less than three points. With-
out loss of generality, we assume there are three points u0 = c(s0), w1 = c(s1), w2 =
c(s2). Taking u0 as a fixed point and w1, w2 as moving points, then there is a constant
ε, if h < ε,w1, w2 are both sufficiently close to u0. Joining any two points, we can
obtain three segments [u0, w1], [u0, w2] and [w1, w2]. The slopes of the segments
[u0, w1] and [u0, w2] are respectively as follows:

lim
w1→u0

w1 − u0

s1 − s0
= c′(s0), lim

w2→u0

w2 − u0

s2 − s0
= c′(s0).

Taylor’s formula yields

c(s2) = c(s1)+ c′(s1)(s2 − s1)+ o(s2 − s1),

and hence the slope of segment [w1, w2] is

lim
w1,w2→u0

w1 −w2

s1 − s2
= c′(s0).

Thus u0, w1, w2 are collinear. However, when h is sufficiently small, [u0, w1] (or
[u0, w2]) is the diameter, and hence [u0, w2] ⊥ [w1, w2] (or [u0, w1] ⊥ [w1, w2])
which is inconsistent to the collinearity of u0, w1, w2. This completes the proof.
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We call hmax in Lemma 1 as the granularity of the solution curve, which shows
the proximity of the solution curves of F(x) = 0.

Definition 1 Let c(s) be a solution curve of F(u) = 0, u0 ∈ c(s),

hmax(u0) = max
{
h

∣∣The sphere Bh intersects F−1(0) at only two points
}
,

where Bh is defined as (3), then

hmax := inf
u∈c(s) hmax(u)

is defined as the granularity of c(s).

On the convergence of the new continuation method, we have the following
results, which show that our method indeed approximates a solution curve if the
steplength is small enough.

Theorem 1 Suppose F : Rn+1 → Rn is a smooth map, and zero is a regular value of
F, and F(u0) = 0, cp(s) is the polygonal path, which starts at u0 and goes through
all points ui generated by Algorithm 1, c(s) is the solution curve starting at u0,
and both curves are parameterized with respect to the arclength s. Then, for a given
maximal arclength smax, and for the given constant ε > 0 as in the Algorithm 1, there
exists the constant hmax > 0 such that

(1) ‖F(ui)‖ ≤ O(h2) for 0 < h ≤ hmax;
(2) ‖F(cp(s))‖ ≤ O(h2) for 0 < h ≤ hmax;
(3) ‖cp(s)− c(s)‖ ≤ O(h2) for 0 < h ≤ hmax

holds for all s ∈ [0, smax].

Proof Let U be a compact neighborhood of c([0, smax]) consisting of regular points
of F, then for any v ∈ U , the following Frobenius norms

∥∥F ′(v)
∥∥ ,

∥∥∥(M ′(v))−1
∥∥∥ ,

∥∥F ′′(v)
∥∥ ,

∥∥M ′′(v)
∥∥

are bounded. From Lemma 1, there exists hmax > 0, for any predictor steplength
h ∈ (0, hmax], the corrector sphere, going through ui and the next predictor point
vi+1, with the diameter h intersects the solution curves at only one point, besides ui .

The proof of assertion (1) proceeds by induction. Suppose the estimate in assertion
(1) is true for the current corrector point ui , that is

F(ui) ≤ O
(
h2

)
.

The next predictor point is vi+1 = ui + hζi , where ζi is the chosen tangent vector to
the solution curve at ui , Taylor’s formula yields

F(vi+1) = F(ui)+ hF ′(ui)ζi + h2

2
A1〈ζi, ζi〉,
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where

A1 =
∫ 1

0
F ′′(ui + ξhζi)2(1 − ξ)dξ

is the mean value of F ′′ on the segment [ui, vi+1]. From the definition of ζi , we can
get F ′(ui)ζi = 0, thus from the induction hypothesis, we obtain the estimate

F(vi+1) ≤ O
(
h2

)
.

Since predictor point v is on the sphere, then

‖M(vi+1)‖ = ‖F(vi+1)‖ ≤ O
(
h2

)
. (4)

Suppose the generated finite sequence by the iterative method in the corrector step
is u(0)i , . . . , u

(l)
i satisfying u

(0)
i = vi+1, u

(l)
i = ui+1, then combining (4), we get the

following estimate

‖ui+1 − vi+1‖ = ‖u(l)i − u
(0)
i ‖

≤ ‖u(l)i − u
(l−1)
i ‖ + . . .+ ‖u(1)i − u

(0)
i ‖

≤
∥∥∥(M ′(u(l−1)

i ))−1
∥∥∥

∥∥∥M(u
(l−1)
i )

∥∥∥ + . . .+
∥∥∥(M ′(u(0)i ))−1

∥∥∥
∥∥∥M(u

(0)
i )

∥∥∥
≤ O(h2).

(5)

Taylor’s formula yields

M(ui+1) = M(vi+1)+M ′(vi+1)(ui+1 − vi+1)

+ 1

2
A2〈ui+1 − vi+1, ui+1 − vi+1〉, (6)

where

A2 =
∫ 1

0
M ′′(vi+1 + ξ(ui+1 − vi+1))2(1 − ξ)dξ

is the mean value of F ′′ on the segment [vi+1, ui+1]. Now from (4), (5) and (6), when
h is sufficiently small, we obtain

‖M(ui+1)‖ ≤ O
(
h2

)
.

Obviously, ‖F(ui+1)‖ ≤ ‖M(ui+1)‖ ≤ O
(
h2

)
. Consequently, we complete the

inductive step for proving assertion (1).
From the definition of the corrector sphere, we can obtain the estimate

‖ui − ui+1‖ = O(h) (7)

when the predictor steplength is sufficiently small.
To prove assertion (2), we consider using Taylor’s formulas

F(ui) = F(uσ )+ F ′(uσ )(ui − uσ )+ 1

2
D1〈ui − uσ , ui − uσ 〉,

F (ui+1) = F(uσ )+ F ′(uσ )(ui+1 − uσ )+ 1

2
D2〈ui+1 − uσ , ui+1 − uσ 〉,

(8)
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where uσ = σui + (1 − σ)ui+1 for 0 ≤ σ ≤ 1, and

D1 =
∫ 1

0
F ′′(uσ + ξ(ui − uσ ))2(1 − ξ)dξ,

D2 =
∫ 1

0
F ′′(uσ + ξ(ui+1 − uσ ))2(1 − ξ)dξ

are the mean values of F ′′ on the segments [ui, uσ ] and [uσ , ui+1] respectively.
Multiplying the first equation in (8) by σ and the second by 1 − σ , summing them
yields

F(uσ ) = σF (ui)+ (1 − σ)F (ui+1)

− 1

2
σD1 ‖ui − uσ‖2 − 1

2
(1 − σ)D2 ‖ui+1 − uσ ‖2

= σF (ui)+ (1 − σ)F (ui+1)− 1

2
σ(1 − σ) ‖ui − ui+1‖2

× (
(1 − σ)D1 + σD2

)
. (9)

Assertion (2) now follows from the estimates (7) and (9) and the assertion (1) for
sufficiently small h.

The following is the proof of assertion (3). Obviously, when the predictor
steplength is sufficiently small, for each corrector point ui , there is a unique si such
that

‖ui − c(si)‖ = min
s∈R

‖ui − c(s)‖ ,
therefore, the following orthogonality

(
ui − c(si)

)⊥ċ(si )

holds.
Taylor’s formula yields

F(ui) = F(c(si))+ F ′(c(si))
(
ui − c(si)

) +O
(
‖ui − c(si)‖2

)
. (10)

If we multiply through (10) with the Moore-Penrose inverse (F ′(c(si)))†, and from
F(c(si)) = 0, it follows that

(F ′(c(si)))†F(ui) =
(
ui − c(si)

) +O
(
‖ui − c(si)‖2

)
.

Thus the assertion

‖c(si)− ui‖ ≤ O
(
h2) (11)

follows from ‖F(ui)‖ ≤ O(h2).
Setting �si = si+1 − si , and using the fact that ċ(s)�ċ(s) = 1 implies ċ(s)⊥c̈(s),

Taylor’s formula yields

‖c(si+1)− c(si)‖2 = ‖ċ(si)�si + 1

2
c̈(si )(�si)

2 +O((�si )
3)‖2

= (�si )
2 +O

(
(�si)

4
)
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and consequently

‖c(si+1)− c(si)‖ = �si(1 +O((�si)
2)). (12)

From estimates (7), (11) and (12), it is straightforward to get the terms O(h) and
O(�si) can be used interchangeably, thus it is justified to replace O(�si) by O(h)

in the estimates below.
From the orthogonality relations (ui − c(si))⊥ċ(si ) and (ui+1 − c(si+1))⊥ċ(si+1)

and Taylor’s formula we obtain
(
ui − c(si)

)�(
c(si+1)− c(si)

)

= (
ui − c(si)

)�(
ċ(si )�si +O

(
(�si )

2
)) ≤ O

(
h2

)
O

(
(�si)

2
) = O

(
h4

)
.

Similarly,
(
ui+1 − c(si+1)

)�(
c(si+1)− c(si)

) ≤ O
(
h4

)
. Thus we obtain

‖ui+1 − ui‖2 = ‖(ui+1 − c(si+1))+ (c(si+1)− c(si))+ (c(si)− ui)‖2

= ‖c(si+1)− c(si)‖2 +O
(
h4).

Taking square roots and using (12), we get

‖ui+1 − ui‖ = ‖c(si+1)− c(si)‖ + 1

2

O
(
h4

)

‖c(si+1)− c(si)‖
= ‖c(si+1)− c(si)‖ +O

(
h3

)
.

(13)

Summing up all terms ‖ui+1 − ui‖, ‖c(si+1) − c(si)‖, and arclengths between the
nodes of cp, using (12) and (13), we can get

∑ ∥∥ui+1 − ui
∥∥ =

∑ ∥∥c(si+1)− c(si)
∥∥ +O

(
h2),

∑ ∥∥c(si+1)− c(si)
∥∥ =

∑
�si +O

(
h2).

This implies

‖cp(si)− ui‖ ≤ O
(
h2). (14)

Let

s = τsi + (1 − τ)si+1, τ ∈ [0, 1],
then from Taylor’s formula and the estimates (11) and (14), it follows that

‖c(s)− cp(s)‖
= ‖c(τsi + (1 − τ)si+1)− cp(τsi + (1 − τ)si+1)‖
≤ ‖[τc(si)+ (1 − τ)c(si+1)] − cp(τsi + (1 − τ)si+1)‖ +O

(
h2)

≤ ‖[τc(si)+ (1 − τ)c(si+1)] − [τui + (1 − τ)ui+1]‖ +O
(
h2)

≤ τ‖c(si)− ui‖ + (1 − τ)‖c(si+1)− ui+1‖ +O
(
h2)

≤ O
(
h2).

This completes the proof of assertion (3).
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When the step length h is no more than the granularity hmax of c(s), that is
h ∈ (0, hmax], theoretically, the nonlinear system M(u) = 0 in (2) has only one solu-
tion, besides uk . Numerically, we can find such a point by certain suitable iterative
method, such as Newton’s method or Newton’s method with either “line search” or
“trust region” step control in [5, 18]. Therefore, “curve-jumping” does not happen
in the process of curve-tracing. In contrast with other continuation methods, the new
continuation method is more robust and efficient for tracing some complex curves in
practice.

3 Numerical examples

In this section, numerical results are presented to prove our new corrector strategy
better than other corrector strategies. Our main contribution in this paper is on the
corrector, so for the different continuation methods, we adopt the same predictor
strategy, iterative method and strategy for the steplength selection.

Our numerical tests are carried out using Matlab 2008a running on a PC with
Windows XP operation system, Intel(R) Core(TM)2 Duo P8600 2.40GHz processor
and 2GB of memory.

Throughout the remainder of this section, it will be convenient to use the following
notations.

– A: Continuation method with Plane Corrector;
– B: Continuation method with Nearest Point Corrector;
– C: New continuation method with Sphere Corrector;
– Y: “Curve-jumping” happens in the process of curve-tracing;
– N: “Curve-jumping” does not happen in the process of curve-tracing;
– Number1: Number of the corrector points generated by continuation

methods;
– Number2: Total number of Newton iteration in the corrector step;
– T: Elapsed time of tracing the whole curve.

Example 1 Consider the two homocentric circles defined by F(x, y) = 0, where

F(x, y) =
2∏

i=1

(
x2 + y2 − r2

i

)
, r1 = 1, r2 > 1. (15)

A smaller r2 implies two closer homocentric circles. Our goal is numerically tracing
the circle defined by x2+y2−1 = 0, denoted by S. Two numerical tests are designed
to answer the following two questions:

– For the given step length, which method of algorithms A,B,C can successfully
trace one of two homocentric circles closer to each other?

– For the given radius r2, which method of algorithms A,B,C can successfully
trace one of two homocentric circles by a larger step length?
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Fig. 3 For the different radius r2, figures of curve-tracing with the fixed steplength

In the following figures, the two homocentric circles are the curves defined by
F(x, y) = 0 in (15) with different r2, the circle with smaller radius is the curve need
to be traced and the points denoted by ‘∗’ are the generated points by algorithms
A,B,C.

Test 1. In this test, for different values of the radius r2, we apply algo-
rithms A,B,C with the same steplength to trace the circle S from
the start point (1, 0). The figures in Fig. 3 show whether “curve-
jumping” happens in the process of curve-tracing by algorithms
A,B,C respectively.

Table 1 shows whether “curve-jumping” happens for different radii,
and if “curve-jumping” does not happen, it presents the number of
corrector points and the elapsed time of tracing the whole curve by
algorithms A,B,C respectively.

Table 1 For the different radius r2, results of curve-tracing with the fixed steplength h

r2 Jumping Number1 T (seconds)

A B C A B C A B C

1.10 Y Y Y – – – – – –

1.25 Y Y N – – 11 – – 0.031

1.40 N N N 22 12 11 0.0037 0.0064 0.0027
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Fig. 4 For the fixed radius r2, figures of curve-tracing with the different steplengths

Test 2. In this test, for the same radius r2, we apply algorithms A,B,C with
different steplengths to trace the circle S from the start point (1, 0).
The figures in Fig. 4 show whether the “curve-jumping” happens in
the process of curve-tracing by algorithms A,B,C respectively.

Table 2 shows whether “curve-jumping” happens in the process of
curve-tracing by algorithms A,B,C with different steplengths, and if
“curve-jumping” does not happen, it presents the number of corrector
points and the elapsed time of tracing the whole curve by algorithms
A,B,C.

Conclusion: From the figures in Fig. 3 and results in Table 1, we can see that for
a given steplength, say r2 = 1.2, Algorithm A and Algorithm B both
jump from the circle S to another circle. From the figures in Fig. 4

Table 2 For the fixed radius r2, results of curve-tracing with the different steplengths

Steplength h Jumping Number1 T (seconds)

A B C A B C A B C

0.3 N N N 19 20 20 0.0030 0.0083 0.0039

0.6 Y Y N – – 31 – – 0.0072

0.9 Y Y Y – – – – – –
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Fig. 5 Corrector points generated by algorithms A,B,C

and results in Table 2, we can see that for the fixed two homocentric
circles, only Algorithm C can successfully trace the curve S with a
comparatively large steplength, say h = 0.6. Therefore, in some sense,
we can say that Algorithm C is more robust and suitable for tracing
curves which are close to each other.

Example 2 Consider the curve defined by

F(x, y) =
(
e
−x2−y+9

α + e
−y−x+2

α

)β

+ e
−4x2−y2+36

5 − 1,

where α, β are real numbers.

Test 1. α = 2.5, β = − 1
2 .

We trace the solution curve of F(x, y) = 0 by algorithms A,B,C with
the same steplength h = 0.6 from the start point (-8,10) respectively, see
Fig. 5a–c.

When we trace the curve by Algorithm A and Algorithm B, both pro-
cesses happen catastrophe, that is, the methods trace the curve repeatedly,
accordingly they fail to trace the whole curve. However, Algorithm C can
trace the curve successfully. It is shown that Algorithm C is more robust for
tracing these complex curves (with turning points).

Test 2. α = 3, β = − 3
5 .

We trace the solution curve by algorithms A,B,C with the same
steplength h = 0.8 from the start point (-8,10) respectively, see Fig. 6a–c.
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Fig. 6 Corrector points generated by algorithms A,B,C
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Table 3 Tracing the curve by algorithms A,B,C

Algorithms Jumping Number1 Number2 T (seconds)

A N 96 381 0.025

B N 88 354 0.021

C N 45 224 0.014

From the figures, we can see that algorithms A,B,C all trace the solu-
tion curve successfully, and the numbers of corrector points generated by
Algorithm A and Algorithm B are both far bigger than that by Algorithm C.
The reason is that the predictor steplength is very small at the turning points
when we apply algorithms A,B to trace the curve. However, by Algorithm
C, the steplength can keep larger in the process of curve-tracing by algo-
rithms A,B,C. It is shown that Algorithm C is more efficient for tracing
this class of complex curves, comparing with Algorithm A and Algorithm
B . The detail of the results of curve-tracing by algorithms A,B,C is shown
in Table 3.

4 Conclusion

The continuation methods have long served as powerful tools to trace solution curves
of parameterized systems. However, for some complicated cases in practice, such as
the case that solution curves are close to each other or the case that the curve turns
acutely at some points, the classical continuation methods are unstable.

A simple but robust corrector–sphere corrector is presented in this paper, and
combining the well-known Euler predictor, we describe a particular version of contin-
uation method: Euler-Sphere Predictor-Corrector Method. As our discussion in this
paper, our new continuation method is more robust and can avoid “curve-jumping” in
the process of tracing curves close to each other, and more efficient than the classical
continuation methods for tracing curves containing many inflection points.
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