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Abstract We develop a simple yet effective and applicable scheme for constructing
derivative free optimal iterative methods, consisting of one parameter, for solving
nonlinear equations. According to the, still unproved, Kung-Traub conjecture an
optimal iterative method based on k+1 evaluations could achieve a maximum conver-
gence order of 2k. Through the scheme, we construct derivative free optimal iterative
methods of orders two, four and eight which request evaluations of two, three and
four functions, respectively. The scheme can be further applied to develop iterative
methods of even higher orders. An optimal value of the free-parameter is obtained
through optimization and this optimal value is applied adaptively to enhance the con-
vergence order without increasing the functional evaluations. Computational results
demonstrate that the developed methods are efficient and robust as compared with
many well known methods.
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1 Introduction

Many problems, in science and engineering, result in solving nonlinear equation
f (x) = 0. The Newton method is the best known, and probably the most used
method, for solving nonlinear equation which is given as (NM)

xn+1 = xn − f (xn)

f ′(xn)
, n = 0, 1, 2, 3, . . . , and |f ′(xn)| �= 0. (1)

It is well-known that the Newton method converges quadratically in some neighbor-
hood of the solution. There exists numerous modifications of the Newton method
which improve the rate of convergence (see [4, 10, 17, 20–23, 25, 32] and references
therein). For fourth order methods we refer to [4, 11, 16, 18, 32], for eighth order
convergent methods we refer to [8, 12, 30] and references therein and for sixteenth
order iterative method we refer to the literature [10, 12, 17, 20–24]. We notice that
if the derivative of the function vanishes, that is |f ′(xn)| = 0, during the iterative
process then the sequence generated by the Newton iteration (1) or the methods that
require computation of derivatives, e.g., see [8, 16, 18, 24] are not defined. Accord-
ingly we are interested in derivative free methods. One of the purposes of this paper is
to illustrate the asymptotic behavior of different derivative free methods for solving
nonlinear equations.

In most test problems for nonlinear equations computing derivatives are an easy
exercise. However, for many practical problems computing the derivative might be
a cumbersome task and we have to relay on methods free of derivatives or tools
for automatic differentiation [see [14] Chap. 6]. In the derivative free method of
Steffensen [31] the derivative f ′(xn) in Newton’s method (1) is replaced by the finite
difference (f (xn+f (xn))−f (xn))/f (xn) or (f (xn+αnf (xn))−f (xn))/(αnf (xn))

where {αn} is a bounded sequence. The Steffensen’s method will have local and
quadratic rate of convergence. The parameter αn can be chosen to improve the rate of
convergence [32] or the stability [3] of the family of methods. However one drawback
of the derivative free methods, based upon the Steffensen scheme, is huge cancela-
tion of significant digits in the expression f (x + αf (x))− f (x). Therefore, to study
the asymptotic behavior one needs to use arithmetic with much higher precision than
it would be necessary for methods that use derivatives instead of finite differences.
For this purpose, we use the ARPREC library which supports arbitrarily high level
of numeric precision [5].

An attractive feature of the Steffensen’s method is that it generalizes to function
f : X �→ X on a Banach space X [1, 9]. The finite difference operator for Stef-
fensen’s method will now be the bounded linear operator [x, x+ f (x); f ] where the
finite difference operator [u, v; f ] satisfies [u, v; f ](v − u) = f (v)− f (u) and the
method can be written as

xn+1 = xn − [xn, xn + αnf (xn); f ]−1f (xn), n = 0, 1, 2, 3, . . . . (2)

The central difference operator [xn − αnf (xn), xn + αnf (xn); f ] [3] will require
one extra function evaluation for each iteration but will give higher order approx-
imation of f ′(xn) than using the the operator [xn, xn + αnf (xn); f ]. A further
generalization of Steffensen’s method can be found by replacing the finite difference
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[x, x+f (x); f ] by using [x, g(x); f ] where g is a smooth function [26] or a ’central
difference operator’ [g1(x), g2(x); f ] [2].

In this work, we contribute a scheme for constructing derivative free optimal iter-
ative methods. According to the Kung-Traub conjecture an iterative method based
upon k + 1 evaluations in each iteration could achieve an optimal convergence order
of 2k [19]. We construct optimal iterative methods of order two, four and eight which
request two, three and four functional evaluations in each iteration, respectively. From
this derivation, the construction of optimal convergence order 2k follows directly.
Kung and Traub [19] derive an optimal method based on inverse interpolation. Opti-
mal methods with convergence order 2k can be based on different interpolations
[12, 34].

The constructed iterative methods have one free parameter. We propose value of
the free parameter and apply it adaptively to achieve higher convergence order with-
out increasing the functional evaluations. The Section 2 presents our construction of
methods up to order eight and formally proves the rate of convergence and gives the
asymptotic error constant. The section is ended with a conjecture on the order and
error constant for iterative methods using k + 1, k ≥ 1, function evaluations based
on this construction. In Section 3 we make a numerical comparison with other well
known methods using derivatives and in the last part of the testing we make a numer-
ical comparison with derivative free methods. We also indicate the robustness of the
developed methods by showing convergence with different starting points.

2 Scheme for constructing optimal derivative free iterative methods

Our motivation is to develop a scheme for constructing optimal derivative free iter-
ative methods. Let us approximate the derivative in the Newton’s method (1) as
follows

f ′(xn) ≈ η1 f (xn)+ η2 f (xn + α f (xn)). (3)

To determine the real constants η1 and η2 in the preceding equation, we consider
the equation is valid with equality for the two functions: f (t) = 1 and f (t) = t . This
yields the equations

η1 + η2 = 0,
η1 xn + η2 (xn + α f (xn)) = 1.

}
(4)

Solving the preceding equations and substituting the constants η1, η2 in the (3), we
obtain

f ′(xn) ≈ f (xn + α f (xn))− f (xn)

α f (xn)
. (5)

Combining the Newton method (1) and preceding approximation for the derivative,
we propose the method (M-2)

xn+1 = xn − α
f (xn)

2

f (xn + α f (xn))− f (xn)
. (6)
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This is the well known Steffensen’s method for α = 1. To construct higher order
method from the Newton’s method (1), we use the following generalization of the
Traub’s theorem (see [32, Theorem 2.4] and [28, Theorem 3.1]).

Theorem 1 Let g1(x), g2(x), . . . , gs(x) be iterative functions with orders
r1, r2, . . . , rs , respectively. Then the composite iterative functions

g(x) = g1(g2(· · · (gs(x)) · · · ))
define the iterative method of the order

∏s
j=1 rj .

From the preceding theorem, combination of the Newton method (1) and the
second order method (6) produces the following fourth order iterative method⎧⎪⎪⎨⎪⎪⎩

yn = xn − α
f (xn)

2

f (xn + α f (xn))− f (xn)
,

xn+1 = yn − f (yn)

f ′(yn)
.

(7)

The convergence order of the preceding method is four and it requires four evalua-
tions during each step. Therefore according to the Kung and Traub conjecture, for the
preceding method to be optimal it must require only three function evaluations. To
construct derivative free optimal fourth order method, we approximate the derivative
in the preceding method as follows

f ′(yn) ≈ ω1 f (xn)+ ω2 f (xn + α f (xn))+ ω3 f (yn) (8)

We assume the (8) is valid with equality for the three functions: f (t) = 1, f (t) = t

and f (t) = t2 to determine the real constantsω1,ω2 andω3. This yields the equations

ω1 + ω2 + ω3 = 0,
ω1 xn + ω2 (xn + α f (xn))+ ω3 yn = 1,
ω1 x

2
n + ω2 (xn + α f (xn))

2 + ω3 y
2
n = 2 yn.

⎫⎬⎭ (9)

Solving the preceding equations and substituting the values in the (8), we obtain

f ′(yn) ≈ xn − yn + α f (xn)

(xn − yn)α
− (xn − yn) f (xn + α f (xn))

(xn − yn + α f (xn)) α f (xn)

− (2 xn − 2 yn + α f (xn)) f (yn)

(xn − yn) (xn − yn + α f (xn))
. (10)

By putting the (9) in matrix notation⎡⎣ 1 1 1
xn xn + α f (xn) yn
x2n (xn + α f (xn))

2 y2n

⎤⎦⎛⎝ ω1
ω2
ω3

⎞⎠ =
⎛⎝ 0

1
2yn

⎞⎠ (11)

the coefficient matrix will be the Vandermonde matrix. The coefficient matrix is
nonsingular provided the three points xn, xn+αf (xn), and yn are different and if the
method is well defined the Vandermondematrix will be nonsingular if f (xn) �= 0 and
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f (xn + αf (xn)) �= 0. Combining the method (7) and the preceding approximation
for the derivative, we propose the method (M-4)

⎧⎪⎪⎨⎪⎪⎩
yn = xn−α f (xn)

2

f (xn+α f (xn))−f (xn) ,
xn+1 = yn− f (yn)

xn−yn+α f (xn)

(xn−yn)α − (xn−yn)f (xn+α f (xn))

(xn−yn+α f (xn)) α f (xn)
− (2 xn−2 yn+α f (xn)) f (yn)

(xn−yn) (xn−yn+α f (xn))

.
(12)

The method (M-4) is totally free of derivatives. It requests only three evaluations and
it will be shown that the method (M-4) is fourth order convergent. It is an optimal
method according to the Kung-Traub conjecture.

From the Theorem 1, combination of the Newton method (1) and the fourth order
method (12) produces the following eighth order iterative method

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
yn = xn−α f (xn)

2

f (xn+α f (xn))−f (xn) ,
zn = yn− f (yn)

xn−yn+α f (xn)

(xn − yn)α
− (xn−yn)f (xn+α f (xn))

(xn−yn + α f (xn)) α f (xn)
− (2 xn−2 yn+α f (xn)) f (yn)

(xn−yn) (xn−yn+α f (xn))

,

xn+1 = zn− f (zn)

f ′(zn)
.

(13)

To construct derivative free optimal eighth order method, we approximate the
derivative as follows

f ′(zn) ≈ ν1 f (xn)+ ν2 f (xn + α f (xn))+ ν3 f (yn)+ ν4 f (zn). (14)

To determine the real constants ν1, ν2, ν3 and ν4 in the preceding equation, we
consider the equation is valid with equality for the four functions: f (t) = 1, f (t) = t ,
f (t) = t2 and f (t) = t3. Which yields the equations

ν1 + ν2 + ν3 + ν4 = 0,
ν1 xn + ν2 (xn + α f (xn))+ ν3 yn + ν4 zn = 1,
ν1 x

2
n + ν2 (xn + α f (xn))

2 + ν3 y
2
n + ν4 z

2
n = 2 zn,

ν1 x
3
n + ν2 (xn + α f (xn))

3 + ν3 y
3
n + ν4 z

3
n = 3 z2n.

⎫⎪⎪⎬⎪⎪⎭ (15)

The preceding equations have a unique solution if f (xn) �= 0 �= f (xn + αf (xn))

and f (yn) �= 0, i.e. the method is not terminating with the solution after a finite
number of steps. Substituting the values in the (14), we obtain the approximation for
the derivative at the point zn

f ′(zn)≈ − (yn − zn)(xn + α f (xn)− zn)

(xn − zn)α(xn − yn)
+ (yn − zn)(xn − zn)f (xn + α f (xn))

(xn + α f (xn)− zn)(xn + α f (xn)− yn)α f (xn)

+ (xn − zn)(xn + α f (xn)− zn)f (yn)

(yn − zn)(xn − yn + α f (xn))(xn − yn)

+ (xnα−2α zn+α yn) f (xn)+xn
2+ (−4 zn + 2 yn) xn+3 zn2 − 2 ynzn

(yn − zn)(xn−zn)(xn−zn+α f (xn))
f (zn). (16)
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Combining the method (13) and the preceding approximation for the derivative, we
propose the method (M-8)⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

yn = xn−α f (xn)
2

f (xn+α f (xn))−f (xn) ,
zn = yn− f (yn)

xn−yn + α f (xn)

(xn−yn)α − (xn−yn)f (xn+α f (xn))

(xn−yn+α f (xn)) α f (xn)
− (2 xn−2 yn+α f (xn)) f (yn)

(xn−yn) (xn−yn + α f (xn))

,

xn+1 = zn− f (zn)

H1+H2+H3+H4
.

(17)

Here,

H1 = − (yn − zn)(xn + α f (xn)− zn)

(xn − zn)α(xn − yn)
,

H2 = (yn − zn)(xn − zn)f (xn + α f (xn))

(xn + α f (xn)− zn)(xn + α f (xn)− yn)α f (xn)
,

H3 = (xn − zn)(xn + α f (xn)− zn)f (yn)

(yn − zn)(xn − yn + α f (xn))(xn − yn)
,

H4 = (xnα−2 α zn+α yn)f (xn)+xn
2+ (−4 zn+2 yn) xn+3 zn2−2 ynzn

(yn − zn)(xn − zn)(xn − zn + α f (xn))
f (zn).

The contributed methods (6), (12) and (17) are totally free of derivatives. We prove
the convergence of the iterative methods (6), (12) and (17) through the following
theorem.

Theorem 2 Let γ be a simple zero of a sufficiently differentiable function f : D ⊂
R �→ R in an open interval D. If x0 is sufficiently close to γ , the convergence order
of the method (6) is 2 and the error equation for the method is given as

en+1 = c2 (1+ α c1)

c1
e2n +O

(
e3n

)
, (18)

the convergence order of the method (12) is 4 and the error equation for the method
is given as

en+1 = c2 (1+ α c1)
2
(
c22 − c1 c3

)
c31

e4n +O
(
e5n

)
, (19)

and the convergence order of the method (17) is 8 and the error equation for the
method is given as

en+1 = c22(1+ α c1)
3
(
c32 − c1 c3 c4

) (
c24 − c1 c2

)
c71

e8n +O
(
e9n

)
. (20)

Here, en = xn − γ, cm = f m(γ )/m! with m ≥ 1.

Proof The Taylor’s expansion of f (x) around the solution γ is given as

f (xn) = c1en + c2e
2
n + c3e

3
n + c4e

4
n +O

(
e5n

)
, (21)
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similarly the Taylor expansion of f (xn + α f (xn)) around γ

f (xn + α f (xn)) =
∞∑
i=1

ci (xn − γ + α f (xn))
i ,

substituting from the (21) into the previous equation, we have

f (xn + α f (xn)) = c1(1+ α c1)en + c2

(
1+ 3 c1α + α2c1

2
)
en

2 +O(en
3). (22)

Here, we have accounted for f (γ ) = 0. Substituting (21) and (22) into the first step
of the method (M-4) (12), we obtain

yn = γ + c2(1+ α c1)en
2

c1

+
(
c3c1 (α c1 + 2) (1+α c1)+

(−α2c1
2 − 2α c1 − 2

)
c2

2
)
en

3

c12
+O
(
e4n

)
.

(23)

In the preceding equation, we notice that the method (M-2) is second order with the
error (18). By the Taylor’s expansion of f (yn) around the solution γ

f (yn) =
∞∑
k=0

ck (yn − γ )k
(
− f (xn)

f ′(xn)

)2
+ . . . ,

substituting from the (23) into the preceding equation yields

f (yn) = c2(1+ α c1)en
2

+ (c3c1
(
α c1 + 2) (1+ α c1)+ c2

2
(−α2c1

2 − 2 α c1 − 2
))
en

3

c1
+O
(
e4n

)
.

(24)

Substituting from (21), (22) and (24) into the second step of the method (M-4) (17),
we get the error equation for the method (M-4)

zn = γ − c2(1+ α c1)
2
(−c2

2 + c1c3
)
en

4

c13

− 1

c14

[(
1+α c1

) ((
2 c12α2+4+4α c1

)
c2

4+
(
−4 c3α2c1

3−10 c3α c1
2−8 c1c3

)
c2

2

+
(
2 c4c12 + c1

4c4α
2+3 c4α c1

3
)
c2 +2 c12c32+c1

4α2c3
2+3 c32α c1

3
)
en

5
]

×O
(
e6n

)
. (25)

In the preceding equation, we notice that the method (M-4) is fourth order with the
error (19). By the Taylor’s expansion of f (zn) around the solution γ

f (zn) =
∞∑
k=0

ck (zn − γ )k,
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substituting from the (25) into the preceding equation, we get

f (zn) = − (1+ α c1)
2
(
c1c3 − c2

2
)
en

4

c12

− 1

c13

[(
2 c1

2c2
4 − 4 c2

2c3c1
3 + (c32 + c2c4

)
c1

4
)
α2

+
((

3 c2c4 + 3 c3
2
)
c1

3 − 10 c2
2c3c1

2 + 4 c1c2
4
)
α + 4 c2

4 − 8 c1c2
2c3

+(2 c2c4 + 2 c3
2)c1

2
]
+ (1+ α c1)en

5 +O
(
e6n

)
. (26)

Finally substituting from the (21), (22), (23), (24), (25) and (26) into the third step
of the method (17), we obtain the error equation for the method

en+1 =
c22(1+ α c1)

3
(
c32 − c1 c3 c4

) (
c24 − c1 c2

)
c71

e8n +O
(
e9n

)
. (27)

Therefore the contributed method (17) is eighth order convergent. This completes our
proof.

In this work, we have contributed the methods (6), (12), (17). For the parameter
α = 1, the method (6) produces the well known second order Steffensen method [4].

To find the optimal value of the free parameter α, in the contributed methods
(6), (12) and (17), we minimize the absolute value of the asymptotic error constant.
For α = −c−1

1 asymptotic error constant vanishes (see the (18), (19) and (20)) and
thereby the convergence order of the methods (6), (12) and (17) increases to three,
five and nine, respectively. Since c1 is not known a priori, we define the parameter α
adaptively as follows

αn+1 = − xn − xn−1

f (xn)− f (xn−1)
, n ≥ 1. (28)

For the first iterate, we choose a small α1. For evaluating, αn through the preceding
equation, we are using two previous iterates and it does not increase functional evalu-
ations. However, the methods will now have memory [32]. A similar adaptive choice
of a free parameter in a fourth order derivative free method is proposed by Peng et al
[29]. However, the main reason for their choice is the stability of the method and not
speed. Other adaptive choices are discussed in [13, 32].

In [27] a rich family of fourth order methods is introduced using three function
evaluation. Methods of this family will be optimal in the sense of Kung and Traub
and have an asymptotic error constant on the form

C4(α) = (1+ αf ′(γ ))�, (29)

where � is a nonzero constant. It follows from Theorem 2 that the asymptotic error
constant for method (M-4) is

C̃4(α) = (1+ αf ′(γ ))2�̃. (30)
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The constants � and �̃ depend on c1, c2 and c3. The different asymptotic error
constants play an important role with an adaptive choice of the parameter α where
the method (M-4) with the adaptive choices (28) will have a higher rate of conver-
gence than the corresponding Method(II) in [27]. A family of optimal fourth order
derivative free methods with the same asymptotic error constant as (19) for α = 1 is
presented in [11]. However, these methods are not equivalent to (M-4).

The obtained three-point method (M-8) given by (17) is similar to the already
known derivative free three-point methods proposed in [11, 13, 33, 34], however,
they are not the same methods. Doing the same analysis as for (M-4) and the
methods in the [27] it is interesting to note that the asymptotic rate of conver-
gence for the three point method (M-8) with the adaptive choice (28) will be
slightly lower than the family of three point methods in [13] with the same adaptive
choice.

We conjecture that, for a 2k- order iterative method formed by the scheme
developed at the beginning of the §2, the error constant will behave like

en+1 = C
(1+ α c1)

k

c2
k−1

1

e2
k

n .

Here, k = 1, 2, 3, . . . and C is a constant that depends upon cm = fm(γ )/m! with
m = 1, 2, . . . , k+1. The general construction for higher order method devised in this
paper shows that it is possible to construct derivative free optimal methods for any 2k

order with a constant α and with an adaptive choice the rate can be super 2k–order.

3 Numerical examples

Let us review some optimal iterative methods for numerical comparison. Peng et al.
[29] introduced an adaptive fourth order derivative free method.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yn = xn − αn
f (xn)

2

f (xn)− f (xn − αnf (xn))
,

xn+1 = xn − αn
f (xn)

2

f (xn)− f (xn − αnf (xn)){
1+ f (yn)

f (xn)
+
(
1+ f (xn)

f (xn − αnf (xn))

)(
f (yn)

f (xn)

)2}
(31)

where the adaptive parameter is chosen as

αn+1 =

⎧⎪⎨⎪⎩
−sign(f (xn)− f (xn − αnf (xn))) provided |εn| < 10−3

1

εn
otherwise
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where εn = f (x)− f (xn − αnf (xn))

αnf (xn)
and the initial α0 = 1. The classical Kung-

Traub optimal eight order method is given as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yn = xn − α
f (xn)

2

f (wn)− f (xn)
,

zn = yn − f (xn)f (wn)

f (yn)− f (xn)

{
1

[wn, xn; f ] −
1

[wn, yn; f ]
}

xn+1 = zn − f (xn)f (wn)f (yn)

f (zn)− f (xn)

{(
1

f (zn)− f (wn)

)(
1

[yn, zn; f ] −
1

[wn, yn; f ]
)

−
(

1

f (yn)− f (xn)

)(
1

[wn, yn; f ] −
1

[wn, xn; f ]
)}

.

(32)

Here, [s, t; f ] = f (s) − f (t)

s − t
for s �= t and wn = xn + αf (xn). The eighth order

derivative free method of Thukral [33] is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

yn = xn − α
f (xn)

2

f (wn)− f (xn)
,

zn = yn − [wn, xn; f ]f (yn)
[xn, yn; f ][wn, yn; f ]

xn+1 = zn − Ĥ0
f (zn)

[yn, zn; f ] − [xn, yn; f ] + [xn, zn; f ]

(33)

where

Ĥ0 =
(
1− f (zn)

f (wn)

)−1 (
1+ 2f (yn)3

f (wn)2f (xn)

)−1

.

The convergence order ξ ∈ [1,∞) of an iterative method is defined as

lim
n→∞

|en+1|
|en|ξ = C �= 0,

and furthermore this leads to the following approximation of the computational order
of convergence (COC) (see [15] and the references therein):

ρ ≈ ln |(xn+1 − γ )/(xn − γ )|
ln |(xn − γ )/(xn−1 − γ )| . (34)

Computations are done in the programming language C++. Scientific compu-
tations in many areas of science and engineering, for example climate modeling,
planetary orbit calculations, Colomb n−body atomic systems, scattering amplitudes
of quarks, nonlinear oscillator theory, Ising theory, quantum field theory, demand
very high degree of numerical precision [5, 24]. For applications of high precision
computations in experimental mathematics and physics, we refer to [7, and references
therein]. Many applications of real-number computation require to evaluate elemen-
tary functions such as exp(x), tan−1(x) to high precision (see for example [6]).
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Table 1 Number of functional evaluations, COC for various iterative methods

f (x) x0 Method (31) Method (32) Method (33) NM M-2 M-4 M-8

f1(x) 1.2 (6,4.24) (16,8) (16,8) (20,2) (16,2.4) (15,4.5) (16,8.5)

f2(x) −1.0 (7,4.24) (20,8) (20,8) (22,2) (18,2.4) (18,4.4) (16,8.5)

f3(x) 1.5 (6,4.24) (16,8) (16,8) (20,2) (16,2.4) (15,4.5) (16,8.5)

f4(x) 0.5 (5,5.69) (16,11) (16,11) (18,2) (14,3.5) (15,5.7) (16,11.6)

f5(x) 1.3 (6,4.24) (24,3) (16,8) (16,8) (16,4.4) (15,4.5) (16,8.5)

f6(x) 1.2 (7,4.24) (20,8) (20,8) (26,2) (18,2.4) (18,4.5) (20,8.5)

For performing high precision computation, we are using the high precision C++
library ARPREC [5]. The ARPREC library supports arbitrarily high level of numeric
precision [5]. In the program, the precision in decimal digits is set with the com-
mand “mp::mp init(2005)”[5]. For convergence it is required: |xn+1 − xn| < ε and
|f (xn)| < ε. Here, ε = 10−320. We test the methods for the following functions

f1(x) = x3 + 4 x2 − 10, γ ≈ 1.365.

f2(x) = x exp
(
x2
)
− sin2(x)+ 3 cos(x)+ 5, γ ≈ −1.207.

f3(x) = sin2(x)− x2 + 1, γ ≈ ±1.404.

f4(x) = tan−1(x) γ = 0.

f5(x) = x4 + sin
(
π/x2
)
− 5, γ = √

2.

f6(x) = e(−x2+x+2) − 1, γ = 2.

Computational results are reported in Tables 1, 2, 3, 4, 5 and 6. Table 1 presents
pairs of numbers where the first element is the number of functional evaluations to
reach the desired accuracy and the second element is COC – given in (34) – during
the second last iterative step for various methods. While the Tables 2, 3, 4, 5 and 6
reports |xn+1 − xn|, respectively, for the method (M-4), the method (M-8), (32), (33)
and (31). In the method (32) and (33), α = 0.01.

Table 2 Generated |xn+1 − xn| with n ≥ 0 by the method (M-4). For x0 see the Table 1

f1(xn) f2(xn) f3(xn) f4(xn) f5(xn) f6(xn)

1.6× 10−1 2.0× 10−1 9.5× 10−2 5.0× 10−1 1.1× 10−1 7.3× 10−1

8.3× 10−5 4.4× 10−4 2.7× 10−5 5.6× 10−3 7.1× 10−5 6.4× 10−2

3.1× 10−20 1.5× 10−15 1.2× 10−21 3.4× 10−15 6.8× 10−20 3.5× 10−6

1.3× 10−88 8.9× 10−67 4.5× 10−94 6.5× 10−84 2.0× 10−86 8.5× 10−25

7.1× 10−393 1.2× 10−294 1.6× 10−416 2.1× 10−476 1.3× 10−382 9.3× 10−108

*********** 1.7× 10−1308 *********** *********** *********** 7.4× 10−477
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Table 3 Generated |xn+1 − xn| with n ≥ 0 by the method (M-8). For x0 see Table 1

f1(xn) f2(xn) f3(xn) f4(xn) f5(xn) f6(xn)

1.6× 10−1 2.0× 10−1 9.5× 10−2 4.9× 10−1 1.1× 10−1 7.9× 10−1

3.3× 10−9 2.5× 10−6 4.0× 10−10 1.4× 10−5 1.1× 10−8 8.6× 10−4

3.5× 10−75 2.0× 10−47 1.5× 10−81 1.1× 10−60 1.9× 10−69 1.8× 10−26

7.6× 10−634 1.0× 10−395 3.0× 10−686 9.5× 10−703 1.6× 10−583 1.5× 10−218

*********** *********** *********** *********** *********** 7.1× 10−1846

An optimal iterative method for solving nonlinear equations must require least
number of functional evaluations. In the Table 1, we notice that the developed
methods are performing at least as good as existing optimal methods. Compari-
son among Tables 2, 3, 4, 5 and 6 reveal that the developed method are more
efficient at reducing the error |xn+1 − xn| (the distance between two iterates – a
measure of the residual). Thus developed methods are not only taking less itera-
tions but they are also producing less residuals compared to the existing optimal
methods.

3.1 Robustness of iterative methods with respect to initialization

It is known that iterative methods are locally convergent [4]. An itera-
tive method may not converge if the initial guess is far from the zero of
the function or if the derivative of the function vanishes during the itera-
tive processes. Therefore we perform numerical tests to examine the robust-
ness of iterative methods for several initialization. We find the zeros of the
function

f (x) = cos2 (x)− x/5, (35)

for various initializations. Computational results are reported in the Table 7. In the
proposed methods (6), (12) and (17), for the first iterate α = 1.0 while for the succes-
sive iterates α is computed using the (28). Computational results are reported in the
Table 7. We notice that the developed methods do display a robustness with respect
to initialization.

Table 4 Generated |xn+1 − xn| with n ≥ 0 by the method (32). For x0 see the Table 1

f1(xn) f2(xn) f3(xn) f4(xn) f5(xn) f6(xn)

1.6× 10−1 2.0× 10−1 9.5× 10−2 5.0× 10−1 1.1× 10−1 7.9× 10−1

8.9× 10−8 1.6× 10−4 4.5× 10−9 1.7× 10−5 1.2× 10−8 6.6× 10−3

3.3× 10−58 2.8× 10−29 2.1× 10−67 1.7× 10−54 3.5× 10−64 4.5× 10−17

1.25× 10−461 1.9× 10−227 5.6× 10−534 1.5× 10−593 1.8× 10−508 2.2× 10−130

*********** 1.8× 10−1812 *********** *********** *********** 8.4× 10−1037
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Table 5 Generated |xn+1 − xn| with n ≥ 0 by the method (33). For x0 see the Table 1

f1(xn) f2(xn) f3(xn) f4(xn) f5(xn) f6(xn)

1.6× 10−1 2.0× 10−1 9.5× 10−2 4.9× 10−1 1.1× 10−1 7.9× 10−1

1.5× 10−7 2.8× 10−3 3.5× 10−9 4.3× 10−5 1.5× 10−8 2.7× 10−3

3.3× 10−56 8.3× 10−19 2.9× 10−68 4.3× 10−50 6.4× 10−63 5.6× 10−20

1.5× 10−445 4.2× 10−143 6.6× 10−541 4.5× 10−545 6.2× 10−498 2.0× 10−153

*********** 1.9× 10−1137 *********** *********** *********** 4.8× 10−1221

3.2 Numerical results for nonsmooth function

Here, we compare the methods M-2, M-4 and M-8 with the corresponding optimal
second, fourth and eighth order methods proposed in the enriching work [12] by
Cordero et al. for the following nonsmooth function

f (x) = |x2 − 9|.

The above function is of special interest because it has severe stability prob-
lems near the nonsmoothness [12, cf.]. Optimal derivative free methods of order 2n

developed by Cordero et al. [12] are⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

y0 = xk,

y1 = y0 + f (y0),

yj+1 = yj − f (yj )

aj

}
for j = 1, 2, 3, . . . , n,

xk+1 = yn+1,

where

aj =
j−1∑
i=0

⎛⎝ j−1∏
k=0,k �=i

yk − yj

yk − yi

⎞⎠ [yi, yj ; f ].

Table 6 Generated |xn+1 − xn| with n ≥ 0 by the method (31). For x0 see the Table 1

f1(xn) f2(xn) f3(xn) f4(xn) f5(xn) f6(xn)

1.3× 10−1 1.6× 10−7 9.4× 10−2 5.0× 10−1 8.4× 10−2 2.5× 100

3.6× 10−2 2.7× 10−1 1.4× 10−3 4.3× 10−5 2.9× 10−2 3.0× 10−1

3.7× 10−7 6.3× 10−2 9.0× 10−13 1.0× 10−25 6.8× 10−7 3.9× 10−3

5.8× 10−29 2.3× 10−6 4.5× 10−52 4.9e−145 4.9× 10−27 2.2× 10−11

2.3× 10−121 1.4× 10−24 1.4× 10−218 4.4× 10−824 1.9× 10−112 1.5× 10−45

9.8× 10−513 5.1× 10−101 6.6× 10−924 ********** 3.4× 10−474 1.9× 10−190

*********** 4.9× 10−425 *********** *********** *********** 4.2× 10−804
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Table 7 Performance of methods NM (1),M-2, M-4 andM-8 for initializations for the function (35)

x0 NM M-2 M-4 M-8

−0.1 div (18, 2.4) (24, 4.4) (32, 8.4)

0.0 (75, 1) (20, 2.4) (21, 4.4) (24, 8.4)

−10000 div (24, 2.4) (24, 4.4) (24, 2.4)

10000 div (24, 4.5) (24, 4.4) (24, 2.4)

Here, [yi, yj ; f ] denotes the divided difference (f (yi)− f (yj ))/(yi − yj ). Using
n = 1, 2, 3 – in the above algorithm – will produce, respectively, second, fourth and
eighth order methods. Let us represent these methods by C-2, C-4 and C-8. Table 8
reports our numerical work.

In the Table 8, we see that the developed methods are performing at least as well
as the recently developed methods by Cordero et al. [12].

Table 8 Numerical results for nonsmooth function

Initialization Methods |f (xn+1)| |xn+1 − xn| n ρ γ

x0 = 2 M-2 1.7× 10−878 3.5× 10−364 12 2.4 3.0

M−4 0.0 5.8× 10−874 7 4.5 3.0

M−8 0.0 5.0× 10−324 5 8.4 3.0

C−2 −− −− > ×104 −− −−
C−4 −− −− > ×104 −− −−
C−8 0.0 2.4× 10−982 5 8.0 3.0

x0 = 2.8 M−2 9.3× 10−847 4.9× 10−351 9 2.4 3.0

M−4 0.0 2.8× 10−1416 7 4.5 3.0

M−8 0.0 6.7× 10−1923 5 8.5 3.0

C−2 7.7× 10−1172 1.1× 10−586 31 2.0 3.0

C−4 9.6× 10−321 9.6× 10−322 1567 1.4 3.0

C−8 0.0 6.1× 10−1270 5 8.0 3.0

x0 = −2.8 M−2 4.8× 10−1773 1.0× 10−734 9 2.4 −3.0

M−4 0.0 1.1× 10−947 7 4.5 −3.0

M−8 0.0 6.7× 10−1923 5 8.5 −3.0

C−2 −− −− > ×104 −− −−
C−4 7.5× 10−321 7.5× 10−322 1572 1.4 −3.0

C−8 1.3× 10−890 1.3× 10−889 12 3.4× 10+02 −3.0

x0 = −10.0 M−2 9.5× 10−827 9.2× 10−343 10 2.4 −3.0

M−4 0.0 4.2× 10−941 7 4.5 −3.0

M−8 0.0 6.5× 10−1312 5 8.5 −3.0

C−2 −− −− > ×104 −− −−
C−4 −− −− > ×104 −− −−
C−8 2.0× 10−373 1.9× 10−372 13 1.4× 10+02 −3.0
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4 Conclusions

In this work, we have developed a scheme to generate families of higher order deriva-
tive free methods. By choosing the parameter adaptively the methods show a higher
rate of convergence than the correspondingmethod for a fixed value of the parameter.
Computational results demonstrate that family of methods are efficient and exhibit
better performance compared with other well known methods using derivatives and
derivative free methods.
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28. Petković, M.S.: On a general class of multipoint root-finding methods of high computational

efficiency. SIAM. J. Numer. Anal. 47(6), 4402–4414 (2010)
29. Peng, Y., Feng, H., Li, Q., Zhang, X.: A fourth-order derivative-free algorithm for nonlinear equations.

J. Comput. Appl. Math. 235, 2551–2559 (2011)
30. Soleymani, F., Sharifi, M., Mousavi, B.S.: An Improvement of Ostrowski’s and King’s techniques

with optimal convergence order eight. J. Optim. Theory Appl. 153(1), 225–236 (2012)
31. Steffensen, J.F.: Remarks on iteration. Scand. Actuar. J. 1933(1), 64–72 (1933)
32. Traub, J.F.: Iterative Methods for the Solution of Equations. Prentice Hall, New York (1964)
33. Thukral, R.: Eighth-order iterative methods without derivatives for solving nonlinear equations. ISRN

Appl. Math. (2011). http://www.hindawi.com/isrn/appmath/2011/693787/
34. Zheng, Q., Li, J., Huang, F.: An optimal Steffensen-type family for solving nonlinear equations. Appl.

Math. Comput 217(23), 9592–9597 (2011)


