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Abstract In this paper, we focus on the semilocal convergence for a family of
improved super-Halley methods for solving non-linear equations in Banach spaces.
Different from the results in Wang et al. (J Optim Theory Appl 153:779-793, 2012),
the condition of Holder continuity of third-order Fréchet derivative is replaced by its
general continuity condition, and the latter is weaker than former. Moreover, the R-
order of the methods is also improved. By using the recurrence relations, we prove a
convergence theorem to show the existence-uniqueness of the solution. The R-order
of these methods is analyzed with the third-order Fréchet derivative of the operator
satisfies general continuity condition and Holder continuity condition.
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1 Introduction

Solving the nonlinear equations in Banach spaces is an important problem in
scientific and engineering computing areas, such equation can be given by

F(x) =0, (1.1
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where F : 2 € X — Y is a nonlinear operator in a non-empty open convex subset
2 of a Banach space X with values in a Banach space Y.

The super-Halley method is a well-known third-order method for solving this
equation. In [15], a class of modified super-Halley methods for solving the equation
(1.1) is considered. This class of methods is given by

1 1
Xn+1 = Xp — |:[+ 2KF(xn) + 2KF(xn)2 + KF(x:1)0q>(KF(xn)):| IF(xp), (1.2)

where 0 is a parameter, such that 6 > 3, ', = F’(x,,)’], KF(x,) is the following
operator

Kr(x,) = 1—‘nFH (xn - ;FnF(xn)> Ly F(xy). (1.3)

In the methods given by (1.2), ® is an operator which satisfies that there exists
a real non-negative and non-decreasing function x (¢), such that ||®(Kr(x,))| <
X (I KF(x,)]) and the function yx (¢) is bounded for ¢ in a suitable region. Under the
conditions that

(Al) Typexistand || < B,

(A2) |IToF(xo)ll < m,

(A3) IF"()I <M, xeg,

(Ad) [[F")II<N, xeQ,

(AS5) there exists a positive real number L such that

”F///(x)_F///(y)” <L”x_y”q’ 0<g<1, Vx,yeQ, (1.4)

the R-order of methods given by (1.2) is proved to be 3 + g.

But under the assumptions (A1)—(AS5), we can not study the solution of some
equations. Such as the nonlinear integral equation of mixed Hammerstein type [5, 8],
which is given by

m b
x(s) + Z/ Gi(s, ) H; (x(1))dt = u(s), s € [a, b], (1.5)
i=174

where —00 < a < b < +00, u, G; and H; are known functions (i = 1,2, ..., m.),
x is the solution to be found. On the condition that H/”(x(t)) is (L;, g;)-Holder con-
tinuous in 2, i = 1, 2, ..., m, then the corresponding operator F : 2 € C[0, 1] —
C[o, 1],

m b
[F(x)](s) = x(s) + Z[ Gi(s,)H; (x(t))dt — u(s), s € [a, b], (1.6)
i=1"4

@ Springer



Numer Algor (2014) 65:339-354 341

is such that its third Fréchet derivative is neither Lipschitz continuous nor Holder
continuous in 2 while, for an example, we consider the max-norm. In this case,

m
[F"(x) = F" (| < ZL,-Hx —ylI%,L; >0,q; €[0,1], Vx,ye Q. (1.7)
i=1

Obviously, the operator given by (1.7) does not satisfy the assumption (A5), so we
can not study the solution of this equation under the assumptions(A1)—(AS5). Since
the importance of nonlinear integral equation of mixed Hammerstein type, it is con-
sidered in many papers, such as [1, 5, 6, 8], where in [5], Ezquerro and Herndndez
gave the following method

Yn=Xn — [F/(xn)]il F (xp),
’ -1 ’ 2-36 /

T (xn, yn)= [F (xn)] <F <xn+ 3 (yn_xn)> — F'(xn +9()7n_xn))> )

)
6elo, ,

3

— - 9 2 _

Xn+1 —yn+(4(1_39)T(xna yn)+8(1_39)2 T (xn, yn) ) n — xn),n 2 0.

(1.8)
They used the following assumption:

B3 |F"x)—F")| < o(lx—yl), Yx,y € Q,where w(z) is anon-decreasing
continuous real function for z > 0 and w(0) > 0;

(B6) there exists a positive real function v € CJ0, 1], with v(¢) < 1, such that
w(tz) < v(Hw(z), fort € [0,1],z € (0, +00). Based on the assump-
tions (A1)-(A4) and (B5)—(B6), Ezquerro and Hernandez [5] studied the
semilocal convergence of the method given by (1.8). Choosing w(t) =
Y, Lit%, they proved that the R-order of method (1.8) is 3 + ¢ with the
third Fréchet derivative of the operator F satisfies the condition (1.7), where
q = min{q1, g2...,qm},qi € [0,1],i =1,2..m.

Recently, some sixth-order variants are developed in [10, 11]. These variants focus
on finding a simple root of a non-linear equation f(x) = 0, where f : D C R —
R for an open interval D is a scalar function. In order to relax the condition (AS5)
considered in [15], to improve the R-order of convergence, in this paper, we consider
the semilocal convergence for a family of improved super-Halley methods in Banach
space given by

Zn=xn_[l+2

: Kr(xn) + ;KF(xnﬂ + KF(xn)%(KF(xn))} Ty F(xy),
(1.9)

Xyl = 2n — [1 — W F" () (zn — %) + 8 [T F" (0) (20 — x,,)]z] T F(20),
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where [ is the identity operator, 6,5 are two parameters, such that 6 > 3 and
8 € [—1,1], Kr(x,) is defined by (1.3), T, = F'(x,)™" , vy = xp — ;FnF(xn),
® is also an operator which satisfies that there exists a real non-negative and non-
decreasing function x (¢), such that |®(Kr(x,))|| < x(J|IKr(x,)|) and the function
x (¢) is bounded for ¢t € (0, s), where s will be defined in the latter development.
This family of methods given by (1.9) can be derived by adding an evaluation of the
function at another point in the procedure iterated by methods (1.2), but the R-order
of convergence can be improved from 3 + ¢ for methods (1.2) to 5 + g for methods
(1.9) under the above conditions (A1)-(A5).

Here, to solve the problem that the third-order derivative of an operator is neither
Lipschitz nor Holder continuous, we assume that F” satisfies the general continuity
condition (B5) employed in [5], instead of the Holder continuity condition (AS) used
in [15]. By using the recurrence relations, we establish the semilocal convergence of
the methods given by (1.9). This approach has been successfully used in establishing
the convergence of some methods, such as the references [2-5, 7,9, 12—18]. We prove
a convergence theorem to show the existence-uniqueness of the solution. The R-order
of methods (1.9) is also analyzed with F"” satisfies general continuity condition and
Holder continuity condition. Finally, we give some numerical results to show our
approach.

2 Some preliminary results

Let X and Y be Banach spaces, the nonlinear operator F' : @ C X — Y be three
times Fréchet differentiable in a non-empty open convex subset 2. Taking xp € 2
and furthermore, we make the following assumptions:

(Cl) There exists g = F'(xo) ! and |||l < B,

(C2) |ToF(xo)ll < m,

(C3) [[F'(0) <M, xeQ,

(C4H [[F"()I <N, xe,

€5 IF"(x) — F"WIl < o(x — yl), Vx,y € K, where o(u) is a
non-decreasing continuous real function for ;& > 0 and satisfy @ (0) > 0,

(C6) there exists a non-negative real function ¢ € C[0, 1], with ¢ (¢) < 1, such that
w(tn) < p)w(w), fort € [0, 1], u € (0, +00).

Remark The conditions (C5) and (C6), which have been used in [5], are the gene-
ralization for the Holder continuity of F” by choosing @ (u) = Lu? and ¢ (¢) = 1.

Wedefine B(x,r) ={ye X : |[y—x|| <r}and B(x,r) ={y e X : |[y—x]| < r}

in this paper. The following lemma gives an approximation of the operator F which
will be used in the latter development.
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Lemma 1 Assume that the nonlinear operator F : Q C X — Y is three times
Fréchet differentiable in a non-empty open convex subset 2, where X and Y are
Banach spaces. Then we have

1
F(xpy1) = f Fm(xn + (v — X)) (W — Xp)dt (2 — X)) Ui F(24)
0
- SF”(UH)(Zn —x)Tn F//(Un)(zn — X)) F(zn)

1
_/ [F//(xn +1(zn — xn)) — F//(xn)] (zn — xp)dtT'y F (zn)
0
1
+/ F"(xn + 1(zn = %0)) (@0 — Xp)dtTy F" () (20 — X)) T F(20)
0
1
_8f F"(xn~+1 (20 —xn)) (20 — xn)dt [FnFN(vn)(Zn _)Cn)]2 UnF(zn)
0

1
+/ F"(zp 410ttt — 20)) g1 — 20)>(1 — 1), 2.1
0

where z,,, x,, are given by (1.9), y, = x, — I, F(x,)), the definitions of v, and § are
as same as the ones in (1.9).

Proof By Taylor expansion, we have

F(xpy1) = F(zn) + F/(Zn)(x:H»] — Zn)

1
+/ F"(zn + 1ot = 20)) (K1 — 20)° (L= 0dt,  (2.2)
0

F/(Zn) = F/(xn) + F//(xn)(zn — Xn)

1
+ f [F"Con + 1 Gn — ) — F"Con)] (o — ). (2.3)
0
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Then we obtain
F(zy) + F/(Zn)(xn+l — Zn)

= F(@) = F'(@) [ =T F" @) G =) +8 [T F ) o —5) | T F )
1
= F(zn) — {F/(xn) + F//(xn)(zn — Xn) +/ [F//(xn +t(zn — xn)) — F//(xn)](zn — X,)dt
0

x [ 1= TuF" @)@ = %) + 6 [T () Gz = 3| | T F ()
= F(Zn)fF(Zn)+F//(U11)(Zn7xn)rnF(Zn)78F//(vn)(znfxn)rnF//(vn)(zn — X)) Cn F (2n)
- F,/(xn)(zn —xp)Cn F(zn) + F,/(xn)(zn - xn)FnF”(Un)(Zn — x)Cn F(zn)

- (SF”(xn)(Zn - xn)[rnF”(Un)(Zn 7xn)]2FnF(Zn)
1
- / [F//(X” +1(zp — Xn)) — F//(xn)] (zn — xp)dt
0
X [[ — T F"(0n) 2z — Xp) + 8 [rn F" () (zn — xn)]z] LnF(zp). (24)

Since
1
F//(Un) = F//(xn) +/ Fw(xn + t(vp — xu)) (v — xp)dt, (2.5)
0

we have

F(Zn) + F/(Zn)(xn-i-l - Zn)
1
= / Fw(xn + 1t (v — X)) (Wp — Xp)dt (2 — X)) F (21)
0

_SF”(Un)(Zn - xn)rn F//(Un)(zn - xn)rn F(Zn)
—8F" (xn)(zn — X)) [Tn F" () (20 — X2) 1P T F(z0)

1
- / LF" Con 4 1 — 50)) — G|z — 30)d T F ()
0
1
+f F”(xn +t(zp — xn))(Zn - xn)dtrn FN(Un)(Zn - xn)FnF(Zn)

0
1
) [F//(xn+t(zn_xn))_F//(xn)](zn_xn)dt[rnF//(Un)(zn_xn)]zrnF(Zn)-
0
(2.6)

Substituting (2.6) into (2.2), we can obtain (2.1).
Now we give the definitions of the following functions.

1
p() = g0 + 1 [1+18(0) +181g ) | [1+1+ 270 +50?]. @)
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h(t) = (2.8)

1—1p@®)’

1 1
ot u,v) = [3g(r>u + 1+ 18 (g(1)* + 2g<t>2u + |a|<g(r>t>3} Y(t, u,v)

1 2
+,t [1+ 8 + 18168 ] it w0 2.9)

where
1 1,
gt)y=1+ 2t+ 2t + 17 x (1),

1 1 1 1 1
Yt,u,v) ="y +1° [2 +t9_2x(t)] + 180 - D*+ e N0, (

6
1 ¢ 1
Ji =/ ¢< )dt, J2=/ d)(1 — 1)%dt.
0 3 0

The functions defined above will be used frequently in the later developments, so
next we study some of their properties. Let f(¢) = p(t)t — 1. Since f(0) = -1 <0

and f (é) = g%gg > 0, then we can conclude that f(#) = 0 has at least a root in

O, é). Let s be the smallest positive root of the equation p(¢)t — 1 = 0, then s < é

1
Ji+ 212> v,

Lemma 2 Let the functions p, h and ¢ be given in (2.7)—(2.9). Then

(@) p(t) and h(t) are increasing and p(t) > 1, h(t) > 1 fort € (0, s);

(b) Fort € (0,s), afixedu > 0, and a fixed v > 0, ¢(t, u, v) is increasing as
the function of t; similarly, for u > 0, a fixed t € (0, s) and a fixed v > 0,
o(t, u, v) is increasing as the function of u; forv > 0, a fixed u > 0 and a fixed
t € (0,s), ¢(t, u, v) is increasing as the function of v.

Define 19 = 11, fo = B, ap = MPn, by = NBn*,co = Br*w(n) and dy =
h(ap)p(ag, by, co), and moreover, we define the following sequences as

Nn+1 = dnn, (2.10)

Bu+1 = h(an)Bn, (2.11)

an+1 = MPBny1Mn+1, (2.12)

bus1 = NBusinp 1. (2.13)

Cntt = Bt My W (1), (2.14)
dnt1 = h(an+1)@(@n+1, bpy1s Cnt1), (2.15)
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where n > 0. From the definitions of a,,+1, b, 11, ch+1 and (2.10)—(2.11), we can get

ant1 = h(an)dnan, (2.16)
but1 = h(an)d>by, 2.17)
cni1 < han)d>p(dy)ey. (2.18)

Now we give the following lemma to show some important properties of the
previous sequences.

Lemma 3 If
ag <s and h(ag)dy < 1, (2.19)

then we have
(@) h(ap) > landd, < 1forn >0,
(b) the sequences {n,}, {an}, {bn}, {cn} and {d,} are decreasing,
(¢) plan)a, < 1 and h(ay)d, < 1 forn > 0.

The proof of Lemma 3 can be obtained by induction.
Lemma 4 Let the functions p,h and ¢ be given in (2.7)-(2.9). Let ¢« € (0, 1),
then p(at) < p(@), h(at) < h@), eat, o®u,a®v) < o*e(t,u,v) and
o(at, 05214, ot(2+q)v) < Ot(4+q)(p(t, u, v) fort € (0, s), where s is the smallest positive
root of the equation p(t)t —1 = 0.

3 Recurrence relations for the methods

For n = 0, the existence of I'g implies the existence of vg, yo, and furthermore, we
have

lyo = xoll = ITo £ (xo) || < 70, 3.1

1 1
llvo — xoll = Il — 3F0F(XO)|| < 370 (3.2

This implies that yg, vo € B(xo, Rn), where R = Ilj(jlz(l)())
Moreover, we have

1
IKF(xo)ll < IToll H F" <XO + 3,(yo - XO)> H IToF(xo)ll < MBono = ap. (3.3)
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Then we obtain

lzo — xoll =

1 1
’— [1 + ., Kr(xo) + 2KF<xo>2 + KF<xo>9d><KF<xo>>} To F (x0)

1 1
< [1 + K F o) + 2||1<F<xo>||2 + ||KF(xo>||9x(||KF(xo>||>}

1 1
X[[To F (x0)|l < [1 + a0+ 203 +agx(ao)} [To £ (xo)

= g(ap)ITo F (xo) |l < glao)no. 3.4
and
1 1
lzo — yoll = ‘— [2KF(XO) + 2KF(XO)2 + KF(XO)QCD(KF(XO))} Lo F (xo)
! 1
< 2||KF(XO)|| + 2||KF(XO)||2+ ||KF(xO)||9X(||KF(XO)||):| ITo F (x0) |l
:1 1, P
< 540 + 5% +agx(ao) | IToF (xo) |l
= [g(ag) — 11T F (x0) || < [g(ao) — 1]no. (3.5)
Furthermore, we have
1 = z0ll = | =11 = ToF"(wo) (20 = x0) + 8IT0F" (w0) 20 — ) PN F (z0)
< [1 + apg(ao) + 181(aog(@0))*1Boll F (z0) - (3.6)

By Taylor expansion, we have

F(z0) = F(x0) + F'(x0)(z0 — x0)
1
+ / F"(xo + 1(z0 — x0))(z0 — x0)>(1 — 1)dt
0
1 1
= [—ZF"(UO)FOF(XO) - ZFN(UO)FOF(XO)KF (XO)} o F (x0)
—F" (v)ToF (x0) K  (x0)" ™1 ® (K £ (x0))To F (x0)
1
+/ F"(xq + 1(z0 — x0))(z0 — x0)>(1 — r)dt. (3.7)
0

Then we can obtain
1 _ 1
IFGoll < Mg [1+a0+2a) ' x(ao) |+ Mlzo —xol’.  (3:8)

Consequently, we have
llxi —xoll < llx1 —zoll + llzo — xoll < plao)IToF (xo) || < plao)no,  (3.9)

which shows that x; € B(xg, Rn) because of the assumption dy < 1/h(ag) < 1.
Since ag < s and p(ag) < p(s), we obtain

17 = ToF (x|l < ITolll F'(x0) — F'(x)ll < MBollx1 — xoll < aop(ao) < 1.
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By the Banach lemma, we have that I'y = [F’(xl)]_l exists and

IToll
ITollIIF"(x0) — F'(x1)ll
IToll
< | = h(ao)IToll < h(ao)Bo = Bi- (3.10)
1 —agpp(ao)
So y1, vy are well defined. Using the results in [15]

M <
Ir <, _

1
F(z,) = 2(F//(Un) - F//(xn))FnF(xn)KF(xn)()’n — Xn)
+ F" ()T F (x) K ()" @ (K p(20)) (v — X)

1

— F"(x,)Tn F (x) [zmxn)z + Kp(xnﬁcb(KF(xn)ﬂ (Yn — Xn)

1 1
- / [F (xn + e - xn>> — F”’(xn)} W — X)dt (Y — xn)?

6 0 3

1 ! 7 " 3 2
T, /0 [F" (n + 1 (n = %)) = F" ()] (9n — %) > (1 = 1)°dt

1
+ / F"(yn +1(zn — y)(zn — yu)>(1 — D)dt
0

1
n f F” (n + 1O — 50)) i — x0)2(1 = 1)t (20 — ), (3.11)
0

we have
1

+a? 25 ( M — 1o |ITo F
, T X ao) |+ 5 [g(ao) — 11°no [ITo F (xo) I

| F(zo)ll < [Ma?fl x(ao)no+Ma§no[

1 1
6Jl+212>w(770)77(2)] IToF(xo)ll,  (3.12)

N , N 2
| gemTt, Lg(ao) —1Ing+
where J; = fo' p(L)dt, Jh= fo' ¢ (t)(1 — 1)2dt. Therefore
< [1+ aog(ao) + ISI(aog(ao))z]ﬂollF(Zo)ll
< [1+ aog(ao) + 181(aog(a0))]¥ (ao, bo. co) | To F (x0) |
< [1 4 aog(ao) + 181(a0g(a0))* ¥ (a0, bo. co)no. (3.13)

llx1 — zoll

From Lemma 1, we can obtain

1
IFG)l < 3g<ao>Nn3ﬂonF<zo>n + 1818 (a0)>aoMnoBoll F (z0)
1
+ 2g(ao>2Nn%ﬂo||F<zo)n + g(ao)>aoMnoBoll F (zo)

1
+181g(a0)*ad Mnooll F (zo) || + Ml = 202 (3.14)
From (3.10) and (3.14), we have
Iyt —xill = IT FGDI < ITHHF G|

h(ao)¢(ao, bo, co)ITo F (xo) |l
h(ao)g(ao, bo, co)no = dono = n1. (3.15)
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Since p(ap) > 1, we obtain

Iyt = xoll < Nyt —x1ll + llx1 — xoll
<

(p(ao) + do)no

< p(ao)(1 +do)n < Ry, (3.16)

lvr = xoll < llxr — xoll + |l (y1 — x|l
< (p(ao) +do)no < Ry, 3.17)

which implies y;, v; € B(xo, Rp).
Besides, we have

M|T T F el < h(ao)doao = ai, (3.18)
NITLITF@e)lI® < hag)dgbo = by, (3.19)
ITHINIT L F e Pw(IT F e ) < Binfw(n) = ci. (3.20)

Using the induction, we can obtain the following items:

(D There exists Iy = [F'(x,)] " and [Ty || < A@n-1)ITu-1ll < h(@n—1)Ba-1 = B,
I Ty F )l < h(an—l)(p(an—lw bu—1, cn—DITn—1 F Cep—1) || < dn—lnn—l =T,

AL MITullIT F )l < an,

(V) NITR [T F () [1* < b,
V) ATullIT F @) 1PwI T F ) ) < s

(VD zn — xull < glan) 1T F(xn) || < g(an)nn,

VID - Mxpg1 — x|l < pan) 1T F(xa) | < pl@n) -

Lemmas$s Letthe assumptions of Lemma 3 and the conditions (C1)—(C6) hold, then ||v, —xo|| <

R, iz — X0l < Rn, llxus1 — xoll < Ry, where R = 79,

Proof By (II), (VI) and (VII), we obtain

1
lve — xoll < llve — Xull + llxn — xoll < H Ly F(xy)

Z xi1 — x|

n—1
< Mt Y plam < p(ao)Zm (3.21)
i=0 i =
n—1
lzn = xoll < llza = Xall + %0 — Xoll < g(an)mn + Y lIxi1 — x|
i=0
n—1 n
< plana + Y _ plani < plao) Yy i (322)
i=0 =
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and

n
s —xoll < 3 st —x1
=0

n n
< Y plan; < plao) Y _ i
i=0 i=0

n i—1

= p) Y _n|[]4]- (3.23)

i=0  \j=0

Let y = h(ap)dy and A = 1/h(ap); then we have a; = yag, by = h(ao)dgbo < y2by,
c1 < h(ag)d}¢(do)co < y2co, by Lemma 4, we have that
di < h(yao)p(yao, v*bo, v*co) < y*do = y* ~'do = 1"

Suppose di; < Ay5k, k > 1. Then by Lemma 3, we have axy1 < ax and h(ap)dr < 1.
Consequently, we obtain

dis1 < h(a)e(h(ap)dar, h(ag)dEbe, h(ax)die (dy)ck)
< h(a)e(h(ap)diak, h(a)*dibe, h(a)dfcr)
< hiaptd} <5 (3.24)
This yields that d; < Ay5j ,j = 0. Thus from (3.23) and (3.24), we have

n i—1 )
pla) Y n| 2"

i=0  \j=0

N

lxn41 — xoll

n .

-5t

P(ao)ﬁE My 4
i=0

1 —antl y 5”4”

Rn. 3.25
plao)n 1 gy Fm (3:25)

N

Similarly, ||v, — xo|| < Rn and ||z, — xoll < Rn.

Lemma 6 Let R = fi”c?g If ag < s and h(ag)dy < 1, then R < 1/ay.

4 Semilocal convergence
4.1 Convergence theorem

Next we prove the following theorem to show the existence and uniqueness of the
solution.

Theorem 1 Let X and Y be two Banach spaces, the nonlinear operator F : @ € X — Y be
three times Fréchet differentiable in a non-empty open convex subset Q. Assume that xo € 2
and all conditions (C1)—(C6) hold. Let ag = MPBn, by = NBn%,co = Bn*w(n) and dy =
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h(ao)g(ao, bo, co) satisfy ag < s and h(ag)dy < 1, where s is the smallest positive root of
the equation p(t)t — 1 = 0 and p, h, ¢ are defined by (2.7)—(2.9). Let B(xo, Rn) € Q where
R = 'l’ 8’30) then starting from xo, the sequence {x,} generated by the methods (1.9) converges
to a solution x* of F(x) = 0 with x,, x* belong to B(xo, Rn) and x* is the unique solution of
F(x) = 0 in B(xo, Ajﬁ - RpN

Furthermore, a priori error estimate is given by

51
lxa — x*II < plag)nA™y "4 4.1

1 -y’
where y = h(agp)dy and A = 1/ h(ap).

Proof Lemma 5 shows that the sequence {x,} is well-defined in B(xg, Rn). Now we prove that
{x,} is a Cauchy sequence. Note that

n+m—1
Xnm = Xall <Y lxign — xi

i=n
n+m—1

< plag) Y mi

< plag)yi Sn;1 1— A"y 5 (5",;1+3) @2)
< pla . . .
plap)nry 1 — AVS

This shows that there exists a x* such that lim,,_, o0 X, = x*.

Letting n = 0, m — oo in (4.2), we have

I x* —xo0 [I< R, 4.3)

which shows that x* € B(xg, Rp).
From Lemma 1, we can obtain

1 1
IF(ens) |l < [3g<ao>Nn3 + 181g(ao)*aoMn, + 2g(ao)2Nn3,] ¥ (g, bo, )i

+lg(ao)*aoMny, + |81 (ao)* a3 Mn, ¥ (ao, by, co)1in

1
+, MI1 + aog(ao) + 181(a0g(a0))*1*¥ (ao. bo. co)*n?. 4.4

Let n — oo in (4.4), then we obtain || F(x,)|| — O since n, — 0. Notice that F(x) is
continuous in €2, then we have F(x*) = 0.

Now we prove the uniqueness of x* in B(xo, Mzﬁ — Rn) () ©2. From Lemma 6, we
can obtain

2

2 1
— Rnp= — R > > Rpn,
MB n (ao >’7 ao’? n

and then B(x, Rn) € B(xo, Mzﬁ — Rn) (K, 50 x* € B(xo, Mzﬁ —RpN Q.
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Let x** be another root of F(x) = 0 in B(x, ,jﬁ —

have

Rn) N Q. By Taylor theorem, we

1
0= F(x*™) — F(x*) = / F/((1 = £)x* + tx™)dt (x** — x*). (4.5)
0
Since

IToll

1
‘f [F'((1 = t)x* 4+ tx™*) — F'(x0)1dt
0

1
< Mﬂ/ [(1 = 1) llx* — xoll + £llx™ — xo[1ds
0

MﬂR 2 Ryl =1 4.6
<2[n+Mﬂ— n]—. (4.6)

by the Banach lemma, we have that fol F'((1 — t)x* + tx**)dt is invertible and hence
ok ok

Finally, letting m — oo in (4.2), we can get (4.1).

X

4.2 R-order of convergence

Now we analyze the R-order of convergence of methods (1.9) under the condition
that F"”(x) is Holder continuous; that is, w(s) = Ls? and ¢(¢) = t9, g € [0, 1]. Let
y = h(ap)dy and & = 1/h(ap), then we can get the following lemma.

Lemma 7 Under the assumptions of Lemma 3, let y = h(ag)dy and A = 1/ h(ap), then we have

dy <2y 0 >0, .7
n 5+t 1
[Ta:<atly e, (4.8)
i=0
5+¢)" -1
e <Aty 4 n >0, 4.9)

5+ ()™ +4)
ntm Gray'—1 1 — pmtly, 4+g

. n (4+q)
Zn, <Ay @ |y Gron ,n=0,m>1. (4.10)
=n
Furthermore, we can derive a priori error estimate
p(ao)n g
lben — 211 < (p/ranyErar, @11

y V40 (1 — do)

This shows that for the case of Holder continuity of F”, the R-order of convergence
of methods (1.9) is at least 5 + ¢, and especially when F”” is Lipschitz continuous,
the R-order of convergence becomes six.

Remark For the mixed condition (1.7)

m
IF" (x) = F" )l < ) Lillx = yl1%, Li > 0,¢; €10, 1], Vx,y €,
i=1

@ Springer



Numer Algor (2014) 65:339-354 353

taking w(s) = >t (Lis?), then that w(rs) = > 1=, (L;t%s%). Since t € [0, 1], ¢; € [0, 1],
we have that ¢ () = 14, where ¢ = min{q1, q2, ..., qm}-

5 Numerical results

Now we consider a non-linear integral equation of mixed Hammerstein type, which
has been used in reference [5]. This equation is given by

1 1
x(s) =1+ / G(s, 1) (x(z)'°/3 +x(t)4) dt,s € [0,1], (5.1)
3Jo
where x € C[0, 1], ¢ € [0, 1] and G is the Green function

(I —s)t, t <,

Ges, 1) = {s(l 1), s <t

In order to find the solution of (5.1), we need to solve the equation F(x) = 0, where
F:Q CC[0,1] —- CJ0, 1],

1
[F()](s) = x(s) — 1 — ; f G(s, 1) (x(t)10/3 +x(z)4) dt,s € [0, 1]. (5.2)
0

Here, we take 2 = B(0, 3/2). The Fréchet derivatives of F are given by

1
F'(x)y(s) = y(s) — ; / G(s, 1) (130x<t>7/3 +4x<t>3> y(dt, yeQ,
0
" Lt 70 43 2
F (x)yz(s) = 3 / G(s,t) < 9 x(1)"7 4+ 12x(t) >y(t)z(t)dl, y,2 € Q,
0

1
F" (x)yzu(s) = —; /0 G(s,1) (22870x(t)1/3 + 24x(l)) yO)z@Ou@)dt, y,z,u € Q.

Notice that F” is neither Lipschitz continuous nor Holder continuous, but the
operator F can satisfy the conditions of Theorem 1. Actually, we can define

35 1
o(p) = g +

1
and
Pt =15,

Apparently, the functions w (1) and ¢ (¢) given above satisfy the assumptions (C5) and
(C6). Taking the constant function xo(r) = 1 as the initial approximate solution, and
furthermore, we choose ®(Kr(x,)) = 0,8 = 1, then we have that

1
| F(xo)ll = 2’
IToll < 1.44 =B,
IToF(x0)|| < 0.12 = n,
IF"(x)|| < 1.68145831--- = M,

N.

IF" (x)|| < 1.99462961 - - - =
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Here, we use the max norm. Moreover, we compute
ap = 0.2906,

Since p(ap)ap >~ 0.5121 < 1, we have that ap < s, where s is the smallest positive root
of the equation p(7)r — 1 = 0. Furthermore, we compute

h(ag)dy ~ 0.0342 < 1.

So the conditions of Theorem 1 are satisfied. Moreover, we obtain that the solution
x* belongs to B(xp, Rn) = B(1,0.215--.) C Q and it is unique in B(1,0.611---)( Q.
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