
Numer Algor (2013) 64:659–683
DOI 10.1007/s11075-012-9684-5

ORIGINAL PAPER

Convergence analysis of modified Newton-HSS method
for solving systems of nonlinear equations

Qingbiao Wu · Minhong Chen

Received: 11 January 2012 / Accepted: 10 December 2012 / Published online: 18 January 2013
© Springer Science+Business Media New York 2013

Abstract Hermitian and skew-Hermitian splitting(HSS) method has been proved
quite successfully in solving large sparse non-Hermitian positive definite systems of
linear equations. Recently, by making use of HSS method as inner iteration, Newton-
HSS method for solving the systems of nonlinear equations with non-Hermitian
positive definite Jacobian matrices has been proposed by Bai and Guo. It has shown
that the Newton-HSS method outperforms the Newton-USOR and the Newton-
GMRES iteration methods. In this paper, a class of modified Newton-HSS methods
for solving large systems of nonlinear equations is discussed. In our method, the
modified Newton method with R-order of convergence three at least is used to solve
the nonlinear equations, and the HSS method is applied to approximately solve the
Newton equations. For this class of inexact Newton methods, local and semilocal
convergence theorems are proved under suitable conditions. Moreover, a globally
convergent modified Newton-HSS method is introduced and a basic global conver-
gence theorem is proved. Numerical results are given to confirm the effectiveness of
our method.

Keywords Hermitian and Skew-Hermitian splitting · Newton-HSS method ·
Large sparse systems · Nonlinear equations · Positive-definite Jacobian matrices ·
Convergence analysis

Q. Wu · M. Chen (�)
Department of Mathematics, Zhejiang University, Hangzhou 310027,
Zhejiang, People’s Republic of China
e-mail: mhchen@zju.edu.cn

Q. Wu
e-mail: qbwu@zju.edu.cn

mailto:mhchen@zju.edu.cn
mailto:qbwu@zju.edu.cn

660 Numer Algor (2013) 64:659–683

1 Introduction

In this paper, we consider an effective and robust algorithm for solving large sparse
systems of nonlinear equations. In particular, we focus on the type of the systems in
which the Jacobian matrices are large, sparse, non-Hermitian and positive-definite.
Consider the given nonlinear system

F(x) = 0, (1)

where F : D ⊂ C
n → C

n is nonlinear and continuously differentiable, and
F = (F1, · · · , Fn)

T with Fi = Fi(x), i = 1, 2, · · · , n and x = (x1, · · · , xn)
T . The

numerical solution for system (1) is often required in many scientific and engineer-
ing computing areas such as the discretizations of nonlinear differential and integral
equations, see [1, 2]. Inexact Newton methods [3–6] are commonly used for solving
such systems, especially when the problems are large and sparse. The inexact Newton
methods can be briefly described as follows:

Algorithm 1.1 IN (inexact Newton method)

1. Let x0 be given.
2. For k = 0 step 1 until “convergence” do:

Find some ηk ∈ [0, 1) and sk that satisfy

‖F(xk) + F ′(xk)sk‖ ≤ ηk‖F(xk)‖. (2)

3. Set xk+1 = xk + sk .

Here F ′(xk) is the Jacobian matrix and ηk ∈ [0, 1) is commonly called forcing
term which is used to control the level of accuracy. Obviously, these methods are
variants of Newton’s method in which the Newton equation

F ′(xk)sk = −F(xk), k ≥ 0, (3)

is solved approximately at each iteration. Local convergence analysis for inexact
Newton methods [3] shows that if x0 is sufficiently close to a solution x∗ of nonlin-
ear system (1) and the η′

ks are uniformly bounded away from one, then the sequence
{xk} converges to x∗.

Usually, when the dimension n of the problem is large, linear iterative methods,
such as the classical splitting method and the modern Krylov subspace method [7],
are applied to approximately solve the Newton equation (3). Thus, the inexact New-
ton methods are inner-outer iterative methods. We refer to the linear iteration, such
as the Krylov subspace method, as an inner iteration, and the nonlinear iteration that
generates the sequence {xk} as an outer iteration. Newton-CG and Newton-GMRES
methods, using CG and GMRES methods as inner iterations, respectively, have been
successfully used and widely studied, see [8–10].

Recently, based on the use of Hermitian and skew-Hermitian splitting, Bai et al.
[11] have proposed the Hermitian and skew-Hermitian splitting(HSS) method for
non-Hermitian positive-definite linear systems. The HSS method converges uncon-
ditionally to the exact solution of the system of linear equations. Moreover, it has
the same upper bound for the convergence rate as that of the CG method when the

Numer Algor (2013) 64:659–683 661

optimal parameters are used. Because of the effectiveness and robustness of the HSS
method, it is extensively studied, see [12–15], and the method also succeeds in solv-
ing problems such as stokes problems and distributed control problems and so on,
see [16–18].

Using the HSS method as the inner iteration, Bai and Guo [19] have pro-
posed the Newton-HSS method for solving the system of nonlinear equations with
non-Hermitian positive-definite Jacobian matrices. The Newton-HSS method is
summarized in the following.

Algorithm 1.2 NHSS (Newton-HSS method)

1. Given an initial guess x0, positive constants α and tol, and a positive integer
sequence {�k}∞k=0.

2. For k = 0, 1, · · · until ‖F(xk)‖ ≤ tol‖F(x0)‖ do:

2.1. Set dk,0 := 0.

2.2. For � = 0, 1, · · · , �k − 1, apply Algorithm HSS:{
(αI + H(xk))dk,�+ 1

2
= (αI − S(xk))dk,� − F(xk),

(αI + S(xk))dk,�+1 = (αI − H(xk))dk,�+ 1
2

− F(xk),

and obtain dk,�k
such that

‖F(xk) + F ′(xk)dk,�k
‖ ≤ ηk‖F(xk)‖ for some ηk ∈ [0, 1),

where H(xk) = 1
2 (F ′(xk) + F ′(xk)

∗) and S(xk) = 1
2 (F ′(xk) −

F ′(xk)
∗).

2.3. Set
xk+1 = xk + dk,�k

.

Numerical results on two-dimensional nonlinear convection-diffusion equations
have shown that, the Newton-HSS method costs fewer iteration steps and less CPU
time than those in the Newton-USOR, the Newton-GMRES and the Newton-CG
methods.

In this paper, we consider the modified Newton method, obtained by Darvish and
Barati [20], as the outer iteration method instead of the Newton method. The method
reads as follows:{

yk = xk − F ′(xk)
−1

F(xk),

xk+1 = yk − F ′(xk)
−1

F(yk), k = 0, 1, 2, · · · .
(4)

Observe that the modified Newton method (4) requires only one more evaluation of
F per step than the Newton method, and also it has R-order of convergence three
at least (see [20]) while Newton method converges quadratically. And at each outer
iteration step, the following two linear systems{

F ′(xk)dk = −F(xk), yk = xk + dk,

F ′(xk)hk = −F(yk), xk+1 = yk + hk,
(5)

are needed to be solved. By making use of the HSS method to approximately solve
the linear systems (5), a modified Newton-HSS (MN-HSS) method is obtained. Local

662 Numer Algor (2013) 64:659–683

and semilocal convergence theorems of our method are proved under suitable con-
ditions. In the local convergence theorem, the convergence ball is determined based
on the information around the solution x∗ and also the convergence rate is obtained.
In the semilocal convergence theorem, the convergence criterion is provided based
on the information around the initial point x0. Also a globally convergent modi-
fied Newton-HSS method is introduced in our paper and a basic global convergence
theorem of the global modified Newton-HSS method is proved.

The rest of the paper is organized as follows. In Section 2, we introduce the
modified Newton-HSS (MN-HSS) method. In Section 3, we show that the MN-
HSS method is locally convergent. Semilocal and global convergence analyses of
the method MN-HSS are presented in Sections 4 and 5. In Section 6, numerical
results are given to confirm the effectiveness and robustness of our method. Finally,
in Section 7, some brief conclusions are given.

2 The modified Newton-HSS methods

In this section, we describe a nonlinear iteration method for solving systems of
nonlinear equations with non-Hermitian positive-definite Jacobian matrices.

First, let us review the HSS method [11].

The HSS iteration method Split linear matrix A into its Hermitian part H and skew-
Hermitian part S,

A = H + S,

where

H = 1

2
(A + A∗) and S = 1

2
(A − A∗).

Given an initial guess x0 ∈ C
n, compute xk+1 for k = 0, 1, 2, · · · using the following

iteration scheme until {xk} satisfies the stopping criterion:{
(αI + H)x

k+ 1
2

= (αI − S)xk + b,

(αI + S)xk+1 = (αI − H)x
k+ 1

2
+ b,

(6)

where α is a given positive constant and I denotes the identity matrix.
Combining the two equations of (6) into the form

xk+1 = T (α)xk + G(α)b (7)

leads to

xk+1 = T (α)k+1x0 +
k∑

j=0

T (α)jG(α)b, k = 0, 1, 2, · · · , (8)

where
T (α) = (αI + S)−1(αI − H)(αI + H)−1(αI − S)

and
G(α) = 2α(αI + S)−1(αI + H)−1.

Numer Algor (2013) 64:659–683 663

Here, T (α) is the iteration matrix of the HSS method. In fact, splitting A into the
form

A = B(α) − C(α)

with

B(α) = 1

2α
(αI + H)(αI + S),

C(α) = 1

2α
(αI − H)(αI − S),

also results in the (8), and

T (α) = B(α)−1C(α) and G(α) = B(α)−1.

Now, we employ the modified Newton method (4) as the outer iteration and the
HSS method as the inner iteration. In other words, we apply the HSS iteration method
to the following linear systems:

F ′(xk)dk = −F(xk), yk = xk + dk, (9)

F ′(xk)hk = −F(yk), xk+1 = yk + hk. (10)

Then, the modified Newton-HSS method for solving nonlinear system (1) is obtained.

The modified Newton-HSS iteration method Let F : D ⊂ C
n → C

n be a continu-
ously differentiable function with the positive-definite Jacobian matrix F ′(x) at any
x ∈ D, and let

H(x) = 1

2
(F ′(x) + F ′(x)∗) and S(x) = 1

2
(F ′(x) − F ′(x)∗)

be its Hermitian and skew-Hermitian parts, respectively. Given an initial guess
x0 ∈ D, a positive constant α and two sequences {lk}∞k=0 and {mk}∞k=0 of positive
integers, compute xk+1 for k = 0, 1, 2, · · · until {xk} converges. The algorithm can
be concluded as follows :

Algorithm 2.1 MN-HSS (modified Newton-HSS method)

1. Given an initial guess x0, positive constants α and tol, and two positive integer
sequences {lk}∞k=0, {mk}∞k=0.

2. For k = 0, 1, · · · until ‖F(xk)‖ ≤ tol‖F(x0)‖ do:

2.1. Set dk,0 = hk,0 := 0.
2.2. For l = 0, 1, · · · , lk − 1, apply Algorithm HSS to the linear system

(9): {
(αI + H(xk))dk,l+ 1

2
= (αI − S(xk))dk,l − F(xk),

(αI + S(xk))dk,l+1 = (αI − H(xk))dk,l+ 1
2

− F(xk),

and obtain dk,lk such that

‖F(xk) + F ′(xk)dk,lk‖ ≤ ηk‖F(xk)‖ for some ηk ∈ [0, 1), (11)

where H(xk) = 1
2 (F ′(xk) + F ′(xk)

∗) and S(xk) = 1
2 (F ′(xk) −

F ′(xk)
∗).

664 Numer Algor (2013) 64:659–683

2.3. Set

yk = xk + dk,lk .

2.4. Compute F(yk).
2.5. For m = 0, 1, · · · , mk − 1, apply Algorithm HSS to the linear system

(10): {
(αI + H(xk))hk,m+ 1

2
= (αI − S(xk))hk,m − F(yk),

(αI + S(xk))hk,m+1 = (αI − H(xk))hk,m+ 1
2

− F(yk),

and obtain hk,mk
such that

‖F(yk) + F ′(xk)hk,mk
‖ ≤ η̃k‖F(yk)‖ for some η̃k ∈ [0, 1). (12)

2.6. Set

xk+1 = yk + hk,mk
.

Based on the use of the (8), after straightforward operations we can obtain the
following uniform expressions for dk,lk and hk,mk

,

dk,lk = −
lk−1∑
j=0

T (α; xk)
jG(α; xk)F (xk),

hk,mk
= −

mk−1∑
j=0

T (α; xk)
jG(α; xk)F (yk),

where

T (α; x) = (αI + S(x))−1(αI − H(x))(αI + H(x))−1(αI − S(x)),

and

G(α; x) = 2α(αI + S(x))−1(αI + H(x))−1.

Then the modified Newton-HSS method can be rewritten as{
yk = xk − ∑lk−1

j=0 T (α; xk)
jG(α; xk)F (xk),

xk+1 = yk − ∑mk−1
j=0 T (α; xk)

jG(α; xk)F (yk), k = 0, 1, 2, · · · .

Define matrices B(α; x) and C(α; x) by

B(α; x) = 1

2α
(αI + H(x))(αI + S(x)),

C(α; x) = 1

2α
(αI − H(x))(αI − S(x)).

Then the Jacobian matrix F ′(x) can be rewritten as

F ′(x) = B(α; x) − C(α; x)

Numer Algor (2013) 64:659–683 665

and

T (α; x) = B(α; x)−1C(α; x), B(α; x) = G(α; x)−1,

F ′(x)−1 = (I − T (α; x))−1G(α; x).

Therefore, the modified Newton-HSS method can be equivalently expressed as{
yk = xk − (I − T (α; xk)

lk)F ′(xk)
−1F(xk),

xk+1 = yk − (I − T (α; xk)
mk)F ′(xk)

−1F(yk), k = 0, 1, 2, · · · .
(13)

3 Local convergence theorem of the modified Newton-HSS method

In this section we prove that the modified Newton-HSS method has the similar local
convergence properties as the Newton-HSS method under the same conditions.

Let F : D ⊂ C
n → C

n be G-differentiable on an open neighborhood N0 ⊂ D

of a point x∗ ∈ D at which F ′(x) is continuous, positive definite, and F(x∗) = 0.
Suppose F ′(x) = H(x) + S(x), where H(x) = 1

2 (F ′(x) + F ′(x)∗) and S(x) =
1
2 (F ′(x) − F ′(x)∗) are the Hermitian and the skew-Hermitian parts of the Jacobian
matrix F ′(x), respectively. Denote with N(x∗, r) an open ball centered at x∗ with
radius r > 0.

Assumption 3.1 For all x ∈ N(x∗, r) ⊂ N0, assume the following conditions given
in [19] hold.

(A1) (THE BOUNDED CONDITION) there exist positive constants β and γ such
that

max{‖H(x∗)‖, ‖S(x∗)‖} ≤ β and ‖F ′(x∗)−1‖ ≤ γ.

(A2) (THE LIPSCHITZ CONDITION) there exist nonnegative constants Lh and Ls

such that

‖H(x) − H(x∗)‖ ≤ Lh‖x − x∗‖,
‖S(x) − S(x∗)‖ ≤ Ls‖x − x∗‖.

Lemma 3.1 If r ∈ (
0, 1

γL

)
and Assumption 3.1 holds, then F ′(x)−1 exists for any

x ∈ N(x∗, r) ⊂ N0. And the following inequalities hold with L := Lh + Ls for all
x, y ∈ N(x∗, r):

‖F ′(x) − F ′(x∗)‖ ≤ L‖x − x∗‖,
‖F ′(x)−1‖ ≤ γ

1 − γL‖x − x∗‖ ,

‖F(y)‖ ≤ L

2
‖y − x∗‖2 + 2β‖y − x∗‖,

‖y−x∗−F ′(x)−1F(y)‖≤ γ

1−γL‖x−x∗‖
(

L

2
‖y−x∗‖+L‖x−x∗‖

)
‖y−x∗‖.

666 Numer Algor (2013) 64:659–683

Proof The Lipschitz condition directly implies

‖F ′(x) − F ′(x∗)‖ = ‖H(x) + S(x) − H(x∗) − S(x∗)‖ ≤ ‖H(x) − H(x∗)‖
+ ‖S(x) − S(x∗)‖

≤ (Lh + Ls)‖x − x∗‖ = L‖x − x∗‖.

Hence

‖F ′(x∗)−1(F ′(x∗) − F ′(x))‖ ≤ ‖F ′(x∗)−1‖ ‖F ′(x∗) − F ′(x)‖ ≤ γL‖x − x∗‖ < 1.

By making use of Banach Lemma, F ′(x)−1 exists, and

‖F ′(x)−1‖ ≤ ‖F ′(x∗)−1‖
1 − ‖F ′(x∗)−1(F ′(x∗) − F ′(x))‖ ≤ γ

1 − γL‖x − x∗‖ .

Since

F(y) = F(y) − F(x∗) − F ′(x∗)(y − x∗) + F ′(x∗)(y − x∗)

=
∫ 1

0
(F ′(x∗ + t (y − x∗)) − F ′(x∗))dt (y − x∗) + F ′(x∗)(y − x∗),

the bounded condition leads to

‖F ′(x∗)‖ = ‖H(x∗) + S(x∗)‖ ≤ ‖H(x∗)‖ + ‖S(x∗)‖ ≤ 2β

and

‖F(y)‖ ≤ ‖
∫ 1

0
(F ′(x∗ + t (y − x∗)) − F ′(x∗))dt (y − x∗)‖ + ‖F ′(x∗)(y − x∗)‖

≤ L

2
‖y − x∗‖2 + 2β‖y − x∗‖.

Clearly, it holds that

y − x∗ − F ′(x)−1F(y) = −F ′(x)−1(F (y) − F(x∗) − F ′(x)(y − x∗))
= −F ′(x)−1(F (y) − F(x∗) − F ′(x∗)(y − x∗))

+ F ′(x)−1(F ′(x) − F ′(x∗))(y − x∗)

= −F ′(x)−1
∫ 1

0
(F ′(x∗ + t (y − x∗)) − F ′(x∗))dt (y − x∗)

+ F ′(x)−1(F ′(x) − F ′(x∗))(y − x∗).

Numer Algor (2013) 64:659–683 667

Therefore

‖y−x∗−F ′(x)−1F(y)‖ = ‖−F ′(x)−1
∫ 1

0

(
F ′(x∗ + t (y−x∗))−F ′(x∗)

)
dt (y−x∗)

+ F ′(x)−1(F ′(x) − F ′(x∗))(y − x∗)‖
≤ ‖ − F ′(x)−1‖

(∫ 1

0
‖F ′(x∗ + t (y − x∗)) − F ′(x∗)‖dt

+ ‖F ′(x) − F ′(x∗)‖
)

‖y − x∗‖

≤ γ

1−γL‖x − x∗‖
(

L

2
‖y − x∗‖ + L‖x − x∗‖

)
‖y − x∗‖.

This completes the proof of Lemma 3.1.

Lemma 3.2 Under the assumptions of Lemma 3.1, suppose r ∈ (0, r0) and define
r0 := min1≤j≤2{r(j)

+ }, where

r
(1)
+ = α + β

L

(√
2ταθ

γ (2 + τθ)(α + β)2
+ 1 − 1

)
,

r
(2)
+ = 1 − 2βγ [(τ + 1)θ]u

3γL
,

with u = min{l∗, m∗}, l∗ = lim infk→∞ lk, m∗ = lim infk→∞ mk , and the constant
u satisfies

u >

⌊
− ln(2βγ)

ln((τ + 1)θ)

⌋
,

where the symbol �·� is used to denote the smallest integer no less than the
corresponding real number, τ ∈ (

0, 1−θ
θ

)
a prescribed positive constant and

θ ≡ θ(α; x∗) = ‖T (α; x∗)‖ ≤ max
λ∈σ(H(x∗))

|α − λ|
|α + λ| ≡ σ(α; x∗).

Then, for any x ∈ N(x∗, r) ⊂ N0, t ∈ (0, r) and v > u, it holds that

‖T (α; x)‖ ≤ (τ + 1)θ < 1,

g(t; v) = 2γ

1 − γLt
(Lt + β[(τ + 1)θ]v) < g(r0; u) < 1.

Proof Details see Theorem 3.2 in [19].

Theorem 3.1 Under the assumptions of Lemmas 3.1 and 3.2, then for any x0 ∈
N(x∗, r) and any sequences {lk}∞k=0, {mk}∞k=0 of positive integers, the iteration
sequence {xk}∞k=0 generated by the modified Newton-HSS method is well-defined and
converges to x∗. Moreover, it holds that

lim sup
k→∞

‖xk − x∗‖ 1
k ≤ g(r0; u)2,

with u = min{l∗, m∗}, l∗ = lim infk→∞ lk, m∗ = lim infk→∞ mk .

668 Numer Algor (2013) 64:659–683

Proof From Lemmas 3.1 and 3.2, we have

‖yk − x∗‖ = ‖xk − x∗ − (I − T (α; xk)
lk)F ′(xk)

−1F(xk)‖
≤ ‖xk − x∗ − F ′(xk)

−1F(xk)‖ + ‖T (α; xk)
lk‖ ‖F ′(xk)

−1F(xk)‖
≤ γ

1 − γL‖xk − x∗‖
3L

2
‖xk − x∗‖2 + [(τ + 1)θ]lk

× γ

1 − γL‖xk − x∗‖
(

L

2
‖xk − x∗‖2 + 2β‖xk − x∗‖

)

= (3 + [(τ + 1)θ]lk)γL

2(1 − γL‖xk − x∗‖) ‖xk − x∗‖2 + 2βγ [(τ + 1)θ]lk
1 − γL‖xk − x∗‖‖xk − x∗‖

≤ 2γ

1 − γL‖xk − x∗‖ (L‖xk − x∗‖ + β[(τ + 1)θ]lk)‖xk − x∗‖
= g(‖xk − x∗‖; lk)‖xk − x∗‖ < g(r0; u)‖xk − x∗‖ < ‖xk − x∗‖

and

‖xk+1 − x∗‖ = ‖yk − x∗ − (I − T (α; xk)
mk)F ′(xk)

−1F(yk)‖
≤ ‖yk − x∗ − F ′(xk)

−1F(yk)‖ + ‖T (α; xk)
mk‖ ‖F ′(xk)

−1F(yk)‖
≤ γ

1 − γL‖xk − x∗‖
(

L

2
‖yk − x∗‖ + L‖xk − x∗‖

)
‖yk − x∗‖

+ γ [(τ + 1)θ]mk

1 − γL‖xk − x∗‖
(

L

2
‖yk − x∗‖2 + 2β‖yk − x∗‖

)

≤
(

γL

1 − γL‖xk − x∗‖
(

1 + [(τ + 1)θ]mk

2
‖yk − x∗‖ + ‖xk − x∗‖

)

+ 2βγ [(τ + 1)θ]mk

1 − γL‖xk − x∗‖
)

‖yk − x∗‖

≤ 2γg(‖xk − x∗‖; lk)

1 − γL‖xk − x∗‖
(

1 + g(‖xk − x∗‖; lk)

2

× L‖xk − x∗‖ + β[(τ + 1)θ]mk

)
‖xk − x∗‖

<
2γg(‖xk − x∗‖; lk)

1 − γL‖xk − x∗‖
(

L‖xk − x∗‖ + β[(τ + 1)θ]mk

)
‖xk − x∗‖

= g(‖xk − x∗‖; lk)g(‖xk − x∗‖; mk)‖xk − x∗‖
≤ g(‖xk − x∗‖; u)2‖xk − x∗‖ < g(r0; u)2‖xk − x∗‖ < ‖xk − x∗‖.

We can further prove that {xk}∞k=0 ⊂ N(x∗, r) by induction. When k = 0, we can get
‖x0 − x∗‖ < r < r0 and

‖x1 − x∗‖ < g(‖x0 − x∗‖; u)2‖x0 − x∗‖ < ‖x0 − x∗‖ < r,

since x0 ∈ N(x∗, r). Hence x1 ∈ N(x∗, r). Now, when k = n, suppose that xn ∈
N(x∗, r), and then we can straightforwardly deduce the estimate

‖xn+1 − x∗‖ < g(‖xn − x∗‖; u)2‖xn − x∗‖
< g(r0; u)2‖xn − x∗‖ < g(r0; u)2(n+1)‖x0 − x∗‖ < r,

Numer Algor (2013) 64:659–683 669

which shows that xn+1 ∈ N(x∗, r) for k = n + 1. Moreover, as n → ∞, xn+1 → x∗.
This completes the proof of Theorem 3.3.

4 Semilocal convergence of the modified Newton-HSS method

In this section, under the conditions given in [21], we prove the semilocal conver-
gence for the modified Newton-HSS method by using the major function. That is,
if the initial point x0 satisfies some conditions, the existence of the solution of the
nonlinear system (1) can be ascertained directly from the iterative process.

Let F : D ⊂ C
n → C

n be G-differentiable on an open neighborhood N0 ⊂ D of
a point x0 ∈ D at which F ′(x) is continuous and positive definite. Suppose F ′(x) =
H(x)+S(x), where H(x) = 1

2 (F ′(x)+F ′(x)∗) and S(x) = 1
2 (F ′(x)−F ′(x)∗) are

the Hermitian and skew-Hermitian parts of the Jacobian matrix F ′(x), respectively.
Denote with N(x0, r) an open ball centered at x0 with radius r > 0.

Assumption 4.1 Let x0 ∈ C
n and assume the following conditions given in [21]

hold.

(A1) (THE BOUNDED CONDITION) there exist positive constants β and γ such
that

max{‖H(x0)‖, ‖S(x0)‖} ≤ β, ‖F ′(x0)
−1‖ ≤ γ, ‖F(x0)‖ ≤ δ. (14)

(A2) (THE LIPSCHITZ CONDITION) there exist nonnegative constants Lh and Ls

such that for all x, y ∈ N(x0, r) ⊂ N0,

‖H(x) − H(y)‖ ≤ Lh‖x − y‖, (15)

‖S(x) − S(y)‖ ≤ Ls‖x − y‖. (16)

From Assumption 4.1, the integral mean-value theorem, Banach’s Lemma and
F ′(x) = H(x) + S(x), we can easily get Lemma 4.1 with L := Lh + Ls .

Lemma 4.1 Under Assumption 4.1, for all x, y ∈ N(x0, r), if r ∈ (
0, 1

γL

)
, then

F ′(x)−1 exists. And we have the following inequalities:

‖F ′(x) − F ′(y)‖ ≤ L‖x − y‖,
‖F ′(x)‖ ≤ L‖x − x0‖ + 2β,

‖F(x) − F(y) − F ′(y)(x − y)‖ ≤ L

2
‖x − y‖2,

‖F ′(x)−1‖ ≤ γ

1 − γL‖x − x0‖ .

Define

g(t) = 1

2
at2 − bt + c,

h(t) = at − 1,

670 Numer Algor (2013) 64:659–683

with the constants satisfying a = Lγ (1 + η), b = 1 − η and c = 2γ δ, where
η = maxk{max{ηk, η̃k}} < 1.

Let t0 = 0, and the sequences {tk}, {sk} are generated by the following formula⎧⎪⎪⎨
⎪⎪⎩

sk = tk − g(tk)

h(tk)
,

tk+1 = sk − g(sk)

h(tk)
.

(17)

Some properties of the functions g(t), h(t) and the sequences {tk}, {sk} are given
by the following lemmas.

Lemma 4.2 Assume that the constants satisfy

γ 2δL ≤ (1 − η)2

4(1 + η)
. (18)

Denote t∗ = b−
√

b2−2ac
a

, and then when t ∈ [0, t∗], the following inequalities hold
that

g(t) ≥ 0, g′(t) < 0, g′′(t) > 0,

h(t) < g′(t) < 0.

The proof is omitted since it is straightforward.

Lemma 4.3 Suppose the sequences {tk}, {sk} are generated by the formula (17).
Under the assumption of Lemma 4.2, then the sequences {tk}, {sk} increase and
converge to t∗. Moreover,

0 ≤ tk < sk < tk+1 < t∗,
tk+1 − sk < sk − tk.

Proof Denote

U(x) = x − g(x)

h(x)
and V(x) = U(x) − g(U(x))

h(x)
.

Then

U ′(x) = (h(x) − g′(x))h(x) + g(x)h′(x)

h(x)2
,

V ′(x) =
(
h(x) − g′(U(x))

)
h(x)U ′(x) + g(U(x))h′(x)

h(x)2
.

From Lemma 4.2, we have U ′(x) > 0 for x ∈ [0, t∗]. So U(x) increases strictly
on [0, t∗], and then x < U(x) < U(t∗) = t∗ for x ∈ [0, t∗]. It follows that

Numer Algor (2013) 64:659–683 671

h(x) < g′(x) < g′(U(x)). Hence, it is easy to prove that V (x) increases strictly on
[0, t∗], and U(x) < V (x) < V (t∗) = t∗. Moreover,

sk = U(tk), tk+1 = V (tk), t0 = 0 < t∗.

Then we can easily prove the inequality 0 ≤ tk < sk < tk+1 < t∗ by induction. As
g′(t) < 0 for t ∈ [0, t∗), so g(tk) > g(sk). Hence

tk+1 − sk = −g(sk)

h(tk)
< −g(tk)

h(tk)
= sk − tk.

The proof of Lemma 4.3 completes.

Theorem 4.1 Under the assumptions of Lemmas 4.1 and 4.2, define r := min(r1, r2)

with

r1 = α + β

L

(√
1 + 2ατθ

(2γ + γ τθ)(α + β)2
− 1

)
,

r2 = b − √
b2 − 2ac

a
,

and define u = min{m∗, l∗} with m∗ = lim infk→∞ mk, l∗ = lim infk→∞ lk , and the
constant u satisfies u > �ln η/ ln ((τ + 1)θ)�, where the symbol �·� is used to denote
the smallest integer no less than the corresponding real number, τ ∈ (

0, 1−θ
θ

)
and

θ ≡ θ(α; x0) = ‖T (α; x0)‖ < 1.

Then the iteration sequence {xk}∞k=0 generated by the modified Newton-HSS method
is well-defined and converges to x∗, which satisfies F(x∗) = 0.

Proof Firstly, we can get the estimate about the iterative matrix T (α; x) of the linear
solver. Whenever x ∈ N(x0, r),

‖T (α; x)‖ ≤ (τ + 1)θ < 1.

As for the proof of the above inequality, see Theorem 3.2 in [21].
Now, we prove by induction

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖xk − x0‖ ≤ tk − t0,

‖F(xk)‖ ≤ 1 − γLtk

(1 + η)γ
(sk − tk),

‖yk − xk‖ ≤ sk − tk,

‖F(yk)‖ ≤ 1 − γLtk

(1 + η)γ
(tk+1 − sk),

‖xk+1 − yk‖ ≤ tk+1 − sk.

(19)

672 Numer Algor (2013) 64:659–683

Since

‖x0 − x0‖ = 0 ≤ t0 − t0,

‖F(x0)‖ ≤ δ ≤ 2γ δ

γ (1 + η)
= 1 − γLt0

(1 + η)γ
(s0 − t0),

‖y0 − x0‖ = ‖I − T (α; x0)
l0‖ ‖F ′(x0)

−1F(x0)‖ ≤ (1 + θ l0)γ δ < 2γ δ = s0,

‖F(y0)‖ ≤ ‖F(y0) − F(x0) − F ′(x0)(y0 − x0)‖ + ‖F(x0) + F ′(x0)(y0 − x0)‖
≤ L

2
‖y0 − x0‖2 + η‖F(x0)‖ ≤ L

2
s2

0 + ηδ ≤ 1 − γLt0

(1 + η)γ
(t1 − s0),

‖x1 − y0‖ ≤ ‖I − T (α; x0)
m0‖ ‖F ′(x0)

−1F(y0)‖
≤ (1 + θm0)‖F ′(x0)

−1‖ ‖F(y0)‖ < (1 + η)γ ‖F(y0)‖ ≤ t1 − s0,

(19) is satisfied for k = 0. Suppose that (19) holds for all nonnegative integers less
than k. We prove that it holds for k. For the first inequality in (19), we have

‖xk − x0‖ ≤ ‖xk − yk−1‖ + ‖yk−1 − xk−1‖ + ‖xk−1 − x0‖ ≤ tk − t0 < t∗ < r.

Since xk−1, yk−1 ∈ N(x0, r) and by the inequality (11), we have

(1 + η)γ ‖F(xk)‖ ≤ (1 + η)γ ‖F(xk) − F(yk−1) − F ′(xk−1)(xk − yk−1)‖
+ (1 + η)γ ‖F(yk−1) + F ′(xk−1)(xk − yk−1)‖

≤ (1 + η)γL

2
‖xk − yk−1‖2 + η(1 + η)γ ‖F(yk−1)‖

≤ (1 + η)γL

2
(tk − sk−1)

2 + η(1 − γLtk−1)(tk − sk−1)

= g(tk) − g(sk−1) + b(tk − sk−1) − ask−1(tk − sk−1)

+ η(1 − γLtk−1)(tk − sk−1)

= g(tk) − g(sk−1) + (1 − γL(1 + η)sk−1 − ηγLtk−1)
g(sk−1)

−h(tk−1)

= g(tk) + (1 + η)γLsk−1 − γLtk−1

h(tk−1)
g(sk−1)

< g(tk) = −h(tk)(sk − tk)

< (1 − γLtk)(sk − tk).

It follows that

‖F(xk)‖ ≤ (1 − γLtk)

(1 + η)γ
(sk − tk),

and then

‖yk − xk‖ ≤ ‖I − T (α; xk)
lk‖ ‖F ′(xk)

−1F(xk)‖
≤ (

1 + ((1 + τ)θ)lk
)‖F ′(xk)

−1‖ ‖F(xk)‖
≤ (1 + η)

γ

1 − γLtk
‖F(xk)‖

≤ sk − tk.

Numer Algor (2013) 64:659–683 673

Similarly, we can prove that

‖F(yk)‖ ≤ (1 − γLtk)

(1 + η)γ
(tk+1 − sk),

and
‖xk+1 − yk‖ ≤ tk+1 − sk.

Therefore, (19) is true for all k. Since the sequences {tk}, {sk} converge to t∗ and

‖xk+1 − x0‖ ≤ ‖xk+1 − yk‖ + ‖yk − xk‖ + ‖xk − x0‖
≤ tk+1 − t0 < t∗ < r,

the sequence {xk} also converges, to say x∗. Since ‖T (α; x∗)‖ < 1, we have

F(x∗) = 0

from the iteration (13).
It completes the proof of this theorem.

5 Global convergence theorem of the modified Newton-HSS method

In the above two sections, we have proved two convergence theorems of the modified
Newton-HSS method. One is the local convergence theorem, in which the conver-
gence ball is determined based on the information around the solution x∗, and also
the convergence rate is obtained. The other is the semilocal convergence theorem,
in which the convergence criterion is provided based on the information around the
initial point x0.

In this section, we discuss the stronger type of convergence, our purpose is to
introduce and analyze globally convergent modified Newton-HSS method which is
designed to improve convergence from an arbitrary starting point. A basic global
convergence result is established to effect that, under reasonable assumptions, that is,
if the sequence generated by the iterates has a limit point at which F ′ is invertible,
then that limit point is a solution and the sequence converges to it [22]. Now, we
introduce the algorithm of global modified Newton-HSS, Algorithm GMN-HSS.

Algorithm 5.1 GMN-HSS (global modified Newton-HSS method)

1. Given an initial guess x0 and a positive constant t ∈ (0, 1).
2. For k = 0 step 1 until ∞ do:

2.1. Find some ηk ∈ [0, 1) and dk that satisfy

‖F(xk) + F ′(xk)dk‖ ≤ ηk‖F(xk)‖ (20)

and
‖F(xk + dk)‖ ≤ [1 − t (1 − ηk)]‖F(xk)‖. (21)

2.2. Set yk = xk + dk .
2.3. Compute F(yk).
2.4. Find some η̃k ∈ [0, 1) and hk that satisfy

‖F(yk) + F ′(xk)hk‖ ≤ η̃k‖F(yk)‖ (22)

674 Numer Algor (2013) 64:659–683

and

‖F(yk + hk)‖ ≤ [1 − t (1 − η̃k)]‖F(yk)‖. (23)

2.5. Set xk+1 = yk + hk .

Denote with Nδ(x) = {
y

∣∣ ‖y − x‖ < δ
}
, for δ > 0.

Lemma 5.1 ([1, §2.3.3] [22, Lemma 1.1]) Assume that F ′(x) is invertible. Then for
any ε > 0, there exists δ > 0 such that F ′(y) is invertible and

‖F ′(y)−1 − F ′(x)−1‖ < ε

whenever y ∈ Nδ(x).

Lemma 5.2 ([1, §3.2.10] [22, Lemma 1.1]) For any x and ε > 0, there exists δ > 0
such that

‖F(z) − F(y) − F ′(y)(z − y)‖ ≤ ε‖z − y‖
whenever y, z ∈ Nδ(x).

Theorem 5.1 Assume that {xk}, {yk} are two sequences such that F(xk) → 0 and,
for each k,

‖F(xk) + F ′(xk)dk‖ ≤ η‖F(xk)‖ and ‖F(yk)‖ ≤ ‖F(xk)‖,
‖F(yk) + F ′(xk)hk‖ ≤ η‖F(yk)‖ and ‖F(xk+1)‖ ≤ ‖F(yk)‖,

where dk = yk − xk, hk = xk+1 − yk and η is independent of k. If x∗ is a limit point
of {xk} such that F ′(x∗) is invertible, then F(x∗) = 0 and xk → x∗.

Proof Obviously F(x∗) = 0. Set K ≡ ‖F ′(x∗)−1‖. By Lemmas 5.1 and 5.2, for any
z ∈ Nδ(x∗), there exists a sufficiently small δ such that ‖F ′(z)−1‖ exists and

‖F ′(z)−1‖ ≤ 2K,

‖F(z) − F(x∗) − F ′(x∗)(y − x∗)‖ ≤ 1

2K
‖z − x∗‖.

If z ∈ Nδ(x∗), then

‖F(z)‖ ≥ ‖F ′(x∗)(z − x∗)‖ − ‖F(z) − F(x∗) − F ′(x∗)(z − x∗)‖
≥ 1

‖F ′(x∗)−1‖‖z − x∗‖ − 1

2K
‖z − x∗‖ = 1

2K
‖z − x∗‖,

so that, whenever z ∈ Nδ(x∗),

‖z − x∗‖ ≤ 2K‖F(z)‖. (24)

Let ε ∈ (0, δ/6) be given. Since x∗ is a limit point of {xk} and F(x∗) = 0, there is
a sufficiently large k such that

xk ∈ Sε ≡ {
z
∣∣‖z − x∗‖ < δ/3 and ‖F(z)‖ < ε/[K(1 + η)]}.

Numer Algor (2013) 64:659–683 675

Then

‖dk‖ = ‖F ′(xk)
−1(−F(xk) + (F (xk) + F ′(xk)dk))‖

≤ ‖F ′(xk)
−1‖(‖F(xk)‖ + ‖F(xk) + F ′(xk)dk‖

)
≤ 2K(1 + η)‖F(xk)‖
< 2ε < δ/3,

‖hk‖ = ‖F ′(xk)
−1(−F(yk) + (F (yk) + F ′(xk)hk))‖

≤ ‖F ′(xk)
−1‖(‖F(yk)‖ + ‖F(yk) + F ′(xk)hk‖

)
≤ 2K(1 + η)‖F(yk)‖
≤ 2K(1 + η)‖F(xk)‖
< 2ε < δ/3,

and so

‖xk+1 − x∗‖ ≤ ‖xk+1 − yk‖ + ‖yk − xk‖ + ‖xk − x∗‖ < δ.

Since

‖F(xk+1)‖ ≤ ‖F(xk)‖ < ε/[K(1 + η)]
and, from inequality (24),

‖xk+1 − x∗‖ ≤ 2K‖F(xk+1)‖ < 2Kε/[K(1 + η)] < δ/3,

it follows that xk+1 ∈ Sε . We conclude that xk ∈ Sε ⊂ Nδ(x∗) for all sufficiently
large k, and since ‖F(xk)‖ → 0, it follows from inequality (24) that xk → x∗.

Now, we prove the basic global convergence theorem of the Algorithm GMN-
HSS.

Theorem 5.2 Assume that Algorithm GMN-HSS does not break down. If
∑

k≥0(2 −
ηk − η̃k) is divergent, then F(xk) → 0. If, in addition, x∗ is a limit point of {xk} such
that F ′(x∗) is invertible, then F(x∗) = 0 and xk → x∗.

Proof From the inequalities (21) and (23), we have

‖F(yk−1)‖ ≤ [1 − t (1 − ηk−1)]‖F(xk−1)‖,
and

‖F(xk)‖ ≤ [1 − t (1 − η̃k−1)]‖F(yk−1)‖
≤ [1 − t (1 − ηk−1)][1 − t (1 − η̃k−1)]‖F(xk−1)‖
≤ ‖F(x0)‖
0≤j<k[1 − t (1 − ηj)]
0≤j<k[1 − t (1 − η̃j)]
≤ ‖F(x0)‖exp[−t�0≤j<k(1 − ηj)]exp[−t�0≤j<k(1 − η̃j)]
= ‖F(x0)‖exp[−t�0≤j<k(2 − ηj − η̃j)].

Since t > 0 and 2 − ηj − η̃j ≥ 0, the divergence of
∑

k≥0(2 − ηk − η̃k) implies
‖F(xk)‖ → 0. The remainder of the theorem follows from Theorem 5.1 with η = 1.

This completes the proof of the theorem.

676 Numer Algor (2013) 64:659–683

To implement the Algorithm GMN-HSS, there are three main ways: linear search
methods, trust region methods and continuation/homotopy methods. The backtrack-
ing linear method is used in our method because of its simplicity, and the algorithm
is stated as follows.

Algorithm 5.2 Algorithm GMN-HSSB (global modified Newton-HSS method with
backtracking)

1. Let x0, ηmax ∈ [0, 1), t ∈ (0, 1), 0 < θmin < θmax < 1, and tol > 0 be given.
2. While ‖F(xk)‖ > tol‖F(x0)‖ and k < 1000 do:

2.1. Choose ηk ∈ [0, ηmax], apply HSS method to the linear system (9) to
obtain dk such that

‖F(xk) + F ′(xk)dk‖ ≤ ηk‖F(xk)‖.

2.2. Perform the Backtracking Loop(BL) i.e.

2.2.1. Set d̄k = dk and η̄k = ηk .
2.2.2. While ‖F(xk + dk)‖ > [1 − t (1 − η̄k)]‖F(xk)‖ do:

2.2.2.1. Choose θ ∈ [θmin, θmax].
2.2.2.2. Update d̄k = θd̄k and η̄k = 1−θ(1− η̄k).

2.3. Set yk = xk + d̄k .
2.4. Compute F(yk).
2.5. Choose η̃k ∈ [0, ηmax], apply HSS method to the linear system (10)

to obtain hk such that

‖F(yk) + F ′(xk)hk‖ ≤ η̃k‖F(yk)‖.

2.6. Perform the Backtracking Loop (BL) i.e.

2.6.1. Set h̄k = hk and η̄k = η̃k .
2.6.2. While ‖F(yk + hk)‖ > [1 − t (1 − η̄k)]‖F(yk)‖ do:

2.6.1.1. Choose θ ∈ [θmin, θmax].
2.6.1.2. Update h̄k = θh̄k and η̄k = 1−θ(1−η̄k).

2.7. Set xk+1 = yk + h̄k .

6 Numerical examples

In this section, we compare our method with NHSS by the example given in [19],
and the numerical results show that our method is more competitive than NHSS. We
also solve a model problem BROYDN3D with our method.

Numer Algor (2013) 64:659–683 677

Example 1 [19] Let us consider the two-dimensional nonlinear convection-diffusion
equation { −(uxx + uyy) + q1ux + q2uy = −eu, for (x, y) ∈ �,

u(x, y) = 0, for (x, y) ∈ ∂�,

where � = (0, 1) × (0, 1), with ∂� its boundary, and q1, q2 are positive constants
used to measure magnitudes of the convective terms. By applying the centered finite
difference scheme on the equidistant discretization grid with the stepsize h = 1

N+1 ,
the system of nonlinear equations (1) is obtained with following form

F(x) ≡ Mx + h2φ(x) = 0,

where N is a prescribed positive integer,

M = Tx ⊗ I + I ⊗ Ty,

φ(x) = (ex1 , ex2 , · · · , exn)T ,

with Tx and Ty being tridiagonal matrices given by

Tx = tridiag(−1 − Re1, 2, −1 + Re1) and Ty = tridiag(−1 − Re2, 2, −1 + Re2).

Here, Re1 = 1
2qjh, j = 1, 2, Re = max{Re1, Re2} is the mesh Reynolds number,

⊗ the Kronecker product symbol, and n = N × N .
It has been shown by the authors in [19] that Newton-HSS method outperforms

the Newton-USOR, the Newton-GMRES and the Newton-GCG methods. So in this
paper, we just compare our method with Newton-HSS method. Here we choose the
same parameters as those given in [19]. The positive constant q2 = 1

h
, the initial

guess x0 = 0, the stopping criterion for the outer Newton iteration is set to be

‖F(xk)‖2

‖F(x0)‖2
≤ 10−6,

and the prescribed tolerance ηk and η̃k for controlling the accuracy of the HSS
iteration are both set to be η.

In the implementations, we use the optimal parameters α for the Newton-HSS
method listed in [19] and we adopt experimentally optimal parameters α for the
modified Newton-HSS method, see Tables 1 and 2.

Table 1 The optimal values α for Newton-HSS method

N q = 600 q = 800 q = 1000

η = 0.1 η = 0.2 η = 0.4 η = 0.1 η = 0.2 η = 0.4 η = 0.1 η = 0.2 η = 0.4

30 3.0 2.7 2.9 1.1 1.2 1.1 1.1 1.1 1.4

40 1.3 1.2 1.3 1.2 1.1 1.3 1.4 1.2 1.2

50 1.6 1.5 1.8 1.2 1.5 1.2 1.2 1.2 1.3

678 Numer Algor (2013) 64:659–683

Table 2 The optimal values α for modified Newton-HSS method

N q = 600 q = 800 q = 1000

η = 0.1 η = 0.2 η = 0.4 η = 0.1 η = 0.2 η = 0.4 η = 0.1 η = 0.2 η = 0.4

30 3.1 2.9 3.6 3.5 3.3 3.5 3.7 3.8 4.4

40 3.1 2.8 3.4 3.4 3.3 3.5 4.1 3.6 3.7

50 2.0 2.1 2.8 3.0 2.6 2.9 3.2 3 2.8

Table 3 η = 0.1, N = 30

q Method Error estimates CPU time(s) Outer IT Inner IT

600 NHSS 2.5317 × 10−7 3.399424 6 47

MN-HSS 3.6278 × 10−7 2.787244 3 46

800 NHSS 5.7008 × 10−7 5.049233 6 82

MN-HSS 6.9747 × 10−7 3.048042 3 51

1000 NHSS 2.3342 × 10−7 6.103315 6 103

MN-HSS 5.7774 × 10−7 3.405098 3 58

Table 4 η = 0.1, N = 40

q Method Error estimates CPU time(s) Outer IT Inner IT

600 NHSS 3.1709 × 10−7 14.45626 6 64

MN-HSS 3.6415 × 10−7 9.094802 3 46

800 NHSS 3.6561 × 10−7 15.72509 6 75

MN-HSS 4.8204 × 10−7 9.834077 3 51

1000 NHSS 5.2253 × 10−7 17.04021 6 83

MN-HSS 6.6359 × 10−7 10.4798 3 56

Table 5 η = 0.1, N = 50

q Method Error estimates CPU time(s) Outer IT Inner IT

600 NHSS 3.0139 × 10−7 34.48944 6 53

MN-HSS 5.6893 × 10−7 23.76745 3 47

800 NHSS 2.0475 × 10−7 42.55545 6 79

MN-HSS 5.3148 × 10−7 25.13673 3 51

1000 NHSS 4.6039 × 10−7 45.81205 6 88

MN-HSS 5.7395 × 10−7 26.60133 3 56

Numer Algor (2013) 64:659–683 679

Table 6 η = 0.2, N = 30

q Method Error estimates CPU time(s) Outer IT Inner IT

600 NHSS 5.6144 × 10−7 4.063045 8 47

MN-HSS 5.3797 × 10−7 2.904874 4 44

800 NHSS 1.8154 × 10−7 5.722528 9 82

MN-HSS 8.1726 × 10−7 3.230078 4 50

1000 NHSS 8.6362 × 10−7 6.06679 8 93

MN-HSS 9.5968 × 10−7 3.460101 4 56

Table 7 η = 0.2, N = 40

q Method Error estimates CPU time(s) Outer IT Inner IT

600 NHSS 1.6504 × 10−7 17.94886 9 68

MN-HSS 6.1775 × 10−7 9.873137 4 45

800 NHSS 8.8256 × 10−7 16.64199 8 70

MN-HSS 7.2855 × 10−7 10.57403 4 50

1000 NHSS 8.6838 × 10−7 18.11303 8 79

MN-HSS 9.4418 × 10−7 11.01499 4 54

Table 8 η = 0.2, N = 50

q Method Error estimates CPU time(s) Outer IT Inner IT

600 NHSS 6.7809 × 10−7 39.42675 8 52

MN-HSS 5.7596 × 10−7 25.86464 4 46

800 NHSS 5.6707 × 10−7 42.24997 8 63

MN-HSS 8.3840 × 10−7 27.31638 4 49

1000 NHSS 2.2986 × 10−7 55.61846 9 93

MN-HSS 8.7973 × 10−7 28.63291 4 54

Table 9 η = 0.4, N = 30

q Method Error estimates CPU time(s) Outer IT Inner IT

600 NHSS 3.6490 × 10−7 5.099263 13 46

MN-HSS 4.7466 × 10−7 3.670551 7 46

800 NHSS 5.7009 × 10−7 6.756781 14 82

MN-HSS 6.9747 × 10−7 3.900176 7 51

1000 NHSS 6.7839 × 10−7 6.752883 14 80

MN-HSS 7.0287 × 10−7 4.106306 7 57

680 Numer Algor (2013) 64:659–683

Table 10 η = 0.4, N = 40

q Method Error estimates CPU time(s) Outer IT Inner IT

600 NHSS 9.1867 × 10−7 19.10262 12 59

MN-HSS 4.1738 × 10−7 12.38975 7 46

800 NHSS 3.6332 × 10−7 22.35775 14 75

MN-HSS 3.6695 × 10−7 13.37436 7 52

1000 NHSS 4.3902 × 10−7 23.67613 14 83

MN-HSS 3.4567 × 10−7 13.95786 7 57

The numerical results displayed in Tables 3, 4, 5, 6, 7, 8, 9, 10, 11 indicate that the
modified Newton-HSS method outperforms the Newton-HSS in the sense of number
of iterations and CPU time.

In Tables 3–11, the number of outer iterations and the total number of inner iter-
ations are denoted with Outer IT and Inner IT, respectively. From the numerical
results displayed in Tables 3–11, we observe that the CPU time and the number
of outer iterations in NHSS method are greater. The outer iterations in MN-HSS
method are about half of those in NHSS method, and the CPU time for the NHSS
method is about 1.5 times in average of that for the MN-HSS method. In the case that
N = 50, q = 1000, η = 0.4, the CPU time for the NHSS method is 1.94 times of
that for the MN-HSS method.

Example 2 [23] We consider the nonlinear problem BROYDN3D. It contains of n

coupled quadratic equations. Let X = (x1, · · ·, xn). The nonlinear system F(X) = 0
is given by F = (F1, · · ·, Fn) with

Fi(X) = (3 − 2xi)xi − xi−1 − 2xi+1 + 1,

where x0 = xn+1 = 0 by convention. The initial guess is X0 = (−1, · · ·, −1).

Table 11 η = 0.4, N = 50

q Method Error estimates CPU time(s) Outer IT Inner IT

600 NHSS 5.3810 × 10−7 50.87866 13 49

MN-HSS 3.1395 × 10−7 34.38023 7 47

800 NHSS 3.0626 × 10−7 65.59628 14 78

MN-HSS 7.2375 × 10−7 36.08129 7 50

1000 NHSS 3.4524 × 10−7 68.68571 14 87

MN-HSS 3.2225 × 10−7 37.03921 7 56

Numer Algor (2013) 64:659–683 681

Table 12 The optimal values α

for NHSS and MN-HSS method 100 500 1000 2000

NHSS 4.1 4.2 4.1 4

MN-HSS 4.4 4.3 4.3 4.2

Then

F ′(X) =

⎛
⎜⎜⎜⎜⎜⎝

3 − 4x1 −2 · · · 0 0
−1 3 − 4x2 · · · 0 0
...

...
. . .

...
...

0 0 · · · 3 − 4xn−1 −2
0 0 · · · −1 3 − 4xn

⎞
⎟⎟⎟⎟⎟⎠ .

It is known F ′(X) is sparse and positive definite. Now we solve the nonlinear
problem by the Newton method, the Newton-HSS method and the modified Newton-
HSS Method. They are compared in error estimates, CPU time and the number of
iterations. We use experimentally optimal parameters α for the Newton-HSS method
and the modified Newton-HSS method corresponding to the problem dimension n =
100, 500, 1000, 2000, see Table 12. The numerical results are displayed in Table 13.

From Table 13, we observe that the MN-HSS method outperforms the NHSS
method in the sense of CPU time and the number of iterations, and the CPU time for
the NHSS method is about 1.5 times of that for the MN-HSS method.

Table 13 Numerical Results for BROYDN3D

n Method Error estimates CPU time(s) Outer IT

100 Newton 1.0084 × 10−10 0.001232 4

NHSS 8.0089 × 10−7 0.005718 5

MN-HSS 6.6696 × 10−7 0.003833 3

500 Newton 4.7042 × 10−11 0.071939 4

NHSS 7.7244 × 10−7 0.3937667 5

MN-HSS 4.1772 × 10−7 0.2647427 3

1000 Newton 3.3482 × 10−11 0.29026 4

NHSS 7.4397 × 10−7 1.982441 5

MN-HSS 3.3558 × 10−7 1.363745 3

2000 Newton 2.3793 × 10−11 1.133462 9

NHSS 7.1528 × 10−7 11.299509 5

MN-HSS 2.7542 × 10−7 7.53185 3

682 Numer Algor (2013) 64:659–683

7 Conclusions

Newton-HSS method is a considerable method for solving large sparse nonlin-
ear systems with non-Hermitian positive definite Jacobian matrices. Based on the
Newton-HSS method, we propose a modified Newton-HSS method, in which a mod-
ified Newton method which has R-order of convergence three at least is used for
solving the nonlinear equations and the HSS method is applied to approximately
solve the Newton equations. We have proved the local and semilocal convergence
theorems of our method. Moreover, we have introduced a global modified Newton-
HSS method and established a basic global convergence theorem. We also choose
backtracking linear method to implement the Algorithm GMN-HSS and get the algo-
rithm GMN-HSSB. However, we does not give the choice of the forcing terms in
the Algorithm GMN-HSS in our paper, and it is an interesting topic in our future
study. Finally, both the two-dimensional nonlinear convection-diffusion system and
the BROYDN3D model problem show that the modified Newton-HSS outperforms
the Newton-HSS method in the sense of CPU time and number of iterations.

Acknowledgements This work is supported by the National Basic Research 973 Program of
China (No. 2011JB105001) and Important National Science & Technology Specific Projects
(No. 2009ZX07424-001).

References

1. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables.
Academic Press, New York (1970)

2. Rheinboldt, W.C.: Methods of Solving Systems of Nonlinear Equations, The 2nd Edn. SIAM,
Philadelphia (1998)

3. Dembo, R.S., Eisenstat, S.C., Steihaug, T.: Inexact Newton mehtods. SIAM J. Numer. Anal. 19, 400–
408 (1982)

4. Guo, X.-P.: On semilocal convergence of inexact Newton methods. J. Comput. Math. 25, 231–242
(2007)

5. Eisenstat, S.C., Walker, H.F.: Globally convergent inexact Newton methods. SIAM J. Optim. 4, 393–
422 (1994)

6. Kelley, C.T.: Iterative Methods for Linear and Nonlinear Equations. SIAM, Philadelphia (1995)
7. Saad, Y.: Iterative Methods for Sparse Linear Systems, The 2nd edn. SIAM, Philadelphia (2003)
8. Brown, P.N., Saad, Y.: Convergence theory of nonlinear Newton–Krylov algorithms. SIAM J. Optim.

4, 297–330 (1994)
9. Brown, P.N., Saad, Y.: Hybrid Krylov methods for nonlinear systems of equations. SIAM J. Sci.

Statist. Comput. 11, 450–481 (1990)
10. An, H.-B., Bai, Z.-Z.: A globally convergent Newton-GMRES method for large sparse systems of

nonlinear equations. Appl. Numer. Math. 57, 235–252 (2007)
11. Bai, Z.-Z., Golub, G.H., Ng, M.K.: Hermitian and skew-Hermitian splitting methods for non-

Hermitian positive definite linear systems. SIAM J. Matrix Anal. Appl. 24, 603–626 (2003)
12. Bai, Z.-Z., Golub, G.H., Pan, J.-Y.: Preconditioned Hermitian and skew-Hermitian splitting methods

for non-Hermitian positive semidefinite linear systems. Numer. Math. 98, 1–32 (2004)
13. Bai, Z.-Z., Golub, G.H., Li, C.-K.: Convergence properties of preconditioned Hermitian and skew-

Hermitian splitting methods for non-Hermitian positive semidefinite matrices. Math. Comput. 76,
287–298 (2007)

14. Bai, Z.-Z., Golub, G.H., Lu, L.-Z., Yin, J.-F.: Block triangular and skew-Hermitian splitting methods
for positive-definite linear systems. SIAM J. Sci. Comput. 26, 844–863 (2005)

Numer Algor (2013) 64:659–683 683

15. Bai, Z.-Z., Golub, G.H., Li, C.-K.: Optimal parameter in Hermitian and skew-Hermitian splitting
method for certain two-by-two block matrices. SIAM J. Sci. Comput. 28, 583–603 (2006)

16. Bai, Z.-Z., Golub, G.H.: Accelerated Hermitian and skew-Hermitian splitting iteration methods for
saddle-point problems. IMA J. Numer. Anal. 27, 1–23 (2007)

17. Benzi, M., Gander, M.J., Golub, G.H.: Optimization of the Hermitian and skew-Hermitian splitting
iteration for saddle-point problems. BIT Numer. Math. 43, 881–900 (2003)

18. Bai, Z.-Z., Benzi, M., Chen, F., Wang, Z.-Q.: Preconditioned MHSS iteration methods for a class of
block two-by-two linear systems with applications to distributed control problems. Technical Report
2011-001, Math/CS Department, Emory University (January 2011). To appear in IMA J. Numer. Anal.

19. Bai, Z.-Z., Guo, X.-P.: The Newton-HSS methods for systems of nonlinear equations with positive-
definite Jacobian matrices. J. Comput. Math. 28, 235–260 (2010)

20. Darvishi, M.T., Barati, A.: A third-order Newton-type method to solve systems of nonlinear equations.
Appl. Math. Comput. 187, 630–635 (2007)

21. Guo, X.-P., Duff, I.S.: Semilocal and global convergence of the Newton-HSS method for systems of
nonlinear equations. Numer. Linear Algebra Appl. 18, 299–315 (2011)

22. Eisenstat, S.C., Walker, H.F.: Globally convergent inexact Newton methods. SIAM J. Optim. 4, 393–
422 (1994)

23. Bargiacchi-Soula, S., Fehrenbach, J., Masmoudi, M.: From linear to nonlinear large scale systems.
SIAM J. Matrix. Anal. Appl. 31, 1552–1569 (2010)

	Convergence analysis of modified Newton-HSS method for solving systems of nonlinear equations
	Abstract
	Introduction
	The modified Newton-HSS methods
	Local convergence theorem of the modified Newton-HSS method
	Semilocal convergence of the modified Newton-HSS method
	Global convergence theorem of the modified Newton-HSS method
	Numerical examples
	Conclusions
	Acknowledgements
	References

