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Abstract A software package for numerical inversion of Laplace transforms
computable everywhere on the real axis is described. Besides the function
to invert the user has only to provide the numerical value (even if it is an
approximate value) of the abscissa of convergence and the accuracy required
for the inverse function. The software provides a controlled accuracy, i.e. it
dynamically computes the so-called maximum attainable accuracy such that
numerical results are provided within the greatest value between the user’s
required accuracy and the maximum attainable accuracy. This is done because
the intrinsic ill posedness of the real inversion problem sometime may prevent
to reach the desired accuracy. The method implemented is based on a Laguerre
polynomial series expansion of the inverse function and belongs to the class
of polynomial-type methods of inversion of the Laplace transform, formally
characterized as Collocation methods (C-methods).
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1 Introduction

Let [20]:

F(z) =
∫ ∞

0
e−zx f (x)dx, z ∈ C : Re(z) > σ0 (1)

be the Laplace transform (Lt) of the real-valued function f (x), x ∈ �+ = {x ∈
�, x ≥ 0}.

The software package ReLaTIve (Real Laplace Transform
Inversion) obtains approximations of f (x) from numerical values of
F(z), when these are available for real values of z.

The user has to provide:

– The Laplace Transform function, F, in the form of any user-supplied black-
box;

– The value of x ≥ 0 where the inverse function f has to be computed;
– The value of σ0 ∈ � (or an approximated value of it), the abscissa of

convergence of F;
– A tolerance TOL to the accuracy on f (x)

then, the software is designed to return, with N terms, an approximation of
f (x) as a Laguerre series representation:

f̃N(x) = eσ x
N−1∑
k=0

c̃ke−b xLk(2b x), σ > σ0, b > 0,

which satisfies:

| f (x)− f̃N(x)| ≤ max{T OL, ε∗} or
| f (x)− f̃N(x)|

| f̃N(x)| ≤ max{T OL, ε∗} , (2)

where ε∗ is the maximum attainable accuracy on f̃N dynamically computed
by the algorithm, as detailed in Section 3.1. The role of parameters σ0, σ , b
and recommendations about their use are explained in Section 4. Section 5
describes the software performance and its limitations. Software is designed to
provide the inverse Laplace function at a single point or at a set of points,
as requested in input. Moreover, if the user wants the inverse function as
it is generated, the software returns the coefficients of the Laguerre series
expansion.

2 Related works

Since 1930 there are more than 1,000 publications about numerical methods
for inverting Lt functions [39]. Typically, the inversion problem is referred to
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as complex inversion or as real inversion, depending on the values available for
the Lt function.

This type of classification also takes into account the strong difference
underlying the numerical approach. In the real inversion Lt is a real function
computable on the real axis only and almost all complex inversion methods
(such those based on the numerical quadrature of Riemann inversion formula,
or on the series expansion) cannot be used in this case just restricting to the
real axis Lt evaluations. Indeed, additional difficulties arise in the real case
because of the ill posedness of the inversion problem. In this case, due to the ill
conditioning of the discrete problem, strong amplifications of the errors occur
on the final result. As a consequence, inversion algorithms have to control
and mitigate such instabilities in order to compute the solution within the
maximum attainable accuracy. This can be obtained introducing the so-called
numerical regularization or using extended precision calculations if data can be
obtained with no limited precision.

In the following we cite numerical algorithms for inverting the Laplace
function available in the literature:

1. Complex inversion: TOMS Algorithms: 619 [31], 662 [15], 682 [27],
796 [11] and the Nag routine C06Ilf [28]. Three Mathematica
software packages: FixedTalbotNumericalLaplace [3],
NumericalInversion [25] and NumericalInversion2 [6].
The package FixedTalbotNumericalLaplace contains only one
function. Laplace transform should be provided as a function ready
for multiple precision evaluation in the complex plane. The package
NumericalInversion provides four complex inversion methods plus
one real inversion method. Inversion algorithms are due to Crump,
Durbin, Piessens, Stehfest (the Stehfest’s algorithm is a real inversion
method) and Weeks. The package NumericalInversion2 contains two
complex inversion algorithms (Fourier series approximation and Zakian’s
method).

2. Real inversion: the MATLAB© routine InvertLT.m [23], an implemen-
tation of the method proposed in [22], based on the quadrature of the
Mellin transform operator.1 Two Mathematica implementations of the
Gaver-Stefhest algorithm proposed originally in [36]: the BigNumber–
Stehfest algorithm [4] and the GWR (Gaver–Wynn–Rho) algorithm [2]
(these routines use multiprecision, for details see the web page main-
tained by Valko [39]). The Stehfest’s algorithm of Mathematica package
NumericalInversion [25]. Finally, we cite the implementation, in C
and Fortan [14], of the ACM Stehfest’s algorithm [36].

1InvertLT.m is a DLL—Windows operating system—written in Microsoft Visual C++ 2003 and
recompiled into MATLAB© 5.3(.NET 2003) afterwards.
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3. The Laplace transform is only available at a finite set of measurements on
the real axis: There are some packages used to compute an approximation
of inverse function. In this case, inversion problem is solved via a least
square approximation of data set [7, 32, 34].

Finally, in [8] a comprehensive list of methods that are available at the
current time is presented.

We underline that in the real case we cannot use the software developed
for the complex inversion, because the restriction of the (complex) Laplace
function to the real axis does not guarantee the applicability of the complex
inversion algorithm in the real case. For instance, if we use the Algorithm
796, [10, 11] from TOMS repository, by evaluating the input complex function
on the real axis, we get the error diagnostic (IFAIL=-2) that marks software
failure. Indeed, this algorithm is based on the numerical integration of the
Riemann inversion formula, using the trapezoidal rule, and returns the inverse
function as a Fourier series expansion where the Fourier coefficients are the
values of the Laplace function in the complex plane.

2.1 The present work

In conclusion, besides Stehfest’s algorithm [14], numerical algorithms for real
inversion are mainly implemented as routines of commercial software such as
Mathematica and Matlab.

According to [12] we believe that more than one inversion method should
be used on any function because no single method gives optimum results for
all purposes and all occasions.2 To this aim, we develop a free fully automatic
Ansi C90 software package for inverting a Laplace Transform function, when
this is available everywhere on the real axis with limited precision (at most
equals to the machine precision).

In Section 5 we report the database of Laplace transform functions used
to test software performance, an application test function and real-world test
problems from Duffy’s paper [13]. Finally, some comparisons with Stehfest’s
algorithm [14] are shown. Other numerical results are reported in the software
documentation as provided by the code.

The software is available from Netlib (http://www.netlib.org/numeralgo/) as
na37 package.

Requirements on the inverse function and on the Laplace transform to
invert are the following:

1. Lt function such that:

– It can be expressed as F(z) = z−1G(z), where G is analytic at infinity,

2There is still no single best method because of the dif fering success of the methods[...] more than
one numerical inversion method should be used on any unknown function. This is because every
method breaks down on some functions, and therefore verif ication by dif ferent methods can greatly
increase conf idence in any results achieved [12].

http://www.netlib.org/numeralgo/
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– It may be evaluated on the real axis with a preassigned limited preci-
sion, at most equals to the machine precision;

2. The inverse function such that:

– It is infinitely differentiable for all x > 0.

WARNING: the rate of convergence of Laguerre series expansion highly
affects software performance. Indeed, due to ill posedness of real inversion
problem, even if the Laplace transform belongs to the domain of applicability,
it may happen that as N grows the partial sum of the first N terms does not
always provides a better approximation of the inverse function. This is because
the condition error grows as N. Hence, we set by default Nmax = 40. The soft-
ware is designed to select the right value of N so the input required accuracy,
or failing this, the so-called maximum attainable accuracy, is reached within
Nmax = 40 terms. If the rate of convergence of Laguerre series expansion is
too slow it may happen that the maximum attainable accuracy is greater than
input required accuracy. In terms of the Laplace transform function F, the
rate of convergence of Laguerre series depends on the singularities of F: if
F has a singularity at infinity or on imaginary axis the rate of convergence is
not geometric [1]. A singularity at zero can be removed by doing exponential
damping but the more difficult case is the singularity at infinity, and this is very
common for Laplace transforms.

Such situation is detected by the error indicator flag = 1.

3 The algorithm

ReLaTIve is a software package for computing the inverse Laplace function
using evaluations of its Lt function on the real axis. Hence from now on, we
assume that z ≡ Re(z) ∈ �. It is based on a Collocation method [17], proposed
in its original form in [33, 35], and implements the numerical algorithm
proposed in [9].

Collocation methods use a bilinear mapping between the complex plane
onto itself, such as:

w = z + α

z + β
(β > α) (3)

where α and β are fixed numbers. They compute the Lagrange interpolation
polynomial which interpolates the function �(w) = F(z(w)) at a given set
of collocation knots defined onto the w-plane. Such methods include expan-
sion approximations of the inverse function based on Laguerre polynomials
[24, 29, 33, 35, 41] and the Piessens’s method [30]. In [17] the authors general-
ized and formally characterized such inversion schemes, referring to them as
Collocation method (C-methods).
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Domain of applicability of the C-methods is the function space Sγ where:

Definition 1 Sγ indicates the set of all functions whose analytical continuation,
E(z), can be assumed to be of the form:

E(z) = z−γ G(z), (4)

for some fixed γ > 0, where G is analytic at infinity.

Definition 2 Let σ > σ0 be a positive real number and b > 0. Consider the
Möbius transformation between z-plane and w-plane

z = 2b
1 − w

+ σ − b (5)

and the transformation H onto Sγ such that:

H : E ∈ Sγ → H(E(w)) = 2b
1 − w

E(w) ∈ Sγ (6)

Observe that the Möbius transformation (5) is the inverse bilinear mapping
in (3), where α = −(σ + b) and β = b − σ .

A C-method approximates f (x) by:

f̃N(x) = eσ x
N−1∑
k=0

c̃ke−b xL(γ−1)

k (2b x), σ > σ0, b > 0, (7)

where L(γ−1)

k is the generalized Laguerre polynomial of order γ and degree k.
Applying H to F we get the function �(w) as:

�(w) := H(F(z)) =
(

2b
1 − w

)γ

F
(

2b
1 − w

+ σ − b
)

. (8)

ReLaTIve assumes that the Laplace transform F ∈ S1, then the software is
applicable if

F(z) = G(z)

z

where G is regular at infinity. The inverse Laplace function f (x) is computed
as:

f̃N(x) = eσ x
N−1∑
k=0

c̃ke−b xLk(2b x), σ > σ0, b > 0 . (9)

Laguerre series expansion in (9) has radius of convergence R ≥ 1 when f (x) ∈
C∞[0, ∞).



Numer Algor (2013) 63:187–211 193

The algorithm of ReLaTIve is made of the following three main steps:

step 1: evaluation of the function �(w) = 2b
1 − w

F
(

2b
1 − w

+ σ − b
)

at:

wk = cos
(

2k + 1
N

π

2

)
, k = 0, . . . , N − 1

step 2: computation of the coefficients c̃k occurring in (9)

as the coefficients of the polynomial lN−1 ∈ 	N−1

that interpolates �(w) on wk:

lN−1(w) = ∑N−1
j=0 c̃ jw

j.

step 3: computation of :

f̃N(x) = eσ x ∑N−1
k=0 c̃ke−b xLk(2b x)

ReLaTIve algorithm

Remark The real C-method implemented by ReLaTIve, is strictly related
to the complex C-method underlying the TOMS software package in [15].
Main difference consists in the computation of the c̃k occurring in (9). These
quantities, being the Taylor series coefficients of � in the w-plane [17], in [15]
are obtained using in the complex plane Cauchy integral representation of the
derivatives of �. In ReLaTIve, they are approximated by coefficients of the
Lagrange interpolation polynomial of �, on Chebyshev zeros.

The core of ReLaTIve is step 2, that is computation of the series coefficients
via the solution of a Vandermonde linear system generated by the wk defined
at step 1. We employ the Björck–Pereira algorithm [5]. The error analysis
presented in [21] shows that for such problems the componentwise rounding
error analysis provides more realistic estimates than the norm-wise error
analysis. This mainly occurs if the components of the solution have different
orders of magnitude. Indeed, the standard bounds derived using the ∞-norm
of both data and solution cannot take into account the magnitude of each
component. The componentwise rounding error depends linearly on N and on
the machine precision u. A technique for computing a forward error bound,
which is valid for any distribution of the points generating the Vandermonde
matrix, is also derived in [21].

3.1 The maximum attainable accuracy and the controlled accuracy

ReLaTIve provides a controlled accuracy on the computed solution. Let us
explain what this means.

Even thought Laplace transform function belongs to domain of applicabil-
ity, i.e. Laguerre series expansion converges to the inverse function f , due
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to ill-posedness of the problem, as N grows f̃N does not always provide a
better approximation of f .3 This occurs if the rate of convergence of Laguerre
series expansion is too slow. In this case, truncation error of Laguerre series
expansion does not decrease fast enough towards zero (i.e. N has to grow too
much in order to provide a better approximation) and ill conditioning of the
inverse problem (that increases as N does) dominates.

As it will be detailed in the following, the software ReLaTIve addresses ill
posedness by computing:

1. The so-called maximum attainable accuracy as the minimum value as-
sumed by the sum of the truncation error and the condition error,

2. The controlled accuracy as the maximum value between the maximum
attainable accuracy and the input required tolerance,

3. f̃Nopt such that it satisfies the controlled accuracy.

Now we describe how computation of Nopt is performed (for details see [9]).

Definition 3 Let:

fN(x) = eσ x
N−1∑
k=0

cke−b xLk(2b x), (10)

where ck = �(k)(0)

k! . The difference:

etrunc(x, σ, b , N) = f (x) − fN(x) = eσ x
∞∑

k=N

e−b xckLk(2b x) (11)

is the truncation error introduced on fN(x).

Definition 4 The difference:

ediscr(x, σ, b , N) = fN(x) − f̂N(x) = eσ x
N−1∑
k=0

e−b x(ck − ĉk)Lk(2b x) (12)

where ĉk are obtained as in step 2 of ReLaTIve algorithm, is the discretization
error introduced on fN(x).

Discretization error occurs substituting coefficients of MacLaurin series (ck)k

of � in the w-plane, by (̂ck)k, that is coefficients of the Lagrange interpolation
polynomial of �, on Chebyshev zeros [17, 18, 33].
Beyond truncation and discretization errors, numerical computation of f̂N(x)

involves roundoff errors. Starting from the error analysis developed in [9, 17,
18], here we give some definitions concerning how C-method works in a finite
precision arithmetic system 
.

3Actually, the sensitivity of this method to input errors as N grows has been recognized from the
beginnings [35].
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Let:

f̃N(x) = eσ x
N−1∑
k=0

c̃ke−b xLk(2b x), (13)

where {̃ck}k=0,...,N−1 are the computed values of coefficients {̂ck}k=0,...,N−1 as in
step 2 of ReLaTIve, in a finite precision arithmetic system.

Definition 5 The difference:

econd(x, σ, b , N) = f̃N(x) − f̂N(x) = eσ x
N−1∑
k=0

e−b x(̃ck − ĉk)Lk(2b x) (14)

is the conditioning error given on f̃N(x).

By (11), (12), (13) and (14) it follows that:

f (x) = f̃N(x) + etrunc(x, σ, b , N) + ediscr(x, σ, b , N) + econd(x, σ, b , N) (15)

The major challenge of designing numerical algorithms for inverting Laplace
transforms is to compute f̃N(x) for any value of x with the required accuracy.
This is primarily due to the exponential factor eσ x in (13) which degrades the
accuracy of f̃N(x) as x varies. Hence, we first introduce the so-called pseudo-
errors:

εtd(x, σ, b , N) := ediscr + etrunc

eσ x

εcond(x, σ, b , N) := econd(x, σ, b , N)

eσ x

which provide uniform accuracy with respect to eσ x, and instead of (15) we get:

f (x) = f̃N(x) + eσ x · GEE(σ, b , N) (16)

where the Global (pseudo)Error Estimate GEE is such that:4

GEE(σ, b , N) = εtd(x, σ, b , N) + εcond(x, σ, b , N) .

Theorem 1 The function GEE(N) is convex and it assumes its absolute mini-
mum value at:

N∗ = logR
K∗ log(R)


�

(17)

where K∗ = |�(0)|, R is the radius of convergence of the Laguerre series
expansion, 
� = u |�(0)| maxk |Mk|, u is the machine precision, and |Mk| are

4In the following we refer to GEE as GEE(N) omitting the dependence of GEE on parameters
σ and b .
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quantities computed during the solution of the Vandermonde linear system
arising in step 2. They depend on the componentwise rounding error of the
Björck–Pereira algorithm.

For the proof see [9].

Definition 6 The minimum of GEE:

ε∗ = min
N≥0

GEE(N) = GEE(N∗) (18)

is the maximum attainable accuracy.

The algorithm obtains Nopt ≤ N∗ ≤ Nmax minimizing a computable estimate
of GEE (see Fig. 1), given by the sum of:

– Etd: a computable estimate of εtd:

Etd(σ, b , N) = (̃cN−3 + c̃N−2 + c̃N−1)/3

– Econd: a computable estimate of εcond,

Econd(σ, b , N) = N u K∗ max
k=0,...N−1

|Mk|.

Fig. 1 GEE behavior versus N. The Laplace transform is F(z) = z
(z2+1)2 , K∗ = 1, R = 1.8, the

minimum value of GEE is obtained at N∗ = 35 and ε∗ = GEE(35) = O(10−11). x = 1, σ = 0.7
and T OL = 10−5. Observe that in this case, Nopt = 20
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Hence, f̃Nopt(x) is computed such that:

f (x) � f̃Nopt(x) + eσ x · GEE(σ, b , Nopt) (19)

and:

eσ x · GEE ≤ max{ε∗, T OL} and/or
|eσ x · GEE|
| f̃Nopt(x)| ≤ max{ε∗, T OL}

4 The role of incidental parameters

In this section we make some comments about parameters σ0, σ and b used in
(9) and their computation:

– The role of σ0 ∈ �: most inversion algorithms requires the numerical
value of this parameter as input. It may be obtained as the real part of
the rightmost singularity of F(z). One of the reason for having to know
the value of σ0 is that the Lt function may have a singularity before σ0.
Moreover, the parameter σ must exceed σ0 in value. If it is does not, the
Laguerre series expansion for f (x) will not converge. In ReLaTIve the
numerical value of σ0, or an estimate of it, is required as input parameter.
Using the input data, the algorithm performs a damping of F (and the
tolerance TOL), as detailed below

1. The inversion algorithm is applied to the shifted Lt function, let us
say FS(z), where:

FS(z) = F(z + σ0)

which has abscissa of convergence σ FS
0 = 0 and the inverse function of

FS(z), let say gNopt, is provided within the damped tolerance Ntol =
T OL/eσ0x,

2. The result fNopt(x) = eσ0x · gNopt(x) is returned.

Observe that if the user cannot determine σ0 precisely so he/her makes a
small error and uses the value σ̃0 that is either slightly larger or slightly
smaller than the right value of σ0, i.e.

σ̃0 = σ0 + η ,

the perturbation η propagates on f̃Nopt(x) as eηx.
Indeed, σ̃0 is the abscissa of convergence of the shifted Lt

M(z) = F(z − η)

whose inverse function is

m(x) = eηx f (x)
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Then, instead of f̃Nopt(x) RelaTIve computes

m̃Nopt(x) = eηx f̃Nopt(x)

Hence, ∣∣∣∣∣
m̃Nopt(x) − f̃Nopt(x)

f̃Nopt(x)

∣∣∣∣∣ = |eηx − 1| = O(eηx) (η · x → ∞)

If η < 0 results may be completely wrong, even if the propagated error eηx

decreases. This occurs if F(z) has a singularity in the region {σ̃0 < z < σ0},
moreover in this region it is not a Lt.

– The role of σ : in order to bound the error amplification due to the
exponential factor eσ x, the best value of σ should be the smallest possible,
as x grows. On the other hand, because the inherent instabilities of the
discrete problem can be controlled if the truncation error rapidly goes to
zero, taking into account that the rate of convergence of Laguerre series
expansion increases as σ grows, a suitable choice of σ should be the largest
possible. Then, if x is sufficiently small, σ could be large. Of course, it is
quite difficult to know what the user should do!
ReLaTIve dynamically changes the value of σ according to that of x.
Indeed, the value of σ is determined dynamically, by fixing the product
σ x equals to 2.5. We performed many experiments by choosing the value
of the product σ x between 1 and 4. A value of σ x less than 1 gives a too
small σ if x increases degrading the series convergence. On the contrary,
a value of σ x greater than 4 causes a too large exponential growth factor.
We found that,

σ = 2.5
x

allows to get, on average, a good trade off between the convergence rate
of the series expansion and errors amplification. At x = 0, by default we
set σ = 4.

– Regarding b , we follows [15, 16] where the connection between σ and b
has been investigated. In particular, we set:

b = 2.5σ.

Parameters σ and b are chosen so as to provide a good trade off between
software reliability, robustness and efficiency. We invite the user to not
change the values of both σ and b , because in this case reliability and
robustness cannot be guarantee.

– Parameter Nmax. The algorithm determines the maximum attainable accu-
racy as GEE(Nopt) where Nopt ≤ N∗, by checking the values of GEE(N)

for N ≤ Nmax.
We experimentally found that for N > 40 for most of the test functions
the condition error blows up then we set Nopt ≤ N∗ ≤ 40, i.e. we set by
default Nmax = 40. If it needs, the user may change the value of Nmax.
Of course, increasing this value alters the software efficiency because the
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Table 1 Functions test of software database

Test # Lt ILt σ0

(a)

1
1
z

1 0

2
1
z2 x 0

3
1

1 + 2z
0.5e−0.5x −0.5

4
1

(z + 2)2 xe−2x −2

5
z

(z − 1)2 (1 + x)ex 1

6
1

z − 2
e2x 2

7
1

(z + a)5
x4

4!eax -a

8
1

(z + a)(z + b)

(e−ax − e−b x)

b − a
max(-a,-b)

9
z

(z + a)(z + b)

(ae−ax − be−b x)

a − b
max(-a,-b)

10
z2 − 1

(z2 + 1)2 x cos(x) 0

11
z

z2 + a2 cos(ax) 0

12
1

z2 + 1
sin(x) 0

13
1

z2 + z + 1
2√
3

⎡
⎣e

− x
2 sin

(
x
√

3
2

)⎤
⎦ 0

14
1

(z + 2.5)2 + 1
e−2.5x sin(x) 0

15
1

z(z2 + a2)

(1 − cos(ax))

a2 0

16
1

z2(z2 + a2)

(ax − sin(ax))

a3 0

17
1

(z2 + a2)2
(sin(ax) − ax cos(ax))

2a3 0

18
z2

(z2 + a2)2
(sin(ax) + ax cos(ax))

2a
0

19
8a3z2

(z2 + a2)3 (1 + a2x2) sin(ax) − ax cos(ax) 0

20
z

(z2 + a2)(z2 + b2)

(cos(ax) − cos(b x))

(b 2 − a2)
0
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Table 1 (continued)

Test # Lt ILt σ0

21
z + a

(z + a)2 + b2 cos(b x)e−ax 0

22
3a2

z3 + a3 e−ax − e0.5ax(cos(0.5
√

3ax)−

−√
3 sin(0.5

√
3ax) 0

23
0.52

z2(z2 − 0.52)

1
0.5

sinh(0.5x) − x 0.5

24
1

z2 − a2 sinh(ax)/a a

25
z

z2 − a2 cosh(ax) a

26
4a4

z4 + 4a4 sin(ax) cosh(ax)−

− cos(ax) sinh(ax) 0

27
z

z4 + a4 sin(ax) sinh(ax)/2a2 0

28
1

z4 − a4 (sinh(ax) − sin(ax))/2a3 a

29
z

z4 − a4 (cosh(ax) − cos(ax))/2a2 a

30 log
(

z + a
z + b

)
(e−b x − e−ax)/x max(−a,−b)

31 log
(

z2 + a2

z2

)
2(1 − cos(ax))/x 0

32 log
z + 0.5
z − 0.5

2
x

sinh(0.5x) 0.5

33
1√

z(z − a2)
ea2x Erf(a

√
x)

a
a2

34
(b2 − a2)√

z(z − a2)(
√

z + b)
ea2x

((
b
a

Erf(a
√

x)

)
− 1

)
+

+eb2xErfc(
√

(t)) max(|a|, |b |)

35
1√

z + a(z + b)3/2

1
exp((1/2)(b + a)x)

·

·x(BesselI(0, (0.5)(a − b)x) +

+BesselI(1, (0.5)(a − b)x)) max(−a,−b)

algorithm has to search for the minimum of GEE along a larger set of
values. Anyway, in general, the value of N at which GEE reaches the
minimum does not change too much.
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Table 1 (continued)

Test # Lt ILt σ0

(b)

36

√
z + 2a − √

z√
z + 2a + √

z
BesselI(1, ax)/(x exp(ax)) 0

37
(a − b)n

(
√

z + a + √
z + b)2n

n · BesselI(n, 1/2(a − b)x)

x exp((1/2)(b + a)x)
max (-a,-b)

38
1.

(
√

z + a + √
z)2ν

√
z + a

√
z

BesselI(ν, ax/2)/((aν)e0.5ax) 0

39
(z − √

z2 − a2)ν√
z2 − a2

(aν)BesselI(ν, ax) a

40
1√

z2 + a2 exp(k
√

z2 + a2) − z
BesselJ(0, a

√
x2 + 2kx) 0

41

√
z + 2a√

z
− 1

a(BesselI(1, ax) + BesselI(0, ax))

eax 1

42
1√

z2 + a2
BesselJ(0, ax) 0

43
1

zn+1/2
xn−1/2

(n + 1/2)
0

44
1.

z3/2 exp(k
√

z)

2
√

x exp(−k2/(4x))√
π

− kErfc(k/(2
√

x)) 0

45 Fdu1(z) fdu1(x) 0

46 Fdu2(z) fdu2(x) 0

47 Fdu3(z) fdu3(x) 0

48 Fdu4(z) fdu4(x) 0

49 Fdu5(z) fdu5(x) 0

5 Software performance and limitations

Table 1a and b show the software database of test functions. The database
is made of standard Lt functions selected from SET A provided by Valko
et al. [40]. It is worth to note that if the user needs to compute the inverse
function at x → ∞, it is recommended that he/her employs numerical methods
that are suitable to compute inverse Laplace transforms at x-values large.5 All
numerical results as provided by the software are shown in the software docu-
mentation, here we only report errors plots for tests number 5 − 6 − 10 − 24 −
27. We select F5, F6 and F24, because these Laplace functions have σ0 > 0 while
functions F10 and F27 have σ0 = 0. Figures 2, 3, 4 and 5 show the following

5Such methods usually employ abelian/tauberian properties of both the Laplace transform and of
its inverse function to provide reliable numerical results as x → ∞.
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Fig. 2 Errors versus x-values. Left: F5(z), T OL = 10−4. Right: F6(z), T OL = 10−6
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Fig. 3 Errors versus x-values. Left: F10(z), T OL = 10−4. Right: F24(z), T OL = 10−4

Fig. 4 Test function F27(z):
errors versus x-values.
T OL = 10−4
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Fig. 5 The application: errors
versus x-values. T OL = 10−4
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quantities: trueabserr—the absolute error on the computed result | f (x) −
fcomp(x)|, estabserr—the estimated absolute error, truerelerr—the true
relative error on the computed result | f (x) − fcomp(x)|/ f (x), estrelerr—
the estimated relative error and TOL—the input required accuracy. Looking
the errors’ plots, it is quite evident that the obtained accuracy is in agreement
with the function behavior.

Finally, we compared results obtained by using ReLaTIve with those
obtained using the routine [14] on functions number 6 and 10. In the software
documentation we show results as provided by two routines. Note that the
Stefhest’s algorithm provides results completely wrong.

5.1 Application test

The problem under consideration has practical application in many chem-
ical, pharmaceutical and petroleum industries as well as in environmental
engineering and waste management. It concerns design or selection of an
appropriate electrochemical reactor for a specific purpose. Measurement and
critical analysis of electrolyte behavior play an important role in the effective
design of an electrochemical reactor. In particular, the continuous stirred
tank reactor is frequently adopted as a model for electrochemical reactors.
Characteristic equations governing the dynamics of the continuous stirred tank
mixer/reactor are solved in the Laplace domain and finally the solution is
obtained by taking inverse Lt [19, 26, 37, 38]. In such applications, the Lt
function to invert is of rational type such those reported in our database. For
instance, for the system reported in [19] the Lt to invert is

F(z) = 1
(1 + 0.845z)3
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whose inverse function is

f (x) = 0.8287x2e−1.183x

Figure 6 shows errors as provided by the code for T OL = 10−4 while table
shown numerical results is reported in software documentation. Observe that
both absolute and relative errors satisfy the tolerance. In this case F(z) has
σ0 < 0 and inverse function decreases.

Next four tests comes from [13] (numeration follows that of [13]). First
Laplace function arises in circuit theory:

Fdu1(z) = 1
z(z + c)

[
1

2zh
− e−2zh

1 − e−2zh

]

whose inverse function is:

fdu1(x) = 1
2c

+ e−cx

c

[
1

2ch
− e2ch

e2ch − 1

]
− h

π

∞∑
n=1

sin
( nπx

h − tan−1( nπ
ch )

)
n
√

n2π2 + c2h2
,

using c = h = 1 and 107 terms in the summation.
Second test arises in the study of longitudinal impact on viscoplastic rods:

Fdu2(z) = (100z − 1) sinh(
√

z/2)

z[z sinh(
√

z) + √
z cosh(

√
z)]

with inverse function:

fdu2(x) = −1
2

+
∞∑

n=1

(
100 + 1

b 2
n

)
2b n sin(b n/2)e−b 2

nx

(2 + b 2
n) cos(b n)

where b n are such that b n tan(b n) = 1.
Third Laplace transform arises in viscous fluid mechanics problems:

Fdu3(z) = 1
z

e−r
√

z(1+z)

1+cz
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Fig. 6 Left: Test function Fdu1(z): plot of the errors versus x-values. T OL = 10−2. RMSE =
3.74062e − 02. Right: Test function Fdu3(z): plot of the errors. T OL = 10−2. RMSEP = 1.72276e −
01
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with inverse function:

fdu3(x) = 1
2

+ 1
π

∫ ∞

0
e−rm

√
u/2(cos(θ)−sin(θ))

sin(xu − rm
√

u/2(cos(θ) − sin(θ)))
du
u

,

where
m =

[
1 + u2

1 + c2u2

]1/4

, 2θ = tan−1(u) − tan−1(cu), c = 0.4, r = 0.5

Fourth Laplace transform arises in the study of shock waves in diatomic chains:

Fdu4(z) = e−2�

z

where

cos(�) =
√

1 + z2 + z4/16

The inverse functions is:

fdu4(x) = 1 − 1
π

∫ u1

0
[sin(ux + 2k) − sin(ux − 2k)]du

u

+ 1
π

∫ 4

u2

[sin(ux + 2k) − sin(ux − 2k)]du
u

,

where

cos(k) = 1
4

√
(u2

1 − u2)(u2
2 − u2)

and

u1 = 2
√

2 − √
3, u2 =

√
2 + √

3

Final test function arises in the theory of beams:

Fdu5(z) = z − √
z2 − c2

√
z
√

z2 − c2
√

z − N
√

z2 − c2

whose inverse function is:

fdu5(x) = 2
π

∫ c

0
cosh(xu)

u
√

(R + u)/2 + √
c2 − u2

√
(R − u)/2

R
√

c2 − u2
√

u

+ 2
π

∫ b

0

u − √
c2 + u2

√
u
√

c2 + u2
√

N
√

c2 + u2 − u
cos(xu)du,

where

R =
√

u2 + N2(c2 − u2), b = √
(1 − N)/(1 + N), c = (1 − N)/N

and N = 0.5.
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Fig. 7 Left: Test function Fdu4(z): plot of the errors versus x-values. T OL = 10−2. RMSEP =
9.15109e − 03. Right: Test function Fdu5(z): plot of the errors. T OL = 10−4. RMSEP = 2.93327e −
02

Observe that, except test function Fdu5, all the Duffy’s Laplace transforms
depend on the exponential function or the square root of z. For such function,
as explained in [1], the Laguerre series expansion converges slowly6 and this is
a serious difficulty inherent the Laguerre series expansion. Hence, we expect
that the software performs poorly on Fdu1 and Fdu3, slightly better on Fdu4 and
Fdu5 and wrongly on Fdu2, as also explained in Section 3.1. Anyway, by looking
at the maximum attainable accuracy the user is warned that in these cases
the problem is extremely ill conditioned (spike behavior or extremely rapid
oscillations are virtually impossible to be f iltered out by numerical techniques
[8]).

Figures 6 and 7 show the errors plot for Duffy’s tests. Tables shown
numerical results are reported in the software documentation. Since these test
functions arise from real world applications, to measure the overall difference
between the Laplace transform function and the computed result, we also use
the Root Mean Square Error (RMSE), defined as in [12, 13]:

RMSEP =
√√√√∑

i=1,...,P
(sF (pi)−F(pi))2

e−pi∑
i=1,...,P e−pi

, P = 30

The P points pi, i = 1, . . . , P are uniformly distributed on [0.5, 15]. We
choose the RMSE because, as in [12, 13], RMSE gives a fair indication of the
accuracy of the software on relatively small values of x, as those that we have
selected. As already explained we expect the software to achieve not very large
accuracy, indeed the RMSE is on average of order 10−2.

6In [1] the authors show that in presence of the square root function the Laguerre series
coefficients tend to zero as 1/

√
πn. By running the Garbow’s software—based on the Laguerre

series expansion in the complex plane [15]—on Duffy’s tests, we have experimented that in order
to reach an accuracy of 10−2 on the inverse function of Fdu1 and Fdu3 it needs the sum of 32 terms,
while for the inverses of Fdu4 and Fdu5 only 8 terms and finally for Fdu2 are needed 256 terms.
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Fig. 8 Test function F30(z):
errors versus x-values.
T OL = 10−4. σ0 = 0.5 not
perturbed
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Fig. 9 Test function F30(z): errors versus x-values. T OL = 10−4. Left: σ0 = 0.5 + 0.1. Right: σ0 =
0.5 + 1.0
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Fig. 10 Test function F30(z): errors versus x-values. T OL = 10−4. Left: σ0 = 0.5 + 2.0. Right:
σ0 = 0.5 − 0.1
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Function n.19 with noise
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Fig. 11 Left: Test function F19(z): errors versus x-values. T OL = 10−4. Left: no noise on F(z).
Right: F(z) noisy. F̃19(z) = F19(z) + noise(z), noise(z) = rand · F19(z) where rand is a normal
distributed noise term with ‖rand‖2 = 10−4

5.2 Software sensitivity

We perform experiments using a perturbed value of the abscissa of conver-
gence σ0. As test function we consider F30, whose abscissa of convergence is
σ0 = 0.5. The perturbed value of σ0 is σ̃0 = σ0 + η where η = ±1, ±2, ±10−1.

We note that if η = ±10−1, in many cases its amplification on the computed
values of the inverse function does not change the order of magnitude or the
first significant digit of the reference results. If η = ±101, ±102 the exponential
growth factor eηx dominates as x grows, and Nopt increases. As expected, if σ̃0 <

σ0 the Lt function may have singular points at σ̃0 < z < σ0 , and a nan occurs.7

So we recommend the user to use the right value of σ0, or an upper bound of
it. Figure 8, 9 and 10 show the errors’ plot. Observe that as σ0 increases, the
more the inverse function does and the errors curves follow this trend.

Further, we use a Laplace transform function with additive random noise
on F(z) values with noise level of 1 %, i.e. we consider as Laplace function to
invert the following functions

F̃19(z) = F19(z) + noise(z), noise(z) = rand · F19(z)

where rand is a normal distributed noise term with ‖rand‖2 = 10−4. Results,
shown in Fig. 11, say that if the relative noise on data is of about 10−4 the
software reaches a maximum accuracy on inverse function of about 10−2 −
10−1. In other words, in this case the perturbation on data values propagates
on the inverse function by an amplification factor of about 102 − 103. This
fact mainly depends on the intrinsic ill-posedness of such an inverse problem.
Tables shown numerical results are reported in the software documentation.

7Observe that even if in this case, flag returns 0 the user has to pay attention to the nan
occurrences.
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6 Discussion and concluding remarks

We describe a fully automatic Ansi C90 software package that may be used
for real inversion of the Laplace transform, i.e. when the Laplace function is
available everywhere in the real line. The method implemented is based on a
Laguerre polynomial series expansion of the inverse function and belongs to
the class of Collocation methods. This means that the domain of applicability
of the method is the function space Sγ of all functions whose analytical
continuation, E(z), can be assumed to be of the form E(z) = z−γ G(z), for
some fixed γ > 0, where G is analytic at infinity.

If the Laplace function F ∈ Sγ the convergence of the Laguerre series
expansion of the inverse function is guaranteed. However, due to the severe ill-
posedness of the problem, as N grows the partial sum of the first N terms of the
Laguerre series does not always provide a better approximation of the inverse
function, because the condition error increases as N grows. As a consequence,
the rate of convergence of the Laguerre series significantly affects software
performance.

More precisely, the software selects the optimal value of N so the input
required accuracy or the so-called maximum attainable accuracy is reached
where N has to be less that Nmax = 40. If it occurs that the rate of convergence
of the Laguerre series expansion is too slow it may happen that the maximum
attainable accuracy (with Nmax = 40 terms) is greater than the input required
accuracy. As described in [1], this is the case of Lt functions that have a
singularity at infinity or on imaginary axis. Such situation is detected by the
error indicator flag = 1.

In summary, ReLaTIve inherits the peculiarities of real inversion problem,
this is why its performance may degrade (see for instance the Duffy’s tests).
For this reason, we introduce the controlled accuracy as stopping criterion: it
is a safely-way of the software to handle intrinsic ill posedness of real inversion
problem.

Acknowledgements The authors would like to thank the anonymous referees for the valuable
comments and remarks.
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