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Abstract A boundary element method (BEM) simulation is used to compare
the efficiency of numerical inverse Laplace transform strategies, consider-
ing general requirements of Laplace-space numerical approaches. The two-
dimensional BEM solution is used to solve the Laplace-transformed diffusion
equation, producing a time-domain solution after a numerical Laplace trans-
form inversion. Motivated by the needs of numerical methods posed in
Laplace-transformed space, we compare five inverse Laplace transform al-
gorithms and discuss implementation techniques to minimize the number of
Laplace-space function evaluations. We investigate the ability to calculate a
sequence of time domain values using the fewest Laplace-space model eval-
uations. We find Fourier-series based inversion algorithms work for common
time behaviors, are the most robust with respect to free parameters, and allow
for straightforward image function evaluation re-use across at least a log cycle
of time.

Keywords Numerical Laplace transform inversion ·
Boundary element method · Diffusion · Helmholtz equation ·
Laplace-space numerical methods · Groundwater modeling

1 Introduction

Simulation methods that are posed in Laplace-transformed space, then nu-
merically inverted back to the time domain (i.e., Laplace-space methods),
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are a viable alternative to the more standard use of finite differences in
time. We use the the two-dimensional boundary element method (BEM)
as an example of this type of approach, to solve the Laplace-transformed
diffusion equation (i.e., the Yukawa or modified Helmholtz equation). We
investigate five numerical inverse Laplace transform methods and imple-
mentation approaches, namely the methods of Schapery [29], Stehfest [30],
Talbot [33], Weeks [34], and de Hoog et al. [13]. Naively implemented
Laplace-space simulations can be more computationally expensive than finite
differences in time, but they have the advantage of allowing evaluation at
any time, without evolving from an initial condition, and image function
calculations are trivially parallelized across Laplace parameters [10]. When
Laplace-space numerical models are used in parameter estimation, hundreds
or thousands of forward simulations may be required—making forward model
efficiency critical. Although parameter estimation may be done directly in
Laplace space [6], choosing an efficient inversion strategy is important in most
applications.

The Laplace transform has a long history of use to derive analytical solutions
to diffusion and wave problems (e.g., see Duffy’s citation list [15, pp. 191–
220]). Often the analytical inverse transform is too difficult to find or evaluate
in closed form. A researcher then resorts to approximate analytical methods
(e.g., [16, 31]) or numerical inversion (e.g., [24, 25]). Numerical methods can
similarly benefit from the Laplace transform, converting the time-dependence
of a differential equation to parameter dependence. Laplace-space finite-
element approaches have seen application to groundwater flow and solute
transport (e.g., [26, 32]), and Laplace-space BEM has also been used in
groundwater applications (e.g., [20, Section 10.3], [22, Section 10.1]). The
Laplace transform analytic element method [19] is a transient extension of the
analytic element method. These different Laplace-space approaches may have
diverse spatial solution strategies, but they have a common requirement of
effective Laplace transform numerical inversion algorithms. We couple a BEM
model in the Laplace domain with a numerical Laplace transform inversion
routine, but our conclusions should be valid for both gridded and mesh-free
Laplace-space numerical methods. Any Laplace-space numerical approach
begins with determination of optimal Laplace parameter values. Then each
image function evaluation is computed from the simulation. The final step
involves approximating the time-domain solution from the vector of image
function values using the algorithm of choice.

Bellman et al. [7] was an early review book on numerical Laplace transform
inversion for linear and non-linear problems, but without the benefit of the
many algorithms that have since been developed. Davies and Martin [12]
performed a thorough survey, assessing numerical Laplace transform inversion
algorithm accuracy for techniques available in 1979, using simple functions
for their benchmarks. Duffy [14] reviewed the numerical inversion character-
istics for more pathological time behaviors using the Fourier series, Talbot,
and Weeks inversion methods. The review book by Cohen [9] summarizes
historical reviews and discusses commonly used inversion methods and their
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variations. More details and examples can be found in these reference regard-
ing the convergence behavior of the five inversion algorithms discussed here.

While these published numerical inverse Laplace transform algorithm re-
views are thorough and useful, they focus on computing a single time-domain
solution as accurately as possible. These reviews did not try to minimize
Laplace-space function evaluations, since their functions were simple closed-
form expressions, not simulations. We investigate Laplace transform inver-
sions algorithms that can compute a sequence of time domain values using
the fewest Laplace-space model evaluations, a desirable property for use in
Laplace-space numerical methods. Using numerical Laplace transform inver-
sion in a simulation approach, rather than a time-marching method, allows the
researcher to readily switch between fast and accurate by changing the number
of approximation terms in the inversion.

In the next section we define the mathematical formulation of the governing
equation and Laplace transform. In the third section we introduce the five in-
verse Laplace transform algorithms. In the final section we compare results us-
ing five different inversion algorithms to invert the BEM modified Helmholtz
solution on the same domain with four different boundary conditions, leading
to recommendations for Laplace-space numerical approaches.

2 Governing equation and Laplace transform

The BEM model generally simulates substance flow (e.g., energy or groundwa-
ter), which can be related to a potential φ (e.g., temperature or hydraulic head).
The medium property α is diffusivity [L2/T], the ratio of the conductance in the
substance flux and potential gradient relation (e.g., Fourier’s or Darcy’s law)
to the substance capacity per unit mass (e.g., heat capacity or storativity). The
BEM (e.g., [8, 20, 22]) can be used to solve the diffusion equation

∇2φ = 1
α

∂φ

∂t
, (1)

where α is real constant in space and time. We consider (1) in a domain
subject to a combination of Dirichlet φ (�u(s), t) = fu(s, t) and Neumann n̂ ·
∇φ

(
�q(s), t

) = fq(s, t) boundary conditions along the perimeter of the 2D
domain � = �u ∪ �q, where n̂ is the boundary unit normal, and s is a boundary
arc-length parameter. Without loss of generality, we only consider homoge-
neous initial conditions.

The Laplace transform is

L{ f (t)} ≡ f̄ (p) =
∫ ∞

0
f (t)e−pt dt, (2)

where p is the generally complex-valued Laplace parameter, and the over-
bar denotes a transformed variable. The transformed diffusion equation with
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zero initial conditions is the homogeneous Yukawa or modified Helmholtz
equation,

∇2φ − q2φ = 0, (3)

where q2 = p/α. Equation (3) arises in several groundwater applications, in-
cluding transient, leaky, and linearized unsaturated flow [5]. The transformed
boundary conditions are φ̄ (�u(s)) = fu(s) f̄t(p) and n̂ · ∇φ̄(�q(s)) = fq(s) f̄t(p),
where the temporal and spatial behaviors have been decomposed as in sepa-
ration of variables. Arbitrary time behavior can be developed through con-
volution in t (Duhamel’s theorem), which is multiplication of image functions
in Laplace space. Here, f̄t(p) represents the Laplace transform of the time
behavior applied to the boundary conditions. The Laplace transformation
makes it possible to solve transient diffusion (a parabolic equation) using the
BEM, which is well-suited for elliptical-type equations.

The inverse Laplace transform is defined as the Bromwich contour integral,

L−1
{

f̄ (p)
}

= f (t) = 1
2π i

∫ σ+i∞

σ−i∞
f̄ (p)ept dp, (4)

where the abscissa of convergence σ > 0 is a real constant chosen to put the
contour to the right of all singularities in f̄ (p). In Laplace-space numerical
approaches, (3) is solved by a suitable numerical method, therefore only
samples of f̄ (p) are available; this precludes an analytical inversion. Five
numerical inverse Laplace transform algorithms are discussed in the following
section.

3 Numerical inverse Laplace transform methods

Equation (4) is an integral equation for unknown f (t) given f̄ (p); its numerical
solution is broadly split into two categories. Methods are either based on
quadrature or functional expansion using analytically invertible basis func-
tions. Davies [11, Chap. 19] relates most major classes of inverse Laplace trans-
form methods using a unified theoretical foundation; we adopt a simplified
form of their general notation. The Fourier series and Talbot methods are
quadrature-based, directly approximating (4). Weeks’ and Piessen’s methods
are f̄ (p) expansions using complex-valued basis functions, while the Gaver-
Stehfest and Schapery methods use real-valued functions to accomplish this.

The numerical inverse Laplace transform is in general an ill-posed problem
(e.g., [2]). No single approach is optimal for all circumstances and temporal be-
haviors. This difficulty has lead to the diversity of viable numerical approaches
in the literature (e.g., [9]).

3.1 Gaver-Stehfest method

The Post-Widder formula [2, 36] is an approximation to (4) that only requires
f̄ (p) for real p to represent (2) as an asymptotic Taylor series expansion.
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The formula requires high-order analytic image function derivatives, and is
impractical for numerical computation. Stehfest proposed a discrete version of
the Post-Widder formula using finite differences and Salzer summation [30],

f (t, N) = ln 2
t

N∑

k=1

Vk f̄
(

k
ln 2

t

)
. (5)

The Vk coefficients only depend on the number of expansion terms, N (which
must be even), which are

Vk = (−1)k+N/2
min(k,N/2)∑

j=�(k+1)/2�

j
N
2 (2 j)!

( N
2 − j)! j! ( j − 1)! (k − j)! (2 j − k)! . (6)

These become very large and alternate in sign for increasing k. The sum (5)
begins to suffer from cancellation for N ≥ the number of decimal digits of
precision (e.g., double precision = 16). For f̄t(p) that are non-oscillatory and
continuous, N ≤ 18 is usually sufficient [30]. If programmed using arbitrary
precision (e.g. Mathematica or a multi-precision library [4, 17]), the method
can be made accurate for most cases [1]. Unfortunately, p is explicitly a
function of t; for each new t, a new f̄ (p) vector is needed. In Laplace-space
numerical approaches, each vector element is constructed using a simulation,
therefore this can be a large penalty.

The method is quite easy to program; the V j can be computed once and
saved as constants. This method has been popular due to its simplicity and
adequacy for exponentially decaying f̄t(p).

3.2 Schapery’s method

We can expand the deviation of f (t) from steady-state fs using exponential
basis functions [29],

f (t, N) = fs +
N∑

i=1

aie−pit, (7)

where ai is a vector of unknown constants. Applying (2) to (7) gives

f̄ (pj, N) = fs

pj
+

N∑

i=1

ai

pi + pj
j = 1, 2, . . . , M. (8)

The pj are selected (a geometric series is recommended [22]) to cover the
important fluctuations in f̄ (p). After setting pi = pj the ai coefficients can be
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determined as the solution to Pij ai =
(

f̄ (pj) − fs/pj

)
. The symmetric matrix

to decompose is

Pij =

⎡

⎢⎢
⎢
⎣

(2p1)
−1 (p1 + p2)

−1 . . . (p1 + pN)−1

(p2 + p1)
−1 (2p2)

−1 . . . (p2 + pN)−1

...
...

. . .
...

(pN + p1)
−1 (pN + p2)

−1 . . . (2pN)−1

⎤

⎥⎥
⎥
⎦

,

which only depends on pj; it can be decomposed independently of f̄ (p) and fs.
This method is not difficult to implement when existing matrix decomposi-

tion libraries are available, and only requires real computation. The method
has been used for inverting BEM results [22], but has two main drawbacks.
First, in its formulation above, it requires a steady-state solution, but (7) could
be posed without fs. Secondly, no theory is presented for optimally picking pj;
some trial and error is required [22].

3.3 Möbius transformation methods

We can use the Möbius transformation to conformally map the half-plane right
of σ to the unit disc, making the Laplace domain more amenable to approx-
imation using orthonormal polynomials (e.g., Chebyshev [28], [21, Section 28]
or Laguerre [23, 34], [21, Section 30]). If σ was chosen properly, f̄ (p) is
guaranteed to be analytic inside the unit circle. The most-used inverse Laplace
transform method from this class is Weeks’ method, which uses a complex
power series to expand f̄ (p) inside the unit circle. Upon inverse Laplace
transformation, the power series becomes a Laguerre polynomial series.

Weeks method is

f (t, N + 1) = e(κ−b/2)t
N∑

n=0

anLn(bt), (9)

where Ln(z) is an n-order Laguerre polynomial and κ and b are free para-
meters. Weeks suggested κ = σ + 1/tmax and b = N/tmax, where tmax is the
maximum transformed time. The parameters b and κ are chosen to optimize
convergence; some schemes are given [35] for finding optimum parameter
values for a given f̄t(p), but search techniques require hundreds of f̄ (p)

evaluations. A more general form of (9) can also be used, which allows for
more general asymptotic behavior of the image function [11, Section 19.5].
Weeks assumed p f̄ (p) is analytic at infinity. The Laplace transform of (9) is
known, but to make it easier to represent with polynomials, f̄ (p) is mapped
inside the unit circle via z = (p − κ − 2b)/(p − κ + 2b). The coefficients an

are determined by the midpoint rule,

an = 1
2M

M−1∑

j=−M

	
[
exp

(
iθ j− 1

2

)]
exp

(
−inθ j− 1

2

)
(10)
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where θ j = jπ/M and the conformally-mapped image function is

	(z) = b
1 − z

f̄
(

κ − b
2

+ b
1 − z

)
. (11)

The argument of f̄ (z) in (11) is the inverse mapping of z 
→ p, it shows p does
not functionally depend on t, but Weeks’ rules-of-thumb for b and κ depend
on tmax.

There are other related methods which use different orthonormal polyno-
mials to represent f̄ (p) inside the unit circle. Chebyshev polynomials (known
as Piessen’s method [28]) can be used to expand the f̄ (z) on the interval
[−1, 1]. The Weeks method is moderately easy to program, requiring the use of
Clenshaw recurrence formula to accurately implement Laguerre polynomials.
Piessen’s method is similar to implement, with a similar recurrence formula for
Chebyshev polynomials.

3.4 Talbot method

We can deform the Bromwich contour into a parabola around the negative real
axis if f̄ (p) is analytic in the region between the Bromwich and the deformed
Talbot contours [33]. Numerically, f̄ (p) must not overflow as p → −∞ (e.g.,
in the BEM implementation, the Green’s function is the second-kind modified
Bessel function, which grows exponentially as p → −∞). Oscillatory f̄t(p)

often have pairs of poles near the imaginary p axis; these poles must remain to
the left of the deformed contour.

The Talbot method makes the Bromwich contour integral converge rapidly,
since p becomes large and negative, making the ept term in (4) very small.
A one-parameter “fixed” Talbot method was implemented [1]; the Bromwich
contour is parametrized as p(θ) = rθ(cot(θ) + i), where 0 ≤ θ ≤ π , and as a
rule of thumb r = 2M/(5tmax). The fixed Talbot method is

f (t, N) = r
N

[
f̄ (r)
2

ert +
N−1∑

k=1

�
{

etp(θk) f̄
[

p(θk)
] [

1 + iζ(θk)
]}

]

, (12)

where ζ(θk) = θk + [θk cot(θk) − 1] cot(θk) and θk = kπ/N [1]. Although f̄ (p)

doesn’t depend on t, the free parameter r depends on tmax.
Step change f̄t(p) for non-zero time become very large as p → −∞, since

L [H(t − τ)] = e−τp/p, where H(t − τ) is the Heaviside step function centered
on time τ . This can lead to precision loss, and stability or convergence
issues with the underlying numerical model, although Mathematica’s arbitrary
precision capabilities have been used to get around this problem [1].

The fixed Talbot method is very simple to program; Abate and Valkó
provide a ten-line Mathematica implementation [1].
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3.5 Fourier series method

We can manipulate (4) into a Fourier transform; first it is expanded into real
and imaginary parts (p = γ + iω),

f (t) = eγ t

2π i

∫ ∞

−∞
[cos(ωt) + i sin(ωt)]

{
�

[
f̄ (p)

]
+ i

[
f̄ (p)

]}
i dω.

Multiplying out the terms, keeping only the real part due to f (t) symmetry,
and halving the integration range due to symmetry again, leaves

f (t) = eγ t

π

∫ ∞

0
�

[
f̄ (p)

]
cos(ωt) − 

[
f̄ (p)

]
sin(ωt) dω. (13)

When f (t) is real, (13) can be represented using the complex form or just its
real or imaginary parts. Although these three representations are equivalent,
when evaluating (13) with the trapezoid rule, the full complex form gives the
smallest discretization error [11]. The trapezoid rule approximation to (13) is
essentially a discrete Fourier transform,

f (t, 2N + 1) = eγ t

T

2N∑

k=0

′�
[

f̄
(

γ0 + iπk
T

)
exp

(
iπ t
T

)]
, (14)

where γ0 = σ − log(ε)/T, ε is the desired relative accuracy (typically 10−8

in double precision), T is a scaling parameter (often 2tmax), and the prime
indicates the k = 0 summation term is halved. The p in (14) do not depend
on t, but the free parameter T depends on tmax.

The non-accelerated Fourier series inverse algorithm (14) is almost useless
because it requires thousands of f̄ (p) evaluations [3, Section 9.8]. Practical
approaches accelerate the convergence of the sum in (14). Although this is
sometimes called a fast-Fourier transform (FFT) method (e.g., [9, Chap 4.4]),
rarely do the number of f̄ (p) evaluations in an accelerated approach justify an
FFT approach. The method implemented uses non-linear double acceleration
with Padé approximation and an analytic expression for the remainder in the
series [13]. Although there are several other ways to accelerate the Fourier
series approach [9], this method is popular and straightforward. Non-linear
acceleration techniques drastically reduce the required number of function
evaluations, but can lead to numerical dispersion [18, 26]. For diffusion, dis-
persion associated with non-linear acceleration is not noticeable. Schapery’s,
Talbot’s, and Weeks’ methods are not accelerated in a non-linear manner, and
therefore may lead to less numerical dispersion, which may be more important
in wave systems with sharp fronts.

The creation of the Padé approximation [13] is relatively straightforward
in programming languages that facilitate matrix manipulations (e.g., modern
Fortran, Matlab, or NumPy [27]). There is no dependence on matrix decom-
position routines.
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Table 1 Algorithmic summary

Method Limitations on f̄ (p) and f (t) p(t)? p(tmax)? p

Stehfest No oscillations, no discontinuities in f (t) Yes No Real
Schapery Smoothly varying f (t), fs exists No No Real
Weeks None No Yes Complex
Fixed Talbot No high-frequency f (t), f̄ (p → −∞) exists No Yes Complex
Fourier series None No Yes Complex

3.6 Algorithm properties summary

Table 1 summarizes aspects of the five inverse methods. The third column
indicates whether p is explicitly a function of t, the fourth column indicates if
the rules-of-thumb used for the optimum parameters depend on tmax, and the
fifth column indicates whether the transform requires complex p and f̄ (p).

For all methods considered here, computational effort to compute f (t) from
the vector of f̄ (p) values was insignificant compared to the effort required
to compute the BEM solution used to fill the f̄ (p) vector. This suggests a
more complicated method, which allows re-use of f̄ (p) across more values of
t and converges in less evaluations of f̄ (p), would be efficient for Laplace-
domain numerical methods. If existing libraries or simulations only support
real arguments, then the Stehfest, Schapery, or Piessen’s methods must be
used. Complex p methods will pay a slight penalty in computational overhead
compared to real-only p routines. Computing with arbitrary or higher-than-
double precision (e.g., [1]) will incur a much larger penalty than the change
from real to complex double precision. Generally, complex p methods have
better convergence properties than real-only methods. Expansion of f̄ (p)

along the real p axis is separation of non-orthogonal exponentials, while
expansion along the imaginary p axis is separation of oscillatory functions [21,
Section 29].

4 Numerical comparison

Four test problems were solved using the BEM for values of p required by each
algorithm’s rules of thumb. The test problem domain is a 3 × 2 rectangle, with
homogeneous initial conditions and specified potential at two ends φ̄(x = 0) =
−2 f̄t(p), and φ̄(x = 3) = 2 f̄t(p), and zero normal flux along the other sides
∂φ̄/∂y(y = {0, 2}) = 0. All plots show the solution computed at a point closer
to the x = 0 boundary (x = 1/3), midway between the insulated boundaries
(y = 1).

The first problem computes f̄ (p) using the optimum p at each t (like most
inverse Laplace transform surveys), according to the rules-of-thumb for each
method. While this is most accurate, it is very inefficient—especially when
many values of t are required. In the following sections, all methods except
Stehfest use the same f̄ (p) to invert all t. A method’s sensitivity to non-optimal
free parameters is important in practical use for Laplace-space numerical
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Fig. 1 Plots of potential and flux through time with five methods for f̄t(p) = 1/p, using optimum
p at each t. 15 × 5 = 75 total f̄ (p) evaluations are used by each method

approaches. By inverting more than one time with the same set of Laplace-
space function evaluations, large gains in efficiency can be made. The t range
used in the plots spans three orders of magnitude; it was chosen to show the
evolution of potential and substance flux from initial conditions to steady state.

4.1 Steady boundary conditions, optimum p

The first problem has steady-state boundary conditions. The transient behav-
ior is solely due to evolution from the zero initial condition, f̄t(p) = L[H(t)] =
1/p; f̄ (p) has a pole at the origin. All methods performed equally well with
this simple test problem, although the Fourier series method deviates from the
finite difference solutions at larger time. Figure 1 shows the inverted potential
and flux using as few evaluations of f̄ (p) possible, without major deviations
from the finite difference benchmark solution. Some trial and error was needed
to use the Schapery method (i.e., further optimization may be possible).

As shown in Fig. 2, all the methods performed very well for nine f̄ (p) terms
per t but at least 135 f̄ (p) evaluations are needed total for each method.
Schapery’s method does the worst in this case, but this may be improved
with further optimization of pj values. The finite-difference approach took at
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Fig. 2 Plots of potential and flux through time with five methods for f̄t(p) = 1/p, using optimum
p at each t. 15 × 9 = 135 total f̄ (p) evaluations are used by each method. Fourier series, Talbot,
Stehfest, and Weeks curves are nearly coincident



Numer Algor (2013) 63:339–355 349

-2

-1.5

-1

-0.5

0

0.01 0.1 1

po
te

nt
ia

l

time
0.01 0.1 1

time

Fourier series, M=9
Talbot, M=9

Schapery, M=9 + SS
Weeks, M=9
FD solution

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

 0.5

x-
fl

ux

Fourier series, M=9
Talbot, M=9

Schapery, M=9 + SS
Weeks, M=9

Fig. 3 Plots of potential and flux through time with four methods for f̄t(p) = 1/p, same p used
across all t. Nine total f̄ (p) evaluations are used by each method

least an order of magnitude less computational effort for the given accuracy.
Making Laplace-space numerical methods useful alternatives to traditional
time-marching approaches, requires improvements to this inefficiency.

4.2 Steady boundary conditions, same p

All methods had more difficulty obtaining accurate results for a wide t range
using only one vector of f̄ (p) (no Stehfest method, since p explicitly depends
on t). Only the last log-cycle of times is inverted accurately when using nine
f̄ (p) (Fig. 3). All the methods—except possibly Schapery’s—have a more
difficult time with the flux at early time (especially the fixed Talbot method).
The apparent success of Schapery’s method can be attributed to the expansion
of the deviation from steady-state, which in this case decays exponentially
with time.

Figure 4 shows that when increasing to 51 f̄ (p) terms, most convergence
problems disappear, except at small times. Grouping t values by log-cycles and
inverting them together using the same f̄ (p) is more economical than using
the optimal p for each t and is still relatively accurate. The results shown in
Fig. 4 are nearly as accurate as those shown in Fig. 2, but required 1/3 the f̄ (p)

model evaluations.
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Fig. 4 Plots of potential and flux through time with four methods for f̄t(p) = 1/p, same p used
across all t. Fifty-one total f̄ (p) evaluations are used by each method. Schapery and Weeks curves
are nearly coincident
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p used across all t. Nineteen total f̄ (p) evaluations are used by each method

4.3 Sinusoidal boundary conditions, same p

This problem uses temporally sinusoidal boundary conditions, f̄t(p)=L(cos 4t) =
p

p2+16 . This boundary condition violates some assumptions of the inverse
transform algorithms (i.e., no steady-state solution, oscillatory in time), but
the behavior is still relatively simple and smooth, with singularities at p = ±4i.

Figure 5 shows the Schapery method fails since there is no fs, but the other
methods do well for 19 terms across one t log cycle. Figure 6 shows all methods
besides Schapery do well for 51 terms, across at least two t log cycles. A
modified version of (8), substituting p

p2+16 for fs/pj could extend Schapery’s
approach to this case, but this solution was not considered here because of its
problem specificity.

4.4 Step-change boundary condition for τ > 0, same p

Finally, the same domain was simulated but with step-change boundary con-
ditions at τ = 0.08, or f̄t(p) = L(H(t − 0.08)) = e−0.08p/p, with singularities at
the origin and p = −∞. This function, and those derived from it (e.g., a pulse
or a square wave) are difficult functions to invert accurately, because f (t) is
discontinuous. Figures 7 and 8 show the Talbot method does not work for
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Fig. 6 Plots of potential and flux through time with four methods for f̄t(p) = p/(p2 + 16), same p
used across all t. Fifty-one total f̄ (p) evaluations are used by each method. Fourier series, Talbot,
and Weeks curves are nearly coincident for potential
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Fig. 7 Plots of potential and flux through time with four methods for f̄t(p) = exp(−0.08p)/p,
same p used across all t. Nineteen total f̄ (p) evaluations are used by each method. Weeks’ solution
is undefined for t < 0.08

t < τ in double precision, since f̄t(p) grows exponentially as p → −∞. The
Weeks and Schapery methods do worse than the Fourier series approach (even
with N = 51), but their parameters can be optimized further to improve these
methods.

Although this step boundary condition could be implemented more accu-
rately by shifting the results from the first example by t = 0.08, other step-
derived time behaviors including a pulse or square wave cannot be simplified
in this way.

4.5 Numerical results summary

Table 2 summarizes results from numerical testing with these four simple
boundary condition time behaviors. The second column indicates what limit
there is on the number of terms in the approximation and therefore the
accuracy of the method. The size of p required by the Weeks and Fourier series
methods grow much slower than those required by the fixed Talbot method.
The third column indicates what parameters are needed to be tuned by the
implementer to increase convergence of the method, and whether a good
choice is critical to the success of the method—an automatic method should
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Fig. 8 Plots of potential and flux through time with four methods for f̄t(p) = exp(−0.08p)/p,
same p used across all t. Fifty-one total f̄ (p) evaluations are used by each method. Weeks’ solution
is undefined for t < 0.08
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Table 2 Numerical summary

Method Number of terms Free parameters Implementation

Stehfest N ≤ decimal precision None Easiest
Schapery Depends on choice of pj pj via trial & error Moderate
Weeks p → i∞ slowly as N grows κ & b (very sensitive to b) Moderate

Fixed Talbot p → −∞ quickly as N grows r = 2M
5tmax

(automatic) Easy

Fourier series p → i∞ slowly as N grows T = 2tmax (automatic) Most difficult

not require searching or optimizing parameters to obtain a robust solution. We
define robustness as the ability of a solution to remain useful, even when not
at optimality. We prioritize a solution that is good enough and stable over one
that is excellent but catastrophically sensitive to parameter choice. The fourth
column indicates the ease of implementation in modern Fortran, Matlab,
or NumPy. The methods could also be implemented in a variable-precision
environment like Mathematica or mpmath [17], but this would further require
the BEM model be implemented in such an environment.

The modest success of the Schapery method is a bit surprising, given its
simplicity and use of real p. The results of the previous section were the
product of many iterations of trial and error, this effort was not included in
the implementation effort. A better rule or parametrization of pj might make
this method more widely useful.

The sensitivity of Weeks’ method to the parameter choices was also surpris-
ing; similarly, the method could have been improved after some optimization
[35], but Weeks’ rule of thumb was used for the parameters. One of the noted
advantages of Weeks’ method is the need to only compute optimal p once, then
any time can accurately be inverted [14, 18, 35]. When using the simple rules-
of-thumb for the the free parameters, this was not found to be the case. The
generalized form of Weeks’ method can include information about behavior
of f̄ (p) → ∞ (related to behavior as t → 0), but this requires problem-specific
knowledge.

The Fourier series method is more robust with respect to non-optimal p
values, even though Duffy [14] cites this as a reason to use Weeks’ method
over the Fourier series approach.

5 Conclusions

Laplace-space numerical approaches to solve the diffusion equation have sev-
eral viable alternative inverse Laplace transform algorithms to choose from.
Historically, most Laplace-space solutions to the diffusion equation have used
real-only methods (i.e., Gaver-Stehfest or Schapery). More robust methods
require complex arithmetic and f̄ (p) evaluations, but have the benefits of:

1. handling a broader class of time behaviors (Fourier series method);
2. still being relatively simple to implement (fixed Talbot method);
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3. only utilizing double-precision complex data types, which are handled na-
tively by modern Fortran, Matlab, or NumPy, and by common extensions
in C++ (Fourier series and Weeks’ methods).

Several practical recommendations are made regarding Laplace-space nu-
merical modeling:

1. If many observations are needed across several time log cycles, large gains
in efficiency can come from inverting groups of times with a single f̄ (p)

vector (e.g., grouped by log cycle). This complicates the implementation,
but leads to much faster simulations.

2. If calculating f̄ (p) is very expensive, and some numerical dispersion is
allowable (not solving a wave problem with sharp fronts), then the Fourier
series method approach is most economical, and is automatic and robust
regarding free-parameter selection.

3. If only a single f̄t(p) is needed, then it may be worthwhile to optimize
free parameters needed by Weeks’ or Piessen’s methods, or incorporate
information about asymptotic f̄ (p) behavior. Selection of optimum b is
far from automatic, and the Weeks method is not robust for non-optimal
free parameters values.

4. If implementation time is a large factor, the fixed Talbot is quite simple to
code and was automatic (no need to select optimum parameters). The fixed
Talbot may not work for non-zero step-time behavior without extended
precision.

5. If complex-valued function evaluations are not feasible (e.g., only real
matrix or special function libraries are available), the Schapery or Piessen’s
methods are capable of using the same p values to invert different times,
which the Gaver-Stehfest method cannot.

6. When appropriate, the strategy used by Schapery to expand the deviation
from a reference state could be incorporated as a strategy to improve other
algorithms.
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