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Abstract We present a spectral method for parabolic partial differential equa-
tions with zero Dirichlet boundary conditions. The region � for the problem is
assumed to be simply-connected and bounded, and its boundary is assumed
to be a smooth surface. An error analysis is given, showing that spectral
convergence is obtained for sufficiently smooth solution functions. Numerical
examples are given in both R

2 and R
3.

Keywords Spectral method · Parabolic equation · Multivariable polynomial
approximation

1 Introduction

Consider solving the parabolic partial differential equation

∂u (s, t)
∂t

=
d∑

k,�=1

∂

∂sk

(
ak,�(s, t, u (s, t))

∂u(s, t)
∂s�

)
+ f (s, t, u (s, t)) , (1)
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for s ∈ � ⊆ R
d, 0 < t ≤ T. The solution u is subject to the Dirichlet boundary

condition

u(s, t) ≡ 0, s ∈ ∂�, 0 < t ≤ T (2)

and to the initial condition

u (s, 0) = u0 (s) , s ∈ �. (3)

The region � is open, bounded, and simply connected in R
d for some

d ≥ 2, and the boundary ∂� is assumed to be several times continuously
differentiable. This paper presents a spectral method for solving this problem.
The functions ai, j (s, t, z) and f (s, t, z) are assumed to be continuous for
(s, t, z) ∈ � × [0, T] × R. Additional assumptions are given later in the paper.
These assumptions are stronger than needed for the results we obtain, but
they simplify the presentation. In addition, we assume that there is a unique
solution u to the problem (1)–(3). Later in Section 2.3 we address the problem
of handling a nonhomogeneous boundary condition, extending (2). For an
introduction to the theory of nonlinear parabolic problems using variational
methods, see [25, Chapter 30].

We transform the above problem to one over the unit ball Bd in R
d,

and then we use Galerkin’s method with a suitably chosen polynomial basis
to approximate the solution u. This is similar in spirit to earlier work in
[1, 4, 6]. This approach reduces the problem to the solution of an inital value
problem for a system of ordinary differential equations, for which there is
much excellent software. The convergence analysis of the paper depends on
the landmark paper of Douglas and Dupont [11]. The methods of this paper
also extend to having the functions ai, j and f depend on the first derivatives
∂u/∂s j, although this is not considered here. For related books on spectral
methods for partial differential equations, see [8–10, 14, 15, 21, 22].

The spectral method is presented and analyzed in Section 2, implementation
issues are discussed in Section 3, and numerical examples in R

2 and R
3 are

given in Section 4.

2 A spectral method

We transform the problem (1)–(3) to one over the unit ball Bd, and then we
apply Galerkin’s method using multivariate polynomials as approximations of
the solution. To transform a problem defined on � to an equivalent problem
defined on Bd, we review some ideas from [1] and [6], modifying them as
appropriate for this paper.

Assume the existence of a function

� : Bd
1−1−→
onto

� (4)
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with � a twice-differentiable mapping, and let � = �−1 : �
1−1−→
onto

Bd. For v ∈
L2 (�), let

ṽ(x) = v (� (x)) , x ∈ Bd ⊆ R
d (5)

and conversely,

v(s) = ṽ (� (s)) , s ∈ � ⊆ R
d. (6)

Assuming v ∈ H1 (�), we can show

∇xṽ (x) = J (x)T ∇sv (s) , s = �(x)

with J (x) the Jacobian matrix for � over the unit ball Bd,

J(x) ≡ (D�) (x) =
[
∂ϕi(x)

∂x j

]d

i, j=1
, x ∈ Bd. (7)

To use our method for problems over a region �, it is necessary to know
explicitly the functions � and J. We assume

det J(x) 	= 0, x ∈ Bd. (8)

Similarly,

∇sv(s) = K(s)T∇xṽ(x), x = �(s)

with K(s) the Jacobian matrix for � over �. By differentiating the identity

� (� (x)) = x, x ∈ Bd

we obtain

K (� (x)) = J (x)−1 .

Assumptions about the differentiability of ṽ (x) can be related back to assump-
tions on the differentiability of v(s) and �(x).

Lemma 1 If � ∈ Cm
(
Bd
)

and v ∈ Ck
(
�
)
, then ṽ ∈ Cq

(
Bd
)

with q = min {k, m}.

Proof A proof is straightforward using (5). 
�

A converse statement can be made as regards ṽ, v, and � in (6).
Often a mapping ϕ is given from S

d−1 onto ∂�, and it will not be clear as to
how to extend the mapping to � satisfying (4) and (8). This is explored in [5]
with several methods given for constructing �.

To obtain a space for approximating the solution u of our problem, we
proceed as follows. Denote by �n the space of polynomials in d variables that
are of degree ≤ n: p ∈ �n if it has the form

p(x) =
∑

|i|≤n

aix
i1
1 xi2

2 . . . xid
d
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with i a multi-integer, i = (i1, . . . , id), and |i| = i1 + · · · + id. Our approximation
space with respect to Bd is

X̃n = {(1 − |x|2) p(x) | p ∈ �n
} ⊆ H1

0 (Bd) (9)

With respect to �, the approximating subspace is

Xn = {ψ (s) = ψ̃ (� (s)) : ψ̃ ∈ X̃n
} ⊆ H1

0 (�) (10)

Let Nn = dimXn = dim X̃n = dim �n. For d = 2, Nn = (n + 1) (n + 2) /2.

2.1 The approximation

We reformulate the parabolic problem (1)–(3) as a variational problem.
Multiply (1) by an arbitrarily chosen v ∈ H1

0 (�) and perform integration by
parts, obtaining

(
∂u (·, t)

∂t
, v

)
= −

d∑

i, j=1

∫

�

ai, j (s, t, u (s, t))
∂u (s, t)

∂si

∂v (s, t)
∂s j

ds

+ ( f (·, t, u (·, t)) , v) , v ∈ H1
0 (�) , t ≥ 0. (11)

In this equation, (·, ·) denotes the usual inner product for L2 (�) . Equation
(11), together with (3), is used to develop our approximation method.

We look for a solution of the form

un (s, t) =
Nn∑

k=1

αk (t) ψk (s) (12)

with {ψ1, . . . , ψN} a basis of Xn. The coefficients
{
α1, . . . , αNn

}
generally will

vary with n, but we omit the explicit dependence to simplify notation. Substi-
tute this un into (11) and let v run through the basis elements ψ�. This results
in the following system:

Nn∑

k=1

α′
k (t) (ψk, ψ�)

= −
Nn∑

k=1

αk (t)
d∑

i, j=1

∫

�

ai, j

(
s, t,

Nn∑

k=1

αk (t) ψk (s)

)
∂ψk (s, t)

∂si

∂ψ� (s, t)
∂s j

ds

+
(

f

(
·, t,

Nn∑

k=1

αk (t) ψk

)
, ψ�

)
, � = 1, . . . , Nn, t ≥ 0 (13)

This is a system of ordinary differential equations for the coefficients αk, for
k = 1, . . . , Nn. For the initial conditions, calculate

u0 (s) ≈ u0,n (s) ≡
Nn∑

k=1

α
(0)

k ψk (s) (14)
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by some means, and then use

αk (0) = α
(0)

k , k = 1, . . . , Nn. (15)

The implementation of (12)–(15) is discussed in Section 3.

2.2 Convergence analysis

Our error analysis of (12)–(15) is based on Douglas and Dupont [11, Theorem
7.1]; and as in that paper, we assume the functions

{
ai, j
}

and f satisfy a number
of properties.

A1 As stated earlier, we assume the functions ai, j (s, t, z) and f (s, t, z) are
continuous for (s, t, z) ∈ � × [0, T] × R. Moreover, assume

| f (s, t, r) − f (s, t, ρ)| ≤ K |r − ρ| ,
for all (s, t, r) , (s, t, ρ) ∈ � × [0, T] × R, and

∣∣ai, j (s, t, r) − ai, j (s, t, ρ)
∣∣ ≤ K |r − ρ|

for all (s, t, r) , (s, t, ρ) ∈ � × [0, T] × R, 1 ≤ i, j ≤ d.
A2 We assume that the matrix A (s, t, z) ≡ [ai, j (s, t, z)

]d
i, j=1 is symmetric,

positive definite, and has a spectrum that is bounded above and below
by positive constants η1 and η2, uniformly so for (s, t, z) ∈ � × [0, T] × R.

Theorem 2 (Douglas and Dupont) Assume the functions ai, j (s, t, z) and
f (s, t, z) satisfy the conditions A1 and A2. Let u be the solution of (1)–(3) and
assume it is continuously dif ferentiable over � × [0, T]. Let un be the solution
of (12)–(15). Then there are positive constants γ and C for which

‖u − un‖2
L2×L∞ + γ ‖u − un‖2

H1
0×L2

≤ C
{
‖u0 − u0,n‖2

L2 + ‖u − w‖2
L2×L∞

+ ‖u − w‖2
H1

0×L2 + ‖ ∂

∂t
(u − w) ‖2

L2×L2

}
(16)

for any w of the form given on the right side of (12).

The norms used in (16) are given by

‖v‖L2×L∞ = sup
0≤t≤T

‖v (·, t) ‖L2(�)

‖v‖L2×L2 = ‖v‖L2(�×[0,T])

‖v‖2
H1

0×L2 =
∫ T

0
‖v (·, t) ‖2

H1
0 (�)

dt

The assumptions of the theorem imply the assumptions used in [11, Theorem
7.1], and the conclusion follows from the cited paper.
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To apply this theorem, we need bounds on the norms given in (16) for u −
w. To obtain these, we use the following approximation theoretic result that
follows from Ragozin [19].

Lemma 3 Assume that g (x, t) , ∂g (x, t) /∂t are k times continously
dif ferentiable with respect to x ∈ Bd, for some k ≥ 0 and 0 ≤ t ≤ T. Further,
assume that all such kth-order derivatives satisfy a Hölder condition with
exponent γ ∈ (0, 1] and with respect to x ∈ Bd,

|h (x, t) − h (y, t)| ≤ ck,γ (g) |x − y|γ ,
∣∣∣∣
∂h (x, t)

∂t
− ∂h (y, t)

∂t

∣∣∣∣ ≤ ck,γ (g) |x − y|γ ,

uniformly for x, y ∈ Bd and 0 ≤ t ≤ T, where h denotes a generic kth-order
derivative of g with respect to x ∈ Bd. The quantity ck,γ (g) is called the Hölder
constant. Let {ϕ1, . . . , ϕN} denote a basis of �n. Then for each degree n ≥ 1,
there exists

gn (x, t) =
Nn∑

k=1

βk (t) ϕk (x)

which satisf ies

max
0≤t≤T

max
x∈Bd

|g (x, t) − gn (x, t)| ≤ b k,γ

nk+γ
ck,γ (g) ,

max
0≤t≤T

max
x∈Bd

∣∣∣∣
∂g (x, t)

∂t
− ∂gn (x, t)

∂t

∣∣∣∣ ≤
b k,γ

nk+γ
ck,γ (g) ,

for some constant b k,γ > 0 that is independent of g.

Proof This result can be obtained by a careful examination of the proof
of Ragozin [19, Theorem 3.4]. A similar argument for approximation of a
parameterized family g (x, t) over the unit sphere S

d−1 is given in [7]. The
present result over Bd follows by combining that of [7, Section 4.2.5] over S

d

with the argument of Ragozin over Bd. 
�

Next, we must look at the approximation of the solution ũ (x, t) by means of
polynomials of the form given on the right side of (12). To do this, we use a
trick from [1, (9)–(15)]. Begin with the result that

� : X̃n
1−1−→
onto

�n. (17)

A short proof is given in [3, Section 2.2]. For any t ∈ [0, T], consider a function
ũ which satisfies ũ (x, t) = 0 for all x ∈ S

d−1 = ∂Bd. Define g = �xũ. Then

ũ (x, t) =
∫

Bd

G (x, y) g (y, t) dy, x ∈ Bd,
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with G the Green’s function for the elliptic boundary value problem

−�v (x) = g (x) , x ∈ Bd,

v (x) = 0, x ∈ S
d−1.

For example, in R
2,

G (x, y) = 1
2π

log
|x − y|

|T (x) − y| , x, y ∈ B2,

with T (x) the inverse of x with respect to the unit circle S
1. Let gn (x, t) be the

polynomial referenced in the preceding Lemma 3, and define

w̃n (x, t) =
∫

Bd

G (x, y) gn (y, t) dy, x ∈ Bd. (18)

From (17), w̃n (·, t) ∈ X̃n , 0 ≤ t ≤ T; and w̃n is an approximation of the original
function ũ.

Lemma 4 Assume ũ (·, t) ∈ Ck,γ
(
Bd
)

for 0 ≤ t ≤ T, with k ≥ 2, 0 < γ ≤ 1.
Then for n ≥ 1, the function w̃n (x, t) of (18) is of the form

w̃n (x, t) =
Nn∑

k=1

αk (t) ψ̃k (x) (19)

and it satisf ies

‖ũ (·, t) − w̃n (·, t)‖C(Bd) ≤ b k,γ α1 (G)

nk+γ−2 ck,γ (g) , (20)

‖∇x [̃u (·, t) − w̃n (·, t)]‖C(Bd) ≤ b k,γ α2 (G)

nk+γ−2 ck,γ (g) , (21)
∥∥∥∥

∂

∂t
[̃u (·, t) − w̃n (·, t)]

∥∥∥∥
C(Bd)

≤ b k,γ α1 (G)

nk+γ−2 ck,γ (g) (22)

for 0 ≤ t ≤ T. The constants α1 and α2 are given by

α1 (G) = max
x∈Bd

∫

Bd

|G (x, y)| dy,

α2 (G) = max
x∈Bd

∫

Bd

|∇xG (x, y)| dy,

and these are easily shown to be f inite. The remaining constants b k,γ and ck,γ (g)

are taken from Lemma 3.
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Proof For the error in approximating ũ, we have

ũ (x, t) − w̃n (x, t) =
∫

Bd

G (x, y)
[
g (y, t) − gn (y, t)

]
dy,

∇x [̃u (·, t) − w̃n (·, t)] =
∫

Bd

∇xG (x, y)
[
g (y, t) − gn (y, t)

]
dy,

∂

∂t
[̃u (·, t) − w̃n (·, t)] =

∫

Bd

G (x, y)
∂

∂t

[
g (y, t) − gn (y, t)

]
dy

Thus

‖ũ (·, t) − w̃n (·, t)‖C(Bd) ≤ α1 (G) ‖g (·, t) − gn (·, t)‖C(Bd)

showing (20); and (21) and (22) follow similarly. 
�

These results can be extended to the approximation of u (·, t) over �, by the
subspace Xn.

Lemma 5 Assume u (·, t) ∈ Ck,γ
(
�
)

for 0 ≤ t ≤ T, with k ≥ 2, 0 < γ ≤ 1; and
assume � ∈ Cm

(
Bd
)

with m ≥ k + 3. Then for n ≥ 1 there exists

wn (s, t) =
Nn∑

k=1

αk (t) ψk (s) , s ∈ �, 0 ≤ t ≤ T, (23)

for which

‖u (·, t) − wn (·, t)‖C(�) ≤ ω1 (k, γ, u)

nk+γ−2 , (24)

‖∇x [u (·, t) − wn (·, t)]‖C(�) ≤ ω2 (k, γ, u)

nk+γ−2 , (25)
∥∥∥∥

∂

∂t
[u (·, t) − wn (·, t)]

∥∥∥∥
C(�)

≤ ω3 (k, γ, u)

nk+γ−2 (26)

for 0 ≤ t ≤ T.

Proof Use the transformation s = �(x) to move between functions over � and
functions over Bd. By means Lemma 1 for the transformation �, these results
follow immediately from Lemma 4. 
�

Combining these results with the Douglas and Dupont Theorem 2 leads to
the following convergence result for the Galerkin method (13)–(15).

Theorem 6 Assume that the solution u of the parabolic problem (1)–(3) sat-
isf ies u (·, t) ∈ Ck,γ

(
�
)

for 0 ≤ t ≤ T, with k ≥ 2, 0 < γ ≤ 1. Moreover, assume
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the transformation � ∈ Cm
(
Bd
)

with m ≥ k + 3. Then for n ≥ 1, the solution un

of (13)–(15) satisf ies

‖u − un‖2
L2×L∞ , ‖u − un‖2

H1
0×L2 = O

(
n−(k+γ−2)

)
.

2.3 Further discussion

Our spectral method applies only to regions � with a smooth boundary;
but some of the ideas extend to piecewise smooth boundaries. For example,
with some special regions a transformation � can be used to reformulate
the problem (1)–(3) to one over a standard region such as a rectangle or
cylinder. New spectral methods can then be defined. Regions � with a smooth
boundary are less common than those with a piecewise smooth boundary, but
they certainly occur in fluid mechanics, in electromagnetic and acoustic wave
propagation, and in other application areas. For some interesting applications,
including a number in which ∂� is assumed to be smooth, see [24, Chapters
8–15]. The solving of problems over regions � with a smooth boundary is the
focus of many of the studies in [8–10, 15, 21, 22].

Finite element methods are well-suited to regions with a piecewise smooth
polyhedral boundary; and they are particularly well-suited to the use of graded
meshes, which are often needed with the possibly singular behaviour in u
which occurs more naturally when ∂� is polyhedral or only piecewise smooth.
When the boundary is curved, however, whether smooth or piecewise smooth,
special adaptations known as isoparametric elements are needed; e.g. see [17,
Section 12.1]. In constrast, our transformation of � onto B2 permits smooth
curved boundaries of simply-connected regions � to be treated easily. A
second difference is that the order of convergence of a finite element method
is generally of order O (hτ ) for some small integer τ > 0, with h the maximum
diameter of the elements being using in the grid that discretizes �. In contrast,
our spectral methods for problems with a smooth solution u are much more
rapidly convergent, resulting in much smaller systems of equations that need to
be solved for a given desired accuracy. But our spectral methods will not work
well for regions with only a piecewise smooth boundary, including regions with
polygonal or polyhedral boundaries.

Another possible difficulty with our problem (1)–(3) is that the boundary
condition in (2) is too simple. Although it is standard in the theoretical
literature for the numerical treatment of (1) to use the homogeneous boundary
condition (2), how does one handle a nonzero boundary condition, say

u(s, t) = ub (s, t) , s ∈ ∂�, 0 < t ≤ T? (27)

The simplest procedure is to find a smooth (at least twice continuously
differentiable) function Ub (s, t), s ∈ �, 0 < t ≤ T, which is an extension of ub

to all of �. Then introduce a new unknown function v by means of

u = v + Ub .
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Substitute this into (1) to obtain a new equation for v,

∂v (s, t)
∂t

=
d∑

k,�=1

∂

∂sk

(
ak,�(s, t, Ub (s, t) + v(s, t))

∂v(s, t)
∂s�

)
+ fnew (s, t, v(s, t))

(28)
with a suitably defined new term fnew. The function v will satisfy the homoge-
neous boundary condition (2) and a modified initial condition,

v (s, 0) = u0 (s) − Ub (s, 0) , s ∈ �. (29)

How to obtain Ub (s, t)? In some cases there is an obvious extension. For
example, if ub (s, t) is a polynomial in s, then simply use that polynomial
to define Ub (s, t). In other cases, however, it may not be obvious. Since
we can convert our problem over � to an equivalent problem over Bd, we
describe another construction for Ub , doing so only for cases in which ub (s, t)
is independent of t, a common situation. We also consider only the planar case,
although the method generalizes to regions � ⊆ R

d, d ≥ 2.
Consider being given a function g on the unit circle S1 and then extending

it to a smooth function G defined over the closed unit disk B2. Given a point
x ∈ B2, |x| < 1, take a straight line through x and have it intersect S1 at the
points

P+ (θ) = x + r+ (θ) η,

P− (θ) = x − r− (θ) η.

with

η = (cos θ, sin θ) , 0 ≤ θ < π.

We choose r+ (θ) and r− (θ) to be such that

|P+(θ)| = |x + r+ (θ) η| = 1, |P−(θ)| = |x − r− (θ) η| = 1

and

r+ (θ) = |x − P+(θ)| , r− (θ) = |x − P−(θ)| .
Define

g∗ (θ; x) = g (P+ (θ)) − r+(θ)
g (P+ (θ)) − g (P− (θ))

r+(θ) + r−(θ)

using linear interpolation along the line L. Here and in the following we always
identify the function g on the boundary of the unit disk with a 2π periodic
function on the real number line. Then define

G (x) = 1
π

∫ π

0
g∗ (θ; x) dθ,

the average of the interpolants g∗ (θ; x). For Q ∈ S1,

lim
x→Q

G(x) = g (Q) .
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For details on the construction of g∗ and G, see [5, Section 3]. Note also that

min
s∈S1

g (s) ≤ G(x) ≤ max
s∈S1

g (s) .

After constructing G, probably by numerical integration, it can be approxi-
mated using a truncation of the expansion of G using a basis of orthonormal
polynomials. These ideas are discussed at greater length in [5]. Also, having
a polynomial as the function Ub makes easier its differentiation. A further
analysis of the properties of this extension G is deferred to a future paper.

3 Implementation issues

Recall the method (12)–(15) and the notation used there. For notation, let

aN (t) = [α1 (t) , . . . , αN (t)]T .

The system (13) can be written symbolically as

Gna
′
N (t) = Bn (t, un) aN (t) + f N (t, un) , (30)

Gn = [(ψk, ψ�)]N
k,�=1 , (31)

(Bn (t, un))k,� = −
d∑

i, j=1

∫

�

ai, j (s, t, un (s, t))
∂ψk (s, t)

∂si

∂ψ� (s, t)
∂s j

ds, (32)

f N (t, un)� = ( f (·, t, un (·, t)) , ψ�) , � = 1, . . . , N. (33)

For the implementation, we discuss separately the cases of � ⊆ R
2 and � ⊆

R
3. In both cases we must address the following issues

A1. Select a basis {ψ1, . . . , ψN} for Xn.
A2. Discuss the numerical integration of the integrals in (31)–(33).
A3. Approximate the initial value u0 by some u0,n ∈ Xn, as suggested in (14).
A4. Discuss the solution of the nonlinear system of differential equations

(30).
A5. Evaluate the solution un at points of � for each given t.

Several of these issues were addressed in the previous papers [1, 4, 6], and we
refer to the discussion in those papers for more complete discussions. Below we
give a brief introduction to these various problems, enough so as to illustrate
in Section 4 the feasibility of our method and its rapid speed of convergence.

An efficient implementation of our spectral method requires that much
more attention be given to these issues. For example, efficient evaluation of
the approximation un (s, t) requires an efficient means to evaluate orthonormal
polynomial expansions. The triple recursion relations of Dunkl and Xu [12,
Section 3.2] lead to fast methods of evaluation, varying greatly with the partic-
ular orthonormal basis being used. A discussion of a very efficient algorithm is
deferred to a future paper.
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3.1 Two dimensions

Let �n (B2) denote the restriction to B2 of the polynomials over R
2. To

construct a basis for the approximation space Xn of (10), begin by choosing an
orthonormal basis {ϕ1, . . . , ϕN} for �n (B2), using the standard inner product
for L2 (B2). The dimension of �n (B2) is

N ≡ Nn = 1
2

(n + 1) (n + 2)

There are many possible choices of an orthonormal basis, a number of which
are enumerated in [12, Section 2.3.2] and [23, Section 1.2]. We have chosen
one that is particularly convenient for our computations. These are the ‘ridge
polynomials’ introduced by Logan and Shepp [18] for solving an image recon-
struction problem. We summarize here the results needed for our work.

Let

Vn = {P ∈ �n (B2) : (P, Q) = 0 ∀Q ∈ �n−1}
the polynomials of degree n that are orthogonal to all elements of �n−1 (B2).
Then the dimension of Vn is n + 1; moreover,

�n (B2) = V0 ⊕ V1 ⊕ · · · ⊕ Vn (34)

It is standard to construct orthonormal bases of each Vn and to then combine
them to form an orthonormal basis of �n (B2) using the latter decomposition.
As an orthonormal basis of Vn we use

ϕ̃n,k(x) = 1√
π

Un (x1 cos (kh) + x2 sin (kh)) , x ∈ D, h = π

n + 1
(35)

for k = 0, 1, . . . , n. The function Un is the Chebyshev polynomial of the second
kind of degree n:

Un(t) = sin (n + 1) θ

sin θ
, t = cos θ, −1 ≤ t ≤ 1, n = 0, 1, . . .

The family
{
ϕ̃n,k

}n
k=0 is an orthonormal basis of Vn. As a basis of �n, we order{

ϕ̃n,k
}

lexicographically based on the ordering in (35) and (34):

{ϕ̃�}N
�=1 ≡ {ϕ̃0,0, ϕ̃1,0, ϕ̃1,1, ϕ̃2,0, . . . , ϕ̃n,0, . . . , ϕ̃n,n

}

Returning to (10), we define

ψ̃n,k(x) = (1 − |x|2) ϕ̃n,k(x)

and the basis
{
ψm,k : 0 ≤ k ≤ m, 0 ≤ m ≤ n

}
for Xn is defined using (10),

ψm,k (s) = ψ̃n,k(x), s = �(x) .

We will also refer to this basis as {ψ1, . . . , ψN}. In general, this is not an
orthonormal basis; but the hope is that {ϕ̃�}N

�=1 being orthonormal will result
in a reasonably well-conditioned matrix for the linear systems associated with
the solution of (13). Examples of this for elliptic problems are given in [1, 4, 6].
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To calculate the first order partial derivatives of ψ̃n,k(x), we need U ′
n(t).

The values of Un(t) and U
′
n(t) are evaluated using the standard triple recursion

relations

Un+1(t) = 2tUn(t) − Un−1(t)

U
′
n+1(t) = 2Un(t) + 2tU

′
n(t) − U

′
n−1(t)

Second derivatives, if needed, can be evaluated similarly.
For the integrals in (13), for any dimension d ≥ 2, we first transform

them to integrals over Bd. For an arbitrary function g defined on �, use the
transformation s = �(x) to write

∫

�

g (s) ds =
∫

Bd

g (� (x)) det J (x) dx

with J (x) the Jacobian matrix (7) for �(x). Applying this to the integrals in
(13),

(ψk, ψ�) =
∫

�

ψk (s) ψ� (s) ds =
∫

Bd

ψ̃k (x) ψ̃� (x) det J (x) dx (36)

(
f

(
·, t,

Nn∑

k=1

αk (t) ψk

)
, ψ�

)

=
∫

Bd

f

(
�(x) , t,

Nn∑

k=1

αk (t) ψ̃k (x)

)
ψ̃k (x) det J (x) dx (37)

d∑

i, j=1

∫

�

ai, j (s, t, un (s, t))
∂ψk (s)

∂si

∂ψ� (s)
∂s j

ds

=
∫

�

{∇ψk (s)}T A (s, un (s, t)) {∇ψ� (s)} ds

=
∫

Bd

{∇ψ̃k (x)
}T

Ã

(
x, t,

Nn∑

k=1

αk (t) ψ̃k (x)

)
{∇ψ̃� (x)

}
det J (x) dx (38)

with

Ã (x, t, z) = J (x)−1 A (� (x) , t, z) J (x)−T . (39)

For the numerical approximation of the integrals in (36)–(38) with d = 2,
the integrals being evaluated over the unit disk B2, write a general function
g as

g (x) = ĝ (r, θ) ≡ g (r cos θ, r sin θ) .
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Then use the formula
∫

B2

g(x) dx ≈
q∑

l=0

2q∑

m=0

ĝ
(

rl,
2π m

2q + 1

)
ωl

2π

2q + 1
rl (40)

with q ≥ 1 an integer. Here the numbers ωl are the weights of the (q + 1)-
point Gauss-Legendre quadrature formula on [0, 1]. The formula (40) uses
the trapezoidal rule with 2q + 1 subdivisions for the integration over B2 in
the azimuthal variable. This quadrature (40) is exact for all polynomials g ∈
�2q (B2).

To approximate the initial condition u0, as in (14), we approximate
u0 (� (x)) by its orthogonal projection onto X̃n,

Pn (u0 ◦ �) =
Nn∑

j=1

β jψ̃ j

The coefficients
{
β j
}

are obtained by solving the linear system

Nn∑

j=1

β j
(
ψ̃ j, ψ̃i

) = (u0 ◦ �, ψ̃i
)
, i = 1, . . . , Nn. (41)

We approximate further by applying the numerical integration (40) to each
of the inner products in this system. With q ≥ n + 2, the matrix coefficients for
the left side of this linear system will be evaluated exactly. The result of solving
this system with the associated numerical integration yields an approximation
to u0 (� (x)); and using s = �(x), we have an initial estimate of the form given
in (14).

To solve the system of ordinary differential equations (13), we have used
the Matlab program ode15s, which is based on the multistep BDF methods
of orders 1–5; see [2, Section 8.2] and [20, p. 60]. In general, there is often
stiffness when solving differential equations that arise from using a method of
lines approximation for parabolic problems, and that is our reasoning for using
the stiff ode code ode15s rather than an ordinary Runge–Kutta or multistep
code. No difficulty arose in solving any of our examples when using this code,
although further work is needed to know whether or not a stiff ode code is
indeed needed. In our numerical examples, we will give some data on condition
numbers that arise in our method.

3.2 Three dimensions

Here we denote by �n(B3) the restriction to B3 of polynomials over R
3 of

degree n or less. The first difference to the two dimensional case is that the
dimension of �n(B3) is given by

N ≡ Nn = 1
6
(n + 1)(n + 2)(n + 3).
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But as with the two dimensional case, there is a wide range of orthonormal
basis functions; see [12]. We choose the following orthormal basis for �n(B3)

ϕ̃m, j,k(x) = cm, j p
(0,m−2 j+ 1

2 )

j (2|x|2 − 1)Sβ,m−2 j(x)

= cm, j |x|m−2 j p
(0,m−2 j+ 1

2 )

j (2|x|2 − 1)Sβ,m−2 j

(
x
|x|
)

j = 0, . . . , �m/2�, β = 0, 1, . . . , 2(m − 2 j), m = 0, . . . , n (42)

The constants cm, j = 2
5
4 + m

2 − j normalize the functions to length one. The func-
tions p(0,m−2 j+ 1

2 ) are the normalized Jacobi polynomials on the interval [−1, 1]
with respect to the inner product

(v, w) =
∫ 1

−1
(1 + t)m−2 j+ 1

2 v(t)w(t) dt

Finally the functions Sβ,m−2 j are spherical harmonic functions given by

Sβ,k(φ, θ) = c̃β,k

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cos
(

β

2
φ

)
T

β

2
k (cos θ), β even,

sin
(

β + 1
2

φ

)
T

β+1
2

k (cos θ), β odd

Here the constant c̃β,k is chosen in such a way that the functions are orthonor-
mal on the unit sphere S2 in R

3,

∫

S2
Sβ,k(x)Sβ̃ ,̃k(x) dx = δβ,β̃ δk,̃k.

The functions Tl
k are the associated Legendre polynomials; see [16]. In [13, 26],

one can also find recurrence formulas for the numerical evaluation of Jacobi
and Legendre polynomials and their derivatives.

The bases for the spaces X̃n and Xn defined in (9) and (10) are again, see (9)
and (10), defined by

ψ̃m, j,k(x) = (1 − |x|2) ϕ̃m, j,k(x) (43)

ψm, j,k(s) = ψ̃m, j,k(x), s = �(x) (44)

For the numerical implementation we can also order the bases in lexicograph-
ical order (still using the notation ψ̃ and ψ), so in the following we can assume
that we have bases {ψ̃l | l = 1, . . . , Nn} and {ψl | l = 1, . . . , Nn} of X̃n and Xn.
All integrals which arise in the formulas (30)–(33) for the approximate solution
of (13) are transformed to B3 as has been done in (36)–(38). To evaluate the
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resulting integrals over the unit ball in R
3 we use spherical coordinates, and a

quadrature formula Qq

∫

B3

g(x) dx =
∫ 1

0

∫ 2π

0

∫ π

0
g̃(r, θ, φ)r2 sin(φ)dφ dθ dr

≈ Qq [̃g], where

Qq [̃g] ≡
2q∑

i=1

q∑

j=1

q∑

k=1

π

q
ω jνkg̃

(
ζk + 1

2
,

π

2q
i, arccos(ξ j)

)

Here g̃ is the representation of g in spherical coordinates. The quadrature
formula Qq uses a trapezoidal rule in the θ direction and weighted Gauss–
Legendre quadrature formulas in the φ (weights ω j and nodes arccos(ξ j)) and r
direction (weights νk and nodes (ξk + 1)/2), as described in [4]. With the help
of this quadrature formula we can also define the numerical approximation of
u0, see (14) and (15), by formula (41).

4 Numerical examples

We begin with planar examples, followed by some problems on regions � in
R

3. The examples will all be for the equation

∂u (s, t)
∂t

= �u (s, t) + f (s, t, u (s, t)) , s ∈ �, t ≥ 0. (45)

To help in constructing our examples, we use

f (s, t, z) = f1 (s, t, z) + f2 (s, t) . (46)

We choose various f1 to explore the effects of changes in the type of nonlin-
earity; and f2 is then defined to make the (45) valid for any given u,

f2 (s, t) = ∂u (s, t)
∂t

− {�u (s, t) + f1 (s, t, u (s, t))} , s ∈ �, t ≥ 0. (47)

In the reformulation (38), A = I and thus

Ã (x, t, z) = J (x)−1 J (x)−T . (48)

4.1 Planar examples

Begin with the region � whose boundary is a limacon. In particular, consider
the boundary

ϕ (θ) = ρ (θ) (cos θ, sin θ) ,

ρ (θ) = 3 + cos θ + 2 sin θ, 0 ≤ θ ≤ 2π. (49)

Using the methods of [5], we obtain a mapping � : B2 → �. Each component
of � is a polynomial of degree 3. To illustrate the mapping we show the images
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Fig. 1 The region �

associated with (49) and the
mapping �
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5

s
1

s
2

in � of uniformly spaced circles and radial lines in B2; see Fig. 1 and note that
� is almost convex.

As a particular example for solving (45), let

f1 (s, t, z) = e−z cos (π t) , (50)

u (s, t) = (1 − x2
1 − x2

2

)
cos (t + 0.05πs1s2) (51)

with s = �(x). For the numerical integration in (40), q = 2n was chosen,
where n + 2 is the degree of the approximation ũn. This choice of q has always
been more than adequate, and a smaller choice would often have sufficed.

To have a time interval of reasonable length, the problem was solved over
0 ≤ t ≤ 20, although something longer could have been chosen as well. The
error was checked at 801 points of �, chosen as the images under � of 801
points distributed over B2. The graph of u12 (·, 20) is given in Fig. 2, and

Fig. 2 The approximating
solution u12 (s, 20) for the true
solution u (s, 20) of (51)
over �
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Fig. 3 The error in the
approximating solution
u12 (s, 20) for the true solution
u (s, 20) of (51) over �

the associated error is given in Fig. 3; in addition, ‖u (·, 20) − u12 (·, 20)‖∞
.=

1.94E − 4. Figure 4 shows the error norm ‖u (·, t) − u12 (·, t)‖∞ for 200 evenly
spaced values of t in [0, 20]. There is an oscillatory behaviour which is in keep-
ing with that of the solution u. To illustrate the spectral rate of convergence of
the method, Fig. 5 gives the error as the degree n varies from 6 to 20. The linear
behaviour of this semi-log graph implies an exponential rate of convergence of
un to u as a function of n.

An important aspect on which we have not yet commented is the condi-
tioning of the matrices in the system (30). In our use of the Matlab program
ode15s, we have written (30) in the form

a
′
N (t) = G−1

n Bn (t, un) aN (t) + G−1
n f N (t, un) , (52)

Fig. 4 The error
‖u (·, t) − u12 (·, t)‖∞ for the
true solution u (s, t) of (51)
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Fig. 5 n vs.
max

0≤t≤20
‖u (·, t) − un (·, t)‖∞
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The matrix G−1
n Bn (t, un) is the Jacobian matrix for this system. Investigating

experimentally,

cond
(
G−1

n Bn
) = O

(
N2

n

)
(53)

where Nn is the number of equations in (52). As support for this assertion,
Fig. 6 shows the graph of log

(
N2

n

)
vs. log

(
cond

(
G−1

n Bn
))

. There is a clear linear
behaviour and the slope is approximately 1, thus supporting (53). When � is
the unit disk, and � = I, the result (53) is still valid experimentally.

As a second example, one for which � is much more nonconvex (although
still star-like), consider the region � with the given boundary function

ϕ (θ) = ρ (θ) (cos θ, sin θ) ,

ρ (θ) = 5 + sin θ + sin 3θ − cos 5θ, 0 ≤ θ ≤ 2π. (54)

Fig. 6 log
(
N2

n
)

vs.
log
(
cond

(
G−1

n Bn
))

for
limacon region
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Fig. 7 The region �

associated with (54) and the
mapping �
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As before, an extension � to B2 is constructed using the methods of [5]. The
mapping � is a polynomial of degree 7 in each component; and the images in
� of uniformly spaced circles and radial lines in B2 are shown in Fig. 7.

Again, use the function f1 of (50) and the solution u of (51). The solution
u20 (·, 20) is shown in Fig. 8 over this new region, and ‖u (·, 20) − u20 (·, 20)‖∞

.=
0.00136. Figure 9 shows the error in u20 (·, t) over time, and Fig. 10 shows how
the error in un varies with the degree n. The latter again indicates a spectral
order of convergence, although slower than that shown in Fig. 5. The condition
numbers still satisfy the empirical estimate of (53).

4.2 A three-dimensional example

Here we will study one domain � which we investigated already in a previous
article for the purpose of analyzing the spectral method for Dirichlet problems;

Fig. 8 The approximating
solution u20 (s, 20) for the true
solution u (s, 20) of (51) over
the � of Fig. 7
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Fig. 9 The error
‖u (·, t) − u20 (·, t)‖∞ for the
true solution u (s, t) of (51)
over the � of Fig. 7
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see [1]. The domain has the advantage that the transformation � is known
throughout B3 and even the inverse transformation � is known explicitly.
The knowledge of � is not necessary for the use of the spectral method but
makes the construction of an explicit solution easier. The mapping � : B3 �→
�, (s1, s2, s3) = �(x1, x2, x3) is given by

s1 = x1 − x2 + ax2
1

s2 = x1 + x2

s3 = 2x3 + b x2
3 (55)

Fig. 10 n vs.
max

0≤t≤20
‖u (·, t) − un (·, t)‖∞

for the � of Fig. 7
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Fig. 11 The surface of � with
parameters a = 0.7 and
b = 0.9; see (55)
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where 0 < a, b < 1 are two parameters. Figures 11 and 12 show an example of
the surface of � from two different angles. The inverse � : � �→ B3 is given by

x1 = 1
a

[
−1 +√1 + a(s1 + s2)

]

x2 = 1
a

[
as2 + 1 −√1 + a(s1 + s2)

]

x3 = 1
b

[
−1 +

√
1 + bs3

]

Furthermore the Jacobian for � is given by

J(x) =
⎛

⎝
1 + 2ax1 −1 0

1 1 0
0 0 2 + 2b x3

⎞

⎠

Fig. 12 The surface of �, see
(55), seen from the z-axis
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Fig. 13 The error
‖u (·, t) − u12 (·, t)‖∞ for the
true solution u (s, t) of (56)
over the � of Fig. 11
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with determinant

det(J(x)) = 4(1 + ax1)(1 + b x3).

This allows us also to calculate Ã, see (48), directly

Ã(x) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1
2(1 + ax1)2

ax1

2(1 + ax1)2 0

ax1

2(1 + ax1)2

1 + ax1 + 2a2x2
1

2(1 + ax1)2 0

0 0
1

4(1 + b x3)2

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 14 n vs.
max

0≤t≤20
‖u (·, t) − un (·, t)‖∞

over the � of Fig. 11
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Fig. 15 log
(
N2

n
)

vs.
log
(
cond

(
G−1

n Bn
))

for the �

of Fig. 11
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Again we use the spectral method to solve (45) where f is given by (46) and
(47). As a particular example for solving (45), let

f1(s, t, z) = e−z cos(π t),

u(s, t) = (1 − x2
1 − x2

2 − x2
3) cos(t + 0.05πs1s2s3) (56)

where (x1, x2, x3) = �(s1, s2, s3) with a = 0.7 and b = 0.9. Numerical results
are given in Figs. 13 and 14. Figure 15 seems to indicate that the relation (53)
for the condition number of the Jacobian G−1

n Bn is also valid in the three
dimensional case.
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