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Abstract In this paper, we investigate bivariate quadratic spline spaces on
non-uniform criss-cross triangulations of a bounded domain with unequal
smoothness across inner grid lines. We provide the dimension of the above
spaces and we construct their local bases. Moreover, we propose a compu-
tational procedure to get such bases. Finally we introduce spline spaces with
unequal smoothness also across oblique mesh segments.
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1 Introduction

Let � = [a, b ] × [c, d] be a rectangular domain and m, n be positive integers.
We consider the inner grid lines u − ξi = 0, i = 1, . . . , m and v − η j = 0, j =
1, . . . , n, where

a = ξ0 < ξ1 < . . . < ξm+1 = b and c = η0 < η1 < . . . < ηn+1 = d (1)
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partition � into (m + 1)(n + 1) rectangular cells. By drawing both diagonals
for each cell, we obtain a non-uniform criss-cross triangulation T mn, made of
4(m + 1)(n + 1) triangular cells.

The dimension and a B-spline basis for the space S1
2 (Tmn) of all quadratic

splines on Tmn, with maximum C1 smoothness, were obtained in [12]. However
some B-splines near the boundary of � have supports not completely con-
tained in �. In [3, 8, 10] a local basis for S1

2 (Tmn) is given, with all supports
included in �.

The interesting idea of getting unequally smooth quadratic spline spaces
on Tmn, i.e. with C0 smoothness across some inner grid lines and with C1

smoothness across the other ones, has been presented in [11, 12] and references
therein. As remarked in [11], functions belonging to such spaces have total
degree two and in some cases they are preferable to tensor product ones that
may have some inflection points, due to their higher coordinate degree.

Since the above unequally spline spaces of total degree are useful in many
applications [12] and, as far as we know, any theoretical analysis both on their
dimension and on their local bases has not been provided in the literature, then
in this paper we develop such an analysis, also considering possible jumps (C−1

smoothness) across inner grid lines.
Let S(μ̄ξ ,μ̄η)

2 (Tmn) be the space of bivariate quadratic piecewise polynomials
on Tmn, where

μ̄ξ = (μ
ξ

i )
m
i=1, μ̄η = (μ

η

j )
n
j=1 (2)

are vectors whose elements can be 1, 0, -1 and denote the C1, C0, C−1

smoothness, respectively, across the inner grid lines u − ξi = 0, i = 1, . . . , m
and v − η j = 0, j = 1, . . . , n, while the smoothness across all oblique mesh
segments1 is C1.

In case of jumps at u = ξi and/or v = η j, in order to uniquely define s ∈
S(μ̄ξ ,μ̄η)

2 (Tmn), we set

s(ξi, v) =
{

s(ξ+
i , v), i = 0, . . . , m,

s(ξ−
i , v), i = m + 1,

and s(u, η j) =
{

s(u, η+
j ), j = 0, . . . , n,

s(u, η−
j ), j = n + 1.

In Theorem 1 of Section 2 we get the dimension of S(μ̄ξ ,μ̄η)

2 (Tmn), that
we express by a formula depending on m, n and the required smoothness.
Then, we determine a finite set B of locally supported functions belonging to
S(μ̄ξ ,μ̄η)

2 (Tmn), from which, in Theorem 2, we extract a basis for S(μ̄ξ ,μ̄η)

2 (Tmn).
Beside the above theoretical analysis, in Section 3, we present a computational
procedure for basis generation, also illustrated by some graphs of B-splines
and an application. Finally, in Section 4 we consider unequal smoothness also
across oblique mesh segments, we define a new spline space and, in Theorem 3,

1According to [12], we call mesh segments the line segments that form the boundary of each
triangular cell of Tmn.
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we provide its dimension. Then, by using the “smoothing cofactor conformality
method” [12], we construct some locally supported functions belonging to it.

2 On the construction of local bases for S(μ̄ξ ,μ̄η)

2 (Tmn)

2.1 Dimension of S(μ̄ξ ,μ̄η)

2 (Tmn)

Let Tmn be a non uniform criss-cross triangulation of a rectangular domain �

and S(μ̄ξ ,μ̄η)

2 (Tmn) be the spline space defined as in Section 1.
Let L0

u (resp. L−1
u ) and L0

v (resp. L−1
v ) be the number of grid lines u − ξi = 0,

i = 1, . . . , m and v − η j = 0, j = 1, . . . , n, respectively, across which we want

s ∈ S(μ̄ξ ,μ̄η)

2 (Tmn) has C0 (resp. C−1) smoothness, with 0 ≤ L0
u + L−1

u ≤ m and
0 ≤ L0

v + L−1
v ≤ n.

We prove the following result concerning the dimension of S(μ̄ξ ,μ̄η)

2 (Tmn).

Theorem 1 The dimension of S(μ̄ξ ,μ̄η)

2 (Tmn) is

λ = dim S(μ̄ξ ,μ̄η)

2 (Tmn) = d1 + d2 + d3, (3)

where

d1 = mn + 3m + 3n + 8,

d2 = (n + 2)L0
u + (m + 2)L0

v,

d3 = (2n + 5 + L0
v + L−1

v )L−1
u + (2m + 5 + L0

u + L−1
u )L−1

v + L−1
u L−1

v .

Proof For any two triangles T =< v1, v2, v3 > and T̃ =< v4, v3, v2 > of Tmn,
sharing the edge e =< v2, v3 >, let

p(v) =
∑

i+ j+k=2

cijk BE2
ijk(v) and p̃(v) =

∑
i+ j+k=2

c̃ijk B̃E
2
ijk(v)

where {BE2
ijk} and {B̃E

2
ijk} are the Bernstein basis polynomials associated with

T and T̃, respectively.
In Fig. 1 the two basic configurations (the other ones are obtained by

symmetry) of the above situation are reported. Figure 1a shows two triangles
belonging to two different rectangular cells of Tmn, while Fig. 1b presents two
triangles belonging to the same rectangular cell.

Then, from [7, Theorem 2.28, p. 39] the condition for C0 continuity says that
the B-coefficients of p and p̃ associated with domain points along the edge e
must agree:

c̃0 jk = c0kj, j + k = 2. (4)

The condition for C1 smoothness across the edge e is that (4) holds along with

c̃1 jk = b 1c1kj + b 2c0,k+1, j + b 3c0,k, j+1, j + k = 1,
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(a) (b)

Fig. 1 B-coefficients of p and p̃ for the two basic configurations in Tmn

where (b 1, b 2, b 3) are the barycentric coordinates of the vertex v4 relative to
the triangle T.

Finally C−1 smoothness across the edge e does not imply any condition
between the B-coefficients of p and p̃.

Considering all pairs of adjacent triangles of Tmn, together with the given C�

smoothness, � = −1, 0, 1 across their common edge, we are able to count the
constrained B-coefficients and therefore to detect the number of degrees of
freedom, obtaining the space dimension (3). ��

We remark that, if s ∈ S(μ̄ξ ,μ̄η)

2 (Tmn) is globally C0 (i.e. L−1
u = L−1

v =
0), then dim S(μ̄ξ ,μ̄η)

2 (Tmn) = d1 + d2, while, if it is globally C1 (i.e. L−1
u =

L−1
v = L0

u = L0
v = 0), then we obtain the well-known case dim S(μ̄ξ ,μ̄η)

2 (Tmn) =
dim S1

2 (Tmn) = d1 [12].

2.2 Spanning set and basis of S(μ̄ξ ,μ̄η)

2 (Tmn)

We turn now to the problem of constructing a basis for S(μ̄ξ ,μ̄η)

2 (Tmn).
Setting

M = 3 +
m∑

i=1

(2 − μ
ξ

i ), N = 3 +
n∑

j=1

(2 − μ
η

j ), (5)

where μ
ξ

i and μ
η

j are defined as in (2), let ū = (ui)
M
i=−2, v̄ = (v j)

N
j=−2 be the

nondecreasing sequences of knots, obtained from ξ̄ = (ξi)
m+1
i=0 and η̄ = (η j)

n+1
j=0

by imposing the two following requirements:

(i) u−2 = u−1 = u0 = ξ0 = a, uM−2 = uM−1 = uM = ξm+1 = b ,

v−2 = v−1 = v0 = η0 = c, vN−2 = vN−1 = vN = ηn+1 = d;
(ii) for i = 1, . . . , m, the number ξi occurs exactly 2 − μ

ξ

i times in ū and for
j = 1, . . . , n, the number η j occurs exactly 2 − μ

η

j times in v̄.
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Let B̄ij(u, v) be the quadratic C1 B-spline belonging to the space S1
2 (Tmn),

for which the B-form is given in [4, 9] (see Fig. 2, where we report the B̄ij’s
support and its B-coefficients). For the above sequences ū and v̄, we consider
the following set of functions

B = {Bij(u, v)}(i, j)∈KMN , (6)

where KMN = {(i, j) : 0 ≤ i ≤ M − 1, 0 ≤ j ≤ N − 1} and any Bij is obtained
in B-form by the B̄ij’s one, conveniently setting hp = up − up−1, p = i −
1, i, i + 1, and/or kq = vq − vq−1, q = j − 1, j, j + 1, equal to zero (see Fig. 2),
if there are double (or triple) knots in ū, v̄ [4, 9]. When 0

0 occurs, we set the
corresponding value equal to zero.

If both/either ū and/or v̄ have/has double (or triple) knots, then the Bij

smoothness will change and the support will change as well.
In [4] supports and B-coefficients of such B-splines are reported.
The functions Bij’s belong to S(μ̄ξ ,μ̄η)

2 (Tmn), have a local support, are non
negative and, by an argument similar to the one used in [8, 10], we can show
that they form a partition of unity.

In B we find different types of spline functions. There are

ρ = 2M(1 + L−1
v ) + 2N(1 + L−1

u ) − 4(1 + L−1
u )(1 + L−1

v )

(a)

1.
σi

4
, 2.

σi

2
, 3.

σi

2
, 4. σ i τ j , 5. σ i ,
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τj

2
, 8.

σi + τ j

2
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Fig. 2 a Support and b B-coefficients of B̄ij(u, v), where “O” denotes a zero B-coefficient and

σi+1 = hi+1
hi+hi+1

, σ ′
i = hi−1

hi−1+hi
, τ j+1 = k j+1

k j+k j+1
, τ ′

j = k j−1
k j−1+k j

, with hi = ui − ui−1, k j = v j − v j−1
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unequally smooth functions, that we call boundary B-splines, whose restric-
tions to the boundary ∂� of � and to the grid lines with associated C−1

smoothness are univariate quadratic B-splines. The remaining MN − ρ func-
tions, called inner B-splines, are such that their restrictions to ∂� and to the
C−1 smoothness grid lines are equal to zero.

Then the following theorem holds.

Theorem 2 Let:

(i) {�r}γr=1 be a partition of � into rectangular subdomains, generated by the
grid lines with associated C0 and C−1 smoothness, with

γ = (L0
u + L−1

u + 1)(L0
v + L−1

v + 1); (7)

(ii) B be def ined as in (6);
(iii) B1 ⊂ B be the set of inner B-splines with C1 smoothness everywhere or

with C0 smoothness only on the boundary of their support;
(iv) {B(r)}γr=1 be a partition of B1, where each B(r) contains B-splines with

support in �r.

Then, a B-spline basis for S(μ̄ξ ,μ̄η)

2 (Tmn) can be extracted from B, by removing
γ B-splines, one in each B(r), r = 1, . . . , γ .

Proof Taking into account the knot multiplicities, we remark that (5) can be
written in the equivalent form

M = 3 + m + L0
u + 2L−1

u , N = 3 + n + L0
v + 2L−1

v . (8)

Then, from (8), it is easy to prove that �B = M · N > λ, with λ defined by (3),
i.e. the elements of B are linearly dependent.

Now, we can show that in B we find a set of λ linearly independent (l.i.)
B-splines.

We consider the set of boundary B-splines belonging to B and we denote
it by B2. Since their restrictions to ∂� and to the grid lines with associated
C−1 smoothness are univariate quadratic B-splines, then they will be l.i. as the
univariate ones.

Let B3 be the set of inner B-splines, belonging to B and having C0 smooth-
ness across either horizontal or vertical edges inside their support, that are
l.i. as well, because their restrictions on such lines are quadratic piecewise
polynomials having the same B-coefficients as the univariate B-splines [4].

The set B\(B2 ∪ B3) is the set B1, that we partition into the subsets B(r),
r = 1, . . . , γ . If in each B(r), r = 1, . . . , γ , we delete any one element, from [1],
we get a set of l.i. B-splines, denoted by B̃(r). Moreover, thanks to the local
support property of the B-splines, we can deduce that the elements of the set⋃γ

r=1 B̃(r) are l.i..
From the same property of the Bij’s, we can also get that the λ∗ = M · N − γ

functions belonging to the set
⋃γ

r=1 B̃(r) ∪ B2 ∪ B3 are l.i..
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Therefore, in B we have detected λ∗ l.i. B-splines. From (7) and (8), after
some algebra, it is easy to show that λ∗ = λ.

Then, we can conclude that the B-splines belonging to the set
⋃γ

r=1 B̃(r) ∪
B2 ∪ B3 are a basis for the space S(μ̄ξ ,μ̄η)

2 (Tmn). ��

We remark that the set B, defined in (6), is a spanning set of S(μ̄ξ ,μ̄η)

2 (Tmn)

endowed with the partition unity property.
However, in several problems, for example in the application of Galerkin

method to PDEs in isogeometric analysis [6], it is essential the management
of a basis for the space where the approximating solution is looked for. This
subject is very interesting, we are working on it and we have already obtained
some results [2].

Instead, in CAGD applications is more convenient to use B, in order to get
a surface having the convex hull property.

Example 1 Given ξ̄ = (0, 2, 4, 6, 8, 10), η̄ = (0, 1, 2, 3, 4), μ̄ξ = (0, 1, 1, −1),
μ̄η = (0, 1, 1), we want to construct a basis for the corresponding spline space
S(μ̄ξ ,μ̄η)

2 (T43), whose dimension, from (3), is λ = 64.
Such a space is made of functions that are C1 inside � = [0, 10] × [0, 4],

except across the lines u = 2 and v = 1, where they are only continuous and
across u = 8, where they have a jump.

From (5), we compute M = 10, N = 7 and consequently

ū = (0, 0, 0, 2, 2, 4, 6, 8, 8, 8, 10, 10, 10), v̄ = (0, 0, 0, 1, 1, 2, 3, 4, 4, 4),

on which the spanning set B = {Bij}9,6
i=0, j=0 is defined.

In order to detect a B-spline basis, we notice that the domain � is subdivided
into six subdomains �r, r = 1, . . . , 6, as shown in Fig. 3. Therefore, according
to Theorem 2, we have:

– B1 = ⋃6
r=1 B(r), with

B(1) = {B11},B(2) = {B1 j, j = 3, 4, 5},B(3) = {Bi1, i = 3, 4, 5},
B(4) = {Bij, i, j = 3, 4, 5},B(5) = {B81},B(6) = {B8 j, j = 3, 4, 5};

Fig. 3 The domain
� = [0, 10] × [0, 4]
subdivided into the six
subdomains �r , r = 1, . . . , 6,
where a thick line corresponds
to a double knot and a dotted
line corresponds to a triple
knot
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i = 0 , j = 0
h i − 1 = h i = k j − 1 = k j = 0

i = 1 , j = 0
h i − 1 = h i +1 = k j − 1 = k j = 0

i = 2 , j = 0
h i = k j − 1 = k j = 0

Fig. 4 Graphs and supports of B00, B10 and B20

– B2 = {Bi0, Bi6 i = 0, . . . , 9, B0 j, B6 j, B7 j, B9 j, j = 1, . . . , 5};
– B3 = {Bi2, i = 1, . . . , 5, 8, B2 j j = 1, 3, 4, 5}.
Now, since we have to delete any one B-spline from each B(r), r = 1, . . . , 6, we
choose to remove

B11 from B(1), B13 from B(2), B31 from B(3),
B33 from B(4), B81 from B(5) and B83 from B(6),

obtaining the following sets B̃(r), r = 1, . . . , 6:

B̃(1) = ∅, B̃(2) = {B1 j, j = 4, 5}, B̃(3) = {Bi1, i = 4, 5},
B̃(4) = {Bij, i, j = 3, 4, 5, (i, j) �= (3, 3)}, B̃(5) = ∅, B̃(6) = {B8 j, j = 4, 5}.

Therefore, we get the basis, given by the sixty-four B-splines belonging to the
set (

⋃6
r=1 B̃(r)) ∪ B2 ∪ B3.

In Figs. 4, 5, 6, 7 and 8 some of the above basis functions are reported.

i = 3 , j = 0
h i − 1 = k j − 1 = k j = 0

i = 4 , j = 0
k j − 1 = k j = 0

i = 1 , j = 1
h i − 1 = h i +1 = k j − 1 = k j +1 = 0

Fig. 5 Graphs and supports of B30, B40 and B11
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i = 2 , j = 1
h i = k j − 1 = k j +1 = 0

i = 3 , j = 1
h i − 1 = k j − 1 = k j +1 = 0

i = 4 , j = 1
k j − 1 = k j +1 = 0

Fig. 6 Graphs and supports of B21, B31 and B41

i = 2 , j = 2
h i = k j = 0

i = 3 , j = 2
h i − 1 = k j = 0

i = 4 , j = 2
k j = 0

Fig. 7 Graphs and supports of B22, B32 and B42

i = 3 , j = 3
h i − 1 = k j − 1 = 0

i = 4 , j = 3
k j − 1 = 0 i = 4 , j = 4

Fig. 8 Graphs and supports of B33, B43 and B44
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Remark 1 We remark that we could also consider tensor product spaces with
unequal smoothness across horizontal and vertical grid lines, but the splines
belonging to them would have higher coordinate degree four, with possible
inflection points, instead of the total degree two, typical of splines on criss-
cross triangulations, as remarked also in [11].

3 A computational procedure for S(μ̄ξ ,μ̄η)

2 (Tmn) basis generation

In this section we present a computational procedure to generate the B-
spline basis of S(μ̄ξ ,μ̄η)

2 (Tmn), for any given criss-cross triangulation Tmn of a
rectangular domain �.

The code, developed in the convenient interactive environment that MAT-
LAB provides, is available in [5]. All computations have been carried out on a
personal computer with a 16-digit arithmetic.

Our main user-callable function M-file is bijdec. Given in input:

– the vectors of points ξ̄ = (ξi)
m+1
i=0 and η̄ = (η j)

n+1
j=0 ;

– the vectors of smoothnesses μ̄ξ = (μ
ξ

i )
m
i=1, μ̄η = (μ

η

j )
n
j=1;

– a point (u, v) in �;
– two integers i and j, (i, j) ∈ KMN ;

the procedure returns the value of Bij(u, v), computed by means of its B-
coefficients [4] and the de Casteljau algorithm for triangular surfaces [7]. Then,
the B-spline basis is obtained for convenient values (i, j) ∈ KMN , as described
in Theorem 2.

Other minor M-files, like bijplt (calling bijdec) or oij, are utilities that
perform the visualization of all Bij’s and the construction and the visualization
of their supports, respectively.

The B-coefficients of any Bij are computed by the ones of the B-spline
B̄ij, putting to zero the length of the support intervals that are “degenerate”
because of multiple knots, induced by the required smoothnesses.

Example 2 We want to use such procedures to represent some B-splines
belonging to the set B = {Bij}9,6

i=0, j=0 of Example 1.
In Figs. 4–8 we report graphs (obtained with bijplt on 55 × 55 evaluation

points (u, v) ∈ �) and supports (by using oij) of fifteen B-splines belonging to
B for given i and j, (i, j) ∈ K10,7, while the other fifty-five ones can be obtained
via affine transformations by the first ones.

We remark that a thick line corresponds to a double knot and a dotted line
corresponds to a triple knot.

Application 1 We consider the test function

f (u, v) =
{

(− | u − 0.2 | +0.4)F(u, v) − 0.4 if 0 ≤ u ≤ 1, 0 ≤ v < 0.5
(− | u − 0.2 | +0.4)F(u, v) if 0 ≤ u ≤ 1, 0.5 ≤ v ≤ 1
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where

F(u, v) = 3
4

e(− 1
4 ((9u−2)2+(9v−2)2)) + 3

4
e

(
−

(
(9u+1)2

49 + (9v+1)
10

))

+1
2

e(− 1
4 ((9u−7)2+(9v−3)2)) − 1

5
e(−((9u−4)2+(9v−7)2))

is the well-known Franke’s function.
Here we propose an example of approximation of the function f with singu-

larities, by considering the bivariate Schoenberg–Marsden operator [3, 8, 10]

S1 f (u, v) =
∑

(i, j)∈KMN

f (si, t j) Bij(u, v), (u, v) ∈ � = [0, 1] × [0, 1], (9)

where

si = ui−1 + ui

2
, t j = v j−1 + v j

2
, (i, j) ∈ KMN.

In order to simulate C0 smoothness across the line u = 0.2 and the jump
across v = 0.5, we consider

ξ̄ = (0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1), η̄ = (0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.75, 1)

and

μ̄ξ = (1, 0, 1, 1, 1, 1, 1), μ̄η = (1, 1, 1, 1, −1, 1).

Then, from (5), we obtain M = N = 11 and

ū = (0, 0, 0, 0.1, 0.2, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1, 1, 1),

v̄ = (0, 0, 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.5, 0.5, 0.75, 1, 1, 1).

We set

f (si, t6) = (− | si − 0.2 | +0.4)F(si, t6) − 0.4, i = 0, . . . , 10

and the graph of the corresponding surface (9), evaluated on a 100 × 100
uniform rectangular grid of points in �, is given in Fig. 9.

Fig. 9 The graph of S1 f
given in Application 1
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The proposed example only wants to show how the use of multiple knots
in ū and v̄ allows to simulate singularities of f . Obviously, in order to get
better function approximations, we should increase the number of knots in ξ̄

and η̄.

4 On the spline space S(μ̄ξ ,μ̄η,μ̄ob)

2 (Tmn)

The study of the unequal smoothness case not only across grid lines of Tmn, but
also across oblique mesh segments, could be an interesting extension of the
above results.

In this section we investigate this problem, defining a new spline space,
providing its dimension and constructing some locally supported functions
belonging to it.

First of all, we restrict our attention to the case of uniform partitions (1), i.e.
ξi − ξi−1 = h, i = 1, . . . , m + 1 and η j − η j−1 = k, j = 1, . . . , n + 1.

Let S(μ̄ξ ,μ̄η,μ̄ob )

2 (Tmn) be the space of bivariate quadratic piecewise polynomi-
als on Tmn, where μ̄ξ , μ̄η are defined as in (2) and

μ̄ob = {
μob

l

}2(m+n+1)

l=1

is the vector whose elements can be 1, 0, −1 and denote the C1, C0, C−1

smoothness, respectively, across the oblique cross-cuts [12].
If we consider the cross-cuts with associated C−1 smoothness, we can

partition � into a set of subdomains {�r
−1}, where only C0 and C1 smoothnesses

occur, and we denote with T r
mn the restriction of Tmn to �r

−1.
Now, let {Vr} be the set of the intersection points of the cross-cuts inside

�r
−1, called “inner grid points”. They are the intersection of exactly either two

or four cross-cuts of T r
mn.

Then, we define eight sets Vr
ij ⊂ Vr, i, j ≥ 0 and i + j = 2, 4, where the

elements of each Vr
ij are the inner grid points, intersection of i cross-cuts with

associated C0 smoothness and j with C1 smoothness.
We set

μ̄ = μ̄ξ ∪ μ̄η ∪ μ̄ob = {μi}L
i=1,

with L = m + n + 2(m + n + 1) the number of all cross-cuts in �.
For any inner grid point ν ∈ Vr, let μ̄ν ⊂ μ̄ be the smoothness set associated

with the cross-cuts around ν and let μa = min
i

{μi ∈ μ̄ν}.
From [12, Chap. 2] we can write that the dimension of the vector space of

solutions of local conformality equation at ν is

dμ̄ν

2 =
2−μa∑
�=1

⎡
⎣−1 − μa +

∑
μi∈μ̄ν , i �=a

[2 − μi − � + 1]+
⎤
⎦

+
,
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where [ · ]+ is the usual truncation function and in our case we have

dμ̄ν

2 = 1, ν ∈ Vr
20, dμ̄ν

2 = 0, ν ∈ Vr
11,

dμ̄ν

2 = 0, ν ∈ Vr
02, dμ̄ν

2 = 7, ν ∈ Vr
40,

dμ̄ν

2 = 5, ν ∈ Vr
31, dμ̄ν

2 = 3, ν ∈ Vr
22,

dμ̄ν

2 = 2, ν ∈ Vr
13, dμ̄ν

2 = 1, ν ∈ Vr
04.

Then, from [12, Chap. 2], we immediately obtain the following theorem.

Theorem 3 The dimension of S(μ̄ξ ,μ̄η,μ̄ob )

2 (Tmn) is

dim S(μ̄ξ ,μ̄η,μ̄ob )

2 (Tmn) =
∑

r

dim S(μ̄ξ ,μ̄η,μ̄ob )

2 (T r
mn),

where

dim S(μ̄ξ ,μ̄η,μ̄ob )

2 (T r
mn) = 6 +

Lr∑
i=1

(
2 − μi + 1

2

)
+

�Vr∑
j=1

dμ̄ν

2 ,

with Lr the number of cross-cuts in �r
−1.

If the partitions (1) are not uniform, the oblique cross-cuts might become
piecewise straight lines. We still denote by μob

l the common smoothness across

all mesh segments of the l-th piecewise straight line and by S(μ̄ξ ,μ̄η,μ̄ob )

2 (Tmn) the
spline space.

By using the same logical scheme of Theorem 1 proof, i.e. by counting the
constrained B-coefficients, and by [7, p. 238], we can deduce that the dimension
of S(μ̄ξ ,μ̄η,μ̄ob )

2 (Tmn) does not change with respect to the above uniform case.

Finally, we construct two locally supported functions in S(μ̄ξ ,μ̄η,μ̄ob )

2 (Tmn) in
case of uniform partitions (1).

By the “smoothing cofactor conformality method” [12, Chap. 1] and by
imposing the C0 smoothness across the oblique mesh segments belonging to

(a) (b)

Fig. 10 Supports and B-coefficients of two locally supported functions belonging to

S(μ̄ξ ,μ̄η,μ̄ob )
2 (Tmn). A thick line denotes C0 smoothness
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the same straight line of the B̄ij support (Fig. 2), firstly we obtain the local
function, whose support and B-coefficients are shown in Fig. 10a.

Then, we get another locally supported function, with C0 smoothness across
the oblique mesh segments belonging to the same straight line inside its
support (see Fig. 10b).

By using the same technique, it is possible to generate other locally sup-
ported functions with different supports and smoothnesses, also in the non-
uniform case.

A more general treatment related to the basis generation for
S(μ̄ξ ,μ̄η,μ̄ob )

2 (Tmn) will be developed in a further paper.
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