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Abstract In this paper, we propose an interesting method for approximating
the solution of a two dimensional second kind equation with a smooth kernel
using a bivariate quadratic spline quasi-interpolant (abbr. QI) defined on
a uniform criss-cross triangulation of a bounded rectangle. We study the
approximation errors of this method together with its Sloan’s iterated version
and we illustrate the theoretical results by some numerical examples.

Keywords Collocation · Integral equations · Spline quasi-interpolant

1 Introdution

Let us consider the linear equation

u − Ku = (I − K)u = f, (1)

where K is a compact linear operator on the Banach space X and f ∈ X .

The operator (I − K) is assumed to be invertible, so that the equation has a
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unique solution u ∈ X for any given f ∈ X . Let K be the integral compact
linear operator defined by

Ku(s) :=
∫

�

k(s, t)u(t)dt, s ∈ � = [0, 1] × [0, 1],

where, in this case, X := C(�) and the kernel k ∈ C(�2). A standard technique
to solve (1) approximately is to replace K by a finite rank operator. The ap-
proximate solution of (1) is then obtained by solving a system of equations. The
Galerkin, Nyström and degenerate kernel methods are the commonly used
methods for this purpose. They have been extensively studied in the literature
(see [3, 4]). Recently, Kulkarni introduced in [7] an efficient method for the
approximate solution of integral equations defined on polygonal regions, that
consists in approximating K by the finite rank operator

PnK + KPn − PnKPn

where Pn is a sequence of projectors converging to the identity operator
pointwise. Let Qn be the bivariate quadratic spline QI introduced in [8]
and defined on the uniform criss-cross triangulation of the domain � with
meshlength h = 1

n . In this paper, we propose to approximate K by one of the
two following finite rank operators

Kn := QnK + Kn,i − QnKn,i, i = 1, 2, (2)

where Kn,1 is the degenerate kernel operator obtained by approximating the
kernel k(s, t) by Qn with respect to the variable t, and Kn,2 is the Nyström
operator based on Qn. It was established that if the kernel is suitably smooth,
then the order of convergence of the method is O(h7) and that of its iterated
version is O(h8). The methods proposed here are similar to the Kulkarni’s
methods, but they are easier to implement and faster. They have been already
introduced in [1] and [2] for eigenvalue problems and one dimensional integral
equations respectively and they can be also extended to integral equations
defined on a polygonal region in R

2 using a piecewise polynomial interpolation
as in [7]. This issue will be studied in a subsequent paper.

The paper has been arranged in the following way. In Section 2, we give the
definition and the main properties of the spline QI Qn. In Section 3, we define
collocation methods based on Qn and we discuss the system of linear equations
which needs to be solved to obtain the approximate solution. In Section 4
we analyze the convergence of these methods and their iterated versions.
A discrete version of the proposed method is also defined. A numerical
validation is given in Section 6.
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2 Bivariate quadratic spline quasi-interpolant on a bounded domain

We recall the following notations from [8]. Let Tmn be a criss-cross triangula-
tion of � based on the two partitions

Xm := {xi, 0 ≤ i ≤ m} and Yn := {y j, 0 ≤ j ≤ n}
respectively of the segment I = [0, 1] = [x0, xm] = [y0, yn], (see Fig. 1).
For 1 ≤ i ≤ m and 1 ≤ j ≤ n we set hi = xi − xi−1, k j = y j − y j−1, Ii =
[xi−1, xi], J j = [y j−1, y j], si = 1

2 (xi−1 + xi) and t j = 1
2 (y j−1 + y j). Moreover,

s0 = x0, sm+1 = xm, t0 = y0, tn+1 = yn.

We use the following notations

σi = hi

hi−1 + hi
, σ ′

i = hi−1

hi−1 + hi
= 1 − σi,

τ j = k j

k j−1 + k j
, τ ′

j = k j−1

k j−1 + k j
= 1 − τ j,

for 1 ≤ i ≤ m and 1 ≤ j ≤ n with the convention h0 = hm+1 = k0 = kn+1 = 0,

ai = − σ 2
i σ ′

i+1

σi + σ ′
i+1

, bi = 1 + σiσ
′
i+1, ci = −σi(σ

′
i+1)

2

σi + σ ′
i+1

,

ā j = − τ 2
j τ

′
j+1

τ j + τ ′
j+1

, b̄ j = 1 + τ jτ
′
j+1, c̄ j = − τ j(τ

′
j+1)

2

τ j + τ ′
j+1

,

for (i, j) ∈ Amn, where Amn = {(i, j) : 0 ≤ i ≤ m + 1, 0 ≤ j ≤ n + 1}. The data
sites are the mn intersection points of diagonals in the subrectangles �ij = Ii ×
J j, the 2(m + n) midpoints of the subintervals on the four edges, and the four
vertices of �, i.e. the (m + 2)(n + 2) points of the following set

Dmn := {Mij = (si, t j), (i, j) ∈ Amn}.

Fig. 1 Triangulation Tmn of
� = [0, 1] × [0, 1]
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The simplest QI is the bivariate Schoenberg–Marsden operator given by

S f :=
∑

(i, j)∈Amn

f (Mij)Bij (3)

where

Bmn := {Bij, (i, j) ∈ Amn}
is the collection of (m + 2)(n + 2) B-splines with multiple knots (or generalized
box-splines) generating the space S2(Tmn) of all C1 piecewise quadratic func-
tions on the criss-cross triangulation Tmn associated with the partition Xm × Yn

of the domain � (see Fig. 2). The BB-coefficients of these B-splines can be
found in the technical reports [9] and [10].

It is well known that S is exact on bilinear polynomials, i.e.

Sers = ers for 0 ≤ r, s ≤ 1, where ers(x, y) = xr ys.

The QI used here is the following spline operator exact on the space �2 of
polynomials of total degree 2 and defined in [8] by

Q f :=
∑

(i, j)∈Amn

μij( f )Bij,

where the coefficient functionals μij( f ) are given by

μij( f ) = (bi + b̄ j − 1) f (Mij) + ai f (Mi−1, j) + ci f (Mi+1, j)

+ ā j f (Mi, j−1) + c̄ j f (Mi, j+1).
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Fig. 2 Some box-splines with multiple knots on the uniform triangulation
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In terms of the quasi-Lagrange functions defined by

Lij = (bi + b̄ j − 1)Bij + ai+1 Bi+1, j + ci−1 Bi−1, j + ā j+1 Bi, j+1 + c̄ j−1 Bi, j−1,

Q can be written in the form

Q f :=
∑

(i, j)∈Amn

f (Mij)Lij (4)

which is more convenient. For the norms of the derivatives, we set

‖Dk f‖� = max{|Dα f |∞,� ; |α| = k}, k ≥ 1,

where

|Dα f |∞,� = max{|Dα f (M)|∞ ; M ∈ �}
and

Dα = Dα1α2 = ∂ |α|

∂α1 x∂α2 y
, with |α| = α1 + α2.

Note that throughout this paper C1, C2, C3 and C4 denote generic positive
constants, which may take different values at their different occurrences, but
will be independent on n.

Theorem 1 For f ∈ C(�), we have the following error estimate

‖ f − Q f‖� ≤ C1ω( f, 	), (5)

and for f ∈ C3(�), we have

‖ f − Q f‖� ≤ 1

8
	3‖D3 f‖�, (6)

where 	 = max {hi, k j ; 1 ≤ i ≤ m, 1 ≤ j ≤ n} and ω( f, 	) is the modulus of
continuity of f.

Proof See [11]. �	

For a uniform partition of � (n = m, hi = k j = h), we obtain

a0 = ā0 = c0 = c̄0 = 0, b 0 = b̄ 0 = 1

an+1 = ān+1 = cn+1 = c̄n+1 = 0, b n+1 = b̄ n+1 = 1

a1 = ā1 = cn = c̄n = −1

3

b 1 = b̄ 1 = b n = b̄ n = 3

2

c1 = c̄1 = an = ān = −1

6
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and for 2 ≤ i ≤ n − 1

ai = āi = ci = c̄i = −1

8
, bi = b̄ i = 5

4
.

In this case, Amn and Q will be denoted by An and Qn respectively. Let Mi, j

and Ci, j be respectively the center and the midpoint of the horizontal edge
Ai−1, j Ai, j and let Di, j be the midpoint of the vertical edge Ai, j−1 Ai, j, see Fig. 3.
Using Taylor expansions of f at the points

{Mij, 4 ≤ i ≤ n − 1, 4 ≤ j ≤ n − 1}, {Aij, 2 ≤ i ≤ n − 2, 2 ≤ j ≤ n − 2},
and

{Cij, 2 ≤ i ≤ n − 2, 4 ≤ j ≤ n − 1}, {Dij, 4 ≤ i ≤ n − 1, 2 ≤ j ≤ n − 2},
we obtain the superconvergence results

( f − Qn f )(Mij) = h4

64
(D40 f + 2D22 + D04 f )(Mij) + O(h5),

( f − Qn f )(Aij) = h4

128
(3D40 f + 2D22 + 3D04 f )(Aij) + O(h5),

( f − Qn f )(Cij) = h4

128
(2D04 f + 2D22 + 3D40 f )(Cij) + O(h5),

( f − Qn f )(Dij) = h4

128
(3D04 f + 2D22 + 2D40 f )(Dij) + O(h5). (7)

Theorem 2 Let g be a dif ferentiable function with bounded derivatives and f ∈
C4(�), then we have

E( f, g) =
∫

�

( f − Qn f )g ≤ C2h4 (‖D3 f‖� + ‖D4 f‖�

)
, (8)

where C2 is a positive constant independent on n.

Fig. 3 A square of the
uniform criss-cross
triangulation
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Proof Let L f be the local Lagrange interpolant of f and denote by {Pr, 1 ≤
r ≤ 8} the eight interpolation points defining L f, say the vertices and the
midpoints of the edges of the subsquare �ij = Ii × I j, see Fig. 4. L f can be
written as

L f =
8∑

r=1

f (Pr)
r,

where the basis functions 
i satisfy 
i(P j) = δij. We write

f − Qn f = f − L f + L f − Qn f,

then

E( f, g) =
∫

�

( f − L f )g +
∫

�

(L f − Qn f )g. (9)

We have

∫
�

(L f − Qn f )g =
n+1∑
i, j=0

∫
�ij

(L f − Qn f )g =
n+1∑
i, j=0

Iij. (10)

According to [5] and using the results of superconvergence given by (7), we
obtain for 2 ≤ i ≤ n − 1 and 2 ≤ j ≤ n − 1

‖L f − Qn f‖�ij ≤ 3 max
1≤r≤8

|( f − Qn f )(Pr)| ≤ 3h4

16
‖D4 f‖� + O(h5),

and therefore

Iij ≤ ‖g‖�

∫
�ij

|L f − Qn f | ≤ 3h6

16
‖D4 f‖�‖g‖�. (11)

Fig. 4 Lagrange interpolation
points
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For i = 0, 1, n, n + 1 and 0 ≤ j ≤ n + 1, we have

Iij ≤ ‖g‖�

∫
�ij

|L f − Qn f | ≤ 3h5

8
‖D3 f‖�‖g‖� (12)

and similarly

I ji ≤ 3h5

8
‖D3 f‖�‖g‖�. (13)

Now by combining (11)–(13) with (10), we obtain

∫
�

(L f − Qn f )g ≤ h4

(
3

∥∥D3 f
∥∥

�
+ 3

16

∥∥D4 f
∥∥

�

)
‖g‖�. (14)

Put λr = ∫
�


r. It is easy to show that λ1 = λ3 = λ6 = λ8 = −1 and λ2 = λ4 =
λ5 = λ7 = 4, then using the symmetries of the interpolation points {Pr, 1 ≤ r ≤
8} in the square � and the symmetries of the quadrature weights λr, we can
show that

∫
�

( f − L f )g ≤ C1h4
∥∥D4 f

∥∥
�

. (15)

Then (8) follows by combining (14) and (15). �	

3 Collocation methods

Let us define the following degenerate kernel

Qnk(s, .) = kn(s, t) =
∑
α∈An

k(s, Mα)Lα(t), with α = (i, j).

Then, the associated degenerate kernel operator is given by

Kn,1(u)(s) :=
∫

�

kn(s, t)u(t)dt. (16)

On the other hand, the Nyström operator based on Qn is defined by

Kn,2(u)(s) :=
∑
α∈An

wαk(s, Mα)u(Mα), (17)
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where the quadrature weights wα := ∫
�

Lα, α ∈ An, are given in the following
table [6]

j / i 0 1 2 3 . . . n − 2 n − 1 n n + 1

0 − 1

12

7

36

1

9

1

9
. . .

1

9

1

9

7

36
− 1

12

1
7

36

2

3

8

9

7

8
. . .

7

8

8

9

2

3

7

36

2
1

9

8

9

37

36

73

72
. . .

73

72

37

36

8

9

1

9

3
1

9

7

8

73

72
1 . . . 1

73

72

7

8

1

9
...

...
...

...
...

...
...

...
...

...

n − 2
1

9

7

8

73

72
1 . . . 1

73

72

7

8

1

9

n − 1
1

9

8

9

37

36

73

72
. . .

73

72

37

36

8

9

1

9

n
7

36

2

3

8

9

7

8
. . .

7

8

8

9

2

3

7

36

n + 1 − 1

12

7

36

1

9

1

9
. . .

1

9

1

9

7

36
− 1

12

We approximate

(I − K)u = f

by

un,i − (QnK + Kn,i − QnKn,i)un,i = f, i = 1, 2, (18)

that is,

(I − Kn)un,i = f,

and the iterated solution is defined by

ũn,i = Kun,i + f. (19)

In the next subsection, we consider the reduction of (18) to a system of linear
equations and we give some details on the numerical implementation and the
computational cost of the proposed method. Let first consider the following
notations:

let a, b and b be the vectors with components

aβ := K f (Mβ), bβ := 〈 f, Lβ〉, and bβ := f (Mβ),
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and A, B, B, C, C, D, D, E the matrices with respective entries

Aα,β := L̃β(Mα), Bα,β := kβ(Mα), Bα,β := wβkβ(Mα), Cα,β := 〈Lα, Lβ〉,

Cα,β := Lβ(Mα), Dα,β := k∗
β(Mα), Dα,β := wβk∗

β(Mα) Eα,β := 〈kβ, Lα〉
where kβ := k(., Mβ), k∗

β := Kkβ and L̃β := KLβ.

3.1 Approximate solution for the operator Kn,1

Theorem 3 The approximate solution of (1) is given by

un,1 = f +
∑
α∈An

Xα Lα +
∑
β∈An

Yβkβ, (20)

where Z = [X Y]T is the solution of the following linear system of size N =
2(n + 2)2

(I − F)Z = c (21)

with

F :=
[

A D − B
C E

]
and c :=

[
a
b

]
.

Proof Let

Wα =
∫

�

k(Mα, t)u(t)dt and Yβ =
∫

�

Lβ(t)u(t)dt.

We obtain successively

QnKu =
∑
α∈An

Wα Lα. (22)

Kn,1u =
∑
β∈An

Yβk(., Mβ).

Then

QnKn,1u =
∑
α∈An

⎛
⎝ ∑

β∈An

Yβk(Mα, Mβ)

⎞
⎠ Lα.

By introducing the previous formulas in (18) with i = 1, the approximate
solution can be written as

un,1 = f +
∑
α∈An

Xα Lα +
∑
β∈An

Yβkβ (23)

with Xα = Wα − ∑
β∈An

Yβk(Mα, Mβ) and the iterated solution is given by

ũn,1 = f + K f +
∑
α∈An

Xα L̃α +
∑
β∈An

Yβk∗
β.
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The coefficients Xα and Yβ are obtained by substituting un,1 from (23) in (18).
Then, we have successively

QnKun,1 =
∑
α∈An

Kun,1(Mα)Lα

=
∑
α∈An

⎛
⎝K f (Mα) +

∑
μ∈An

XμL̃μ(Mα) +
∑
ν∈An

Yνk∗
ν(Mα)

⎞
⎠ Lα,

Kn,1un,1 =
∑
β∈An

kβ

∫
�

Lβ(t)un,1(t)dt =
∑
β∈An

kβ〈un,1, Lβ〉

=
∑
β∈An

⎛
⎝〈 f, Lβ〉 +

∑
μ∈An

Xμ〈Lμ, Lβ〉 +
∑
ν∈An

Yν〈kν, Lβ〉
⎞
⎠ kβ,

QnKn,1un,1 =
∑
α∈An

Kn,1un,1(Mα)Lα

=
∑
α∈An

⎛
⎝ ∑

β∈An

⎛
⎝〈 f, Lβ〉 +

∑
μ∈An

Xμ〈Lμ, Lβ〉

+
∑
ν∈An

Yν〈kν, Lβ〉
⎞
⎠ kβ(Mα)

⎞
⎠ Lα.

By identifying the coefficients of Lα and kβ respectively in (18), we get

Xα = K f (Mα) +
∑

μ∈An

XμL̃μ(Mα) +
∑
ν∈An

Yνμ
∗
ν(Mα)

−
∑
β∈An

⎛
⎝〈 f, Lβ〉 +

∑
μ∈An

Xμ〈Lμ, Lβ〉 +
∑
ν∈An

Yν〈kν, Lβ〉
⎞
⎠ kβ(Mα),

Yβ = 〈 f, Lβ〉 +
∑

μ∈An

Xμ〈Lμ, Lβ〉 +
∑
ν∈An

Yν〈kν, Lβ〉.

Then, we have

X = a + AX + DY − B(b + CX + EY),

Y = b + CX + EY. (24)

Replacing Y by its value in (24), we get

X = a + AX + (D − B)Y,

Y = b + CX + EY,

which completes the proof. �	
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Remark 1 In practice, the following integrals need to be evaluated numerically

aβ := K f (Mβ) =
∫

�

k(Mβ, s) f (s)ds,

bβ := 〈 f, Lα〉 =
∫

�

Lα(s) f (s)ds,

Aα,β := L̃β(tα) = KLβ(Mα) =
∫

�

k(Mα, s)Lβ(s)ds,

Dα,β := k∗
β(Mα) = Kkβ(Mα) =

∫
�

k(Mα, s)k(s, Mβ)ds,

Eα,β := 〈kβ, Lα〉 =
∫

�

k(s, Mβ)Lα(s)dt.

For this purpose, we define in Section 5 a discrete version of the proposed
method. Since Lα and Lβ for α, β ∈ An, are functions having small supports
on � and are piecewise polynomials, the integrals

∫
�

Lα(t)Lβ(t)dt, α, β ∈ An

appearing in the matrix C can be evaluated exactly.

3.2 Approximate solution for the operator Kn,2

Theorem 4 The approximate solution of (1) is given by

un,2 = f +
∑
α∈An

Xα Lα +
∑
β∈An

wβYβkβ, (25)

where Z = [X Y]T is the solution of the following linear system of size N =
2(n + 2)2

(I − F)Z = c (26)

with

F :=
[

A D − C
B C

]
and c :=

[
a
b

]
.

Proof From (22) and (17), we get

QnKu =
∑
α∈An

Wα Lα

and

Kn,2u =
∑
β∈An

wβk(., Mβ)u(Mβ) =
∑
β∈An

wβYβk(., Mβ).
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Then

QnKn,2u =
∑
α∈An

⎛
⎝ ∑

β∈An

wβYβk(Mα, Mβ)

⎞
⎠ Lα.

By introducing the previous formulas in (18) with i = 2, the approximate
solution can be written as

un,2 = f +
∑
α∈An

Xα Lα +
∑
β∈An

wβYβkβ, (27)

with Xα = Wα − ∑
β∈An

wβYβk(Mα, Mβ). Then, the iterated solution is
given by

ũn,2 = f + K f +
∑
α∈An

Xα L̃α +
∑
β∈An

wβYβk∗
β.

The coefficients Xα and Yβ are obtained by substituting un,2 from (27) in (18).
Then, we have successively

QnKun,2 =
∑
α∈An

Kun,2(Mα)Lα

=
∑
α∈An

⎛
⎝K f (Mα) +

∑
μ∈An

XμL̃μ(Mα) +
∑
ν∈An

wνYνk∗
ν(Mα)

⎞
⎠ Lα,

Kn,2un,2 =
∑
β∈An

wβkβun,2(Mβ)

=
∑
β∈An

wβ

⎛
⎝ f (Mβ) +

∑
μ∈An

XμLμ(Mβ) +
∑
ν∈An

wνYνkν(Mβ)

⎞
⎠ kβ,

QnKn,2un,2 =
∑
α∈An

Kn,2un,2(Mα)Lα

=
∑
α∈An

⎛
⎝ ∑

β∈An

wβ

⎛
⎝ f (Mβ) +

∑
μ∈An

XμLμ(Mβ)

+
∑
ν∈An

wνYνkν(Mβ)

⎞
⎠ kβ(Mα)

⎞
⎠ Lα.
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By identifying the coefficients of Lα and kβ respectively in (18), we obtain

Xα = K f (Mα) +
∑

μ∈An

XμL̃μ(Mα) +
∑
ν∈An

wνYνk∗
ν(Mα)

−
∑
β∈An

wβ

⎛
⎝ f (Mβ) +

∑
μ∈An

XμLμ(Mβ) +
∑
ν∈An

wνYνkν(Mβ)

⎞
⎠ kβ(Mα),

Yβ = f (Mβ) +
∑

μ∈An

XμLμ(Mβ) +
∑
ν∈An

wνYνkν(Mβ).

Then, we have

X = a + AX + DY − C(b + BX + CY), (28)

Y = b + BX + CY.

Replacing Y by its value in (28), we get

X = a + AX + (D − C)Y,

Y = b + BX + CY,

which completes the proof. �	

3.3 Comparison with Kulkarni’s method

In the Kulkarni’s method, the operator K is replaced by the finite rank
operator

QnK + KQn − QnKQn.

Then, by proceeding as before, we can show that the matrix of the linear system
that will be solved to obtain the approximate solution is given by

H :=
[

A S − A
C A

]
, (29)

where S is the matrix with entries

Sα,β := K2 Lβ(Mα) = KL̃β(Mα) =
∫

�

∫
�

k(Mα, s)k(s, t)Lβ(t)dsdt.

A comparison of (29) with (21) and (26) shows that the matrices in the
present methods are simpler since there are only double integrals to evaluate.
The approximate solution corresponding to the Kulkarni’s method have the
following expression

un = f +
∑
α∈An

Xα Lα +
∑
β∈An

Yβ L̃β. (30)

It can be seen that the solutions given by (20) and (25) are simpler to obtain
since one has just to evaluate the functions k̄β instead of the double integrals
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L̃β = KLβ . For completeness, we give in Section 5 the computational costs of
the the discrete versions of Kulkarni’s and the proposed methods. In the next
section, we precise the convergence orders of our method for both operators
Kn,1 and Kn,2.

4 Orders of convergence

In this section, we prove that, under certain conditions, ũn,i converges to u
faster than un,i. The error estimates for un,i and ũn,i, i = 1, 2 can be summarized
as follows.

Theorem 5 For all integer n large enough and i = 1, 2,

‖u − un,i‖� ≤ C1‖(I − Qn)(K − Kn,i)u‖� (31)

and

‖u − ũn,i‖� ≤ ‖(I − K)−1‖�

(
‖K(I − Qn)(K − Kn,i)u‖�

+ ‖K(I − Qn)(K − Kn,i)‖�‖u − un,i‖�

)
(32)

where C1 is a constant independent on n.

Proof Since

‖K − Kn‖� = ‖(I − Qn)(K − Kn,i)‖� → 0, when n → ∞.

for all n large, (I − Kn) is invertible and ‖(I − Kn)
−1‖∞ ≤ C1, with C1 a

constant independent on n.

For i = 1, 2, we have

u − un,i = [(I − K)−1 − (I − Kn)
−1] f

= (I − Kn)
−1(K − Kn)u.

Thus

‖u − un,i‖� ≤ ‖(I − Kn)
−1‖�‖(I − Qn)(K − Kn,i)u‖�

≤ C1‖(I − Qn)(K − Kn,i)u‖�,

which completes the proof of (31). On the other hand we have

u − ũn,i = K(u − un,i)

= K(I − K)−1(K − Kn)(I − Kn)
−1 f

= (I − K)−1K(I − Qn)(K − Kn,i)(u + un,i − u),

and the estimate (32) follows. �	
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Proposition 1 Assume that u is dif ferentiable with bounded derivatives. For
k(., .) ∈ C3(�2), we have

‖(I − Qn)(K − Kn,1)u‖� ≤ C3h7 (33)

and for k(., .) ∈ C4(�2), we have

‖K(I − Qn)(K − Kn,1)u‖� ≤ C4h8. (34)

Proof For a fixed α = (α1, α2) such that 0 ≤ |α| = α1 + α2 ≤ 4, we denote


(x, y, s, t) = ∂ |α|k(x, y, s, t)
∂xα1∂yα2

, (x, y, s, t) ∈ �2.

Let (x, y) ∈ �, we denote 
(x,y)(s, t) = 
(x, y, s, t), (s, t) ∈ �. Then, for each
(x, y) ∈ � we have

Dα[(K − Kn,1)u](x, y) =
∫

�

u(s, t)(I − Qn)
(x,y)(s, t)dsdt

∣∣Dα[(K − Kn,1)u]∣∣
�

= max
(x,y)∈�

|E(
(x,y), u)|

≤ C2h4
(‖D3k‖� + ‖D4k‖�

)
,

where

Dαk = Dα1α2α3α4 k = ∂ |α|k
∂α1 x∂α2 y∂α3 s∂α4 t

, with |α| =
4∑

i=1

αi.

Hence taking supremum, we obtain

‖Dα[(K − Kn,1)u]‖� ≤ C2h4
(‖D3k‖� + ‖D4k‖�

)
. (35)

By the estimate (6) we get

‖(I − Qn)(K − Kn,1)u‖� ≤ C1h3‖D3[(K − Kn,1)u]‖�

≤ C1C2h7(‖D3k‖� + ‖D4k‖�)

which completes the proof of (33) with C3 = C1C2(‖D3k‖� + ‖D4k‖�).
On the other hand we have

K(I − Qn)u(x, y) =
∫

�

k(x, y, s, t)(I − Qn)u(s, t)dsdt.

Then, by (8) we get

‖[K(I − Qn)u]‖� = max
(x,y)∈�

|E(u, k(x, y, ., .)|

≤ C2h4
(‖D3u‖� + ‖D4u‖�

)
. (36)
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Now, using (35) and (36) we obtain

‖K(I − Qn)(K − Kn,1)u‖� ≤C2h4(‖D3[(K − Kn,1)u]‖� + ‖D4[(K − Kn,1)u]‖�)

≤2(C2)
2h8(‖D3k‖� + ‖D4k‖�)

which completes the proof of (34) with C4 = 2(C2)
2(‖D3k‖� + ‖D4k‖�). �	

Proposition 2 For u ∈ C3(�) and k(., .) ∈ C4(�2) we have

‖(I − Qn)(K − Kn,2)u‖� ≤ C3h7. (37)

For u ∈ C4(�) and k(., .) ∈ C4(�2) we have

‖K(I − Qn)(K − Kn,2)u‖� ≤ C4h8. (38)

Proof For a fixed α = (α1, α2) such that 0 ≤ |α| = α1 + α2 ≤ 4, and for a fixed
(x, y) ∈ � we have

Dα[(K − Kn,2)u](x, y) =
∫

�

(I − Qn)(
(x,y)u)(s, t)dsdt.

Then,

‖Dα[(K − Kn,2)u]‖� = max
(x,y)∈�

|E(
(x,y)u, 1)|

≤ C2h4
(‖D3[
(x,y)u]‖� + ‖D4[
(x,y)u]‖�

)
≤ C2h4

(‖D3u‖�‖D3k‖� + ‖D4u‖�‖D4k‖�

)
and consequently

‖Dα[(K − Kn,2)u]‖� ≤ C2h4(‖D3u‖�‖D3k‖� + ‖D4u‖�‖D4k‖�). (39)

By the estimate (6) we get

‖(I − Qn)(K − Kn,2)u‖� ≤ C1h3‖D3[(K − Kn,2)u]‖�

≤ C1C2h7(‖D3u‖�‖D3k‖� + ‖D4u‖�‖D4k‖�)

which completes the proof of (37) with C3 = C1C2(‖D3u‖�‖D3k‖� +
‖D4u‖�‖D4k‖�).

Now, using (34) and (37) we obtain

‖K(I − Qn)(K − Kn,2)u‖� ≤C2h4 (‖D3[(K − Kn,2)u]‖� + ‖D4[(K − Kn,2)u]‖�

)
≤2(C2)

2h8 (‖D3u‖�‖D3k‖� + ‖D4u‖�‖D4k‖�

)
,

which completes the proof of (38) with C4 = 2(C2)
2(‖D3u‖�‖D3k‖�+

‖D4u‖�‖D4k‖�). �	

Theorem 6 Let un,i and ũn,i, i = 1, 2, be the approximate solutions of (1)
def ined by (18) and (19), respectively. In the case of the degenerate kernel
operator we assume that k(., .) ∈ C4(�2) and u is dif ferentiable with bounded
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derivatives, while in the case of the Nyström operator we assume that k(., .) ∈
C4(�2) and u ∈ C4(�). Then we have

‖u − un,i‖� = O(h7) (40)

and

‖u − ũn,i‖� = O(h8). (41)

Proof In the case of the degenerate kernel operator, (40) follows from the
estimate (31) of Theorem 1 and the estimate (33) of Proposition 2. In the case
of the Nyström operator, we use the estimates (31) and (39) to deduce (40).
Since from (6) we have

‖[(I − Qn)Ku]‖� ≤ C1‖D3(Ku)‖�h3

≤ C1‖D3k‖�‖u‖�h3

it follows that

‖(I − Qn)K‖� ≤ C1‖D3k‖�h3. (42)

On the other hand, we can easily show that

‖(I − Qn)Kn,i‖� ≤ C1‖D3k‖�h3, i = 1, 2. (43)

We now deduce (41) from (32), (34), (38), (42), (40) and (43). �	

Theorem 7 Let un,i and ũn,i, i = 1, 2, be the approximate solutions of (1)
def ined by (18) and (19), respectively and obtained by using the Schoenberg
operator Sn given by (3). In the case of the degenerate kernel operator we assume
that k(., .) ∈ C2(�2) and u ∈ C(�), while in the case of the Nyström operator we
assume that k(., .) ∈ C2(�2) and u ∈ C2(�). Then we have

‖u − un,i‖� = O(h4) (44)

and

‖u − ũn,i‖� = O(h4). (45)

Proof Since Sn is exact on bilinear polynomials we have f − Sn f = O(h2)

for f ∈ C2(�) which implies that
∫
�
( f − Sn f )g = O(h2) with g ∈ C(�). By

proceeding exactly as for Qn, in the above theorem, to obtain (44) and (45). �	

5 Discrete methods

In the discretized version of the proposed method, the operator Kn defined by
(2) is replaced by

KD
n = QnKm,2 + (I − Qn)Kn,i, i = 1, 2
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where Km,2 is the Nyström operator based on Qm given by (17)

Km,2(u)(s) :=
∑

α∈Am

wαk(s, Mα)u(Mα), for some m ≥ n. (46)

Let

(I − KD
n )uD

n,i = f (47)

and

ũD
n,i = Km,2uD

n,i + f. (48)

Let um be the solution of the Nyström equation (I − Km,2)um = f. It is easy to
show that

‖u − um‖� = O(h̃4), with h̃ = 1

m
.

On the other hand, the estimates (36), (37) and (40) are valid when K is
replaced by Km,2. Hence,

‖um − uD
n,i‖� = O(h7)

and

‖um − ũD
n,i‖� = O(h8), with h = 1

n
.

Theorem 8 Let uD
n,i and ũD

n,i, i = 1, 2, be the approximate solutions of (1)
def ined by (47) and (48), respectively. Assume that the conditions of Theorem
6 hold, then we have

‖u − uD
n,i‖� = O(max{h̃4, h7})

and

‖u − ũD
n,i‖� = O(max{h̃4, h8}).

Thus, if m ≥ [
n

7
4
] + 1 (respectively m ≥ n2), then the order of convergence

in (40) (respectively in (41)) is retained. Similarly, for the Schoenberg operator
Sn the associated Nyström operator is given by

Km,2(u)(s) :=
∑

α∈Am

ξαk(s, Mα)u(Mα), (49)
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where the quadrature weights ξα := ∫
�

Bα, α ∈ Am are given in the following
table

j / i 0 1 2 . . . m − 1 m m + 1

0
1

12

1

4

1

3
. . .

1

3

1

4

1

12

1
1

4

5

12

2

3
. . .

2

3

5

12

1

4

2
1

3

2

3
1 . . . 1

2

3

1

3
...

...
...

...
...

...
...

...

m − 1
1

3

2

3
1 . . . 1

2

3

1

3

m
1

4

5

12

2

3
. . .

2

3

5

12

1

4

m + 1
1

12

1

4

1

3
. . .

1

3

1

4

1

12

In this case, the operator Kn is replaced by

KD
n = SnKm,2 + (I − Sn)Kn,i, i = 1, 2.

Theorem 9 Let uD
n,i and ũD

n,i, i = 1, 2, be the approximate solutions of (1)
def ined by (47) and (48), respectively and obtained by using the Schoenberg
operator Sn given by (3). Assume that the conditions of Theorem 7 hold, then
we have

‖u − uD
n,i‖� = O(max{h̃2, h4})

and

‖u − ũD
n,i‖� = O(max{h̃2, h4}).

Thus, in order to retain the orders of convergence of un,i and ũn,i, we need
to choose m ≥ n2.

Now, we look at the number of arithmetic operations used in computing the
approximate solutions uD

n,i, i = 1, 2, uD
n obtained respectively by discretized

collocation and kulkarni’s methods on a point t ∈ �. Let n = (n + 2)2 and
m = (m + 2)2.

• The calculation of each one of the vectors a and b requires approximately
3nm flops.

• The calculation of each one of the matrices A, D, E requires approxi-
mately 3n2m flops, while the calculation of the matrices B, D, S requires
respectively n2, 4n2m, 5n2m2 flops.
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• The evaluation of each one of the matrices F, F, H in the linear systems
(21), (26) and (29) with their LU-factorization requires approximately n2 +
2
3 n3 flops.

• The computation of the solution of each one of the linear systems (21),
(26) and (29) requires approximately 2(2n)3 flops.

• The final step is the evaluation of uD
n,1(t), uD

n,2(t) and uD
n (t) which requires

respectively 2n, 3n, n(m + 1) flops.

Thus the total cost in operations in the three methods are given in the
following table

Collocation 1 3m(3n2 + 2n) + 14
3 n3 + n2 + 2n

Collocation 2 m(7n2 + 3n) + 14
3 n3 + 2n2 + 3n

Kulkarni′s method 5m2n2 + m(3n2 + 5n) + 14
3 n3 + n2 + 2n

where for i = 1, 2, Collocation i is our method based on the operator Kn,i.

Remark 2 For m >> n, the collocation methods 1 and 2 have respectively
costs of approximately 3m(3n2 + 2n) and m(7n2 + 3n) arithmetic operations,
while the Kulkarni’s method has a cost of approximately 5m2n2 + m(3n2 + 5n)

which is more expensive.

6 Numerical results

In this section we give the results obtained by the above collocation methods
and their iterated versions using the QIs Qn and Sn in the case of the Nys-
tröm operator Kn,2. We first consider the following integral equation quoted
from [3]

u(x, y) −
∫ √

π

0

∫ √
π

0
cos(xt) cos(ys)u(t, s)dtds = f (x, y), 0 ≤ x, y ≤ √

π.

For illustrative purpose we choose as exact solution u(x, y) = 1 and we define
f accordingly. Numerical results are given in Tables 1, 2, 3 and the computed

Table 1 Collocation and iterated collocation methods using Sn

n m N ‖u − uD
n,2‖� ‖u − ũD

n,2‖�

4 16 72 1.07(−02) – 7.87(−03) –
8 64 200 7.97(−04) 3.75 4.55(−04) 4.11
16 256 648 5.31(−05) 3.91 2.65(−05) 4.10
32 1024 2312 3.52(−06) 3.91 1.74(−06) 3.92
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Table 2 Collocation method
using Qn

n m N ‖u − uD
n,2‖�

4 12 72 4.75(−05) –
8 39 200 3.43(−07) 7.11
16 129 648 2.59(−09) 7.05
32 431 2312 1.93(−11) 7.03

Table 3 Iterated collocation
method using Qn

n m N ‖u − ũD
n,2‖�

4 16 72 2.87(−05) –
8 64 200 1.18(−07) 7.92
16 256 648 4.81(−10) 7.94
32 1024 2312 1.92(−12) 7.97

Fig. 5 Schoenberg
operator Sn
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Fig. 6 Quadratic
quasi-interpolant Qn
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Table 4 Collocation and
iterated collocation methods
using Sn

n m N ‖u − uD
n,2‖� ‖u − ũD

n,2‖�

4 16 72 5.21(−01) – 8.15(−02) –
8 64 200 3.94(−02) 3.72 5.02(−03) 4.02
16 256 648 2.78(−03) 3.82 2.98(−04) 4.07
32 1024 2312 1.83(−04) 3.93 1.94(−05) 3.94
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Table 5 Collocation method
using Qn

n m N ‖u − uD
n,2‖�

4 12 72 9.70(−05) –
8 39 200 9.03(−07) 6.75
16 129 648 7.88(−09) 6.84
32 431 2312 6.30(−11) 6.97

convergence orders (last column) agree with the theoretical results. The
numerical algorithm was run on a PC with Intel Pentium 2, 26 × 2 GHz CPU,
4GB RAM, and the programs were compiled by using MATLAB.

Figures 5 and 6 show the graphs of the errors obtained by the collocation
methods, based respectively on Sn and Qn, and using the Nyström operator
with n = 4.

As a second example, we consider the following integral equation quoted
from [12]

u(x, y) −
∫ 1

−1

∫ 1

−1
k(x, y, s, t)u(t, s)dtds = f (x, y), −1 ≤ x, y ≤ 1,

where

k(x, y, s, t) = 1

4
exp

(
− (1 + x)

2

(1 + s)
2

− (1 + y)

2

(1 + t)
2

)

and

g(x, y) = 1 − e−2−x−y(−1 + e1+x)(−1 + e1+y)

(1 + x)(1 + y)
.

The true solution of this equation is u(x, y) = 1. The numerical results are
given in Tables 4, 5 and 6 and agree with the theoretical results.

Remark 3 In Tables 1–6, m is the integer that defines the Nyström operators
given by (46) and (49). In Tables 1, 3, 4 and 6 we have chosen m = n2, while in
Tables 2 and 5 we have taken m = [

n
7
4
] + 1. On the other hand, N = 2(n + 2)2

is the size of the linear system associated with the collocation method. This
also illustrates a difficulty with problems in more than one variable: the size of
the linear system increases quite rapidly, and for N very large the system must
be solved iteratively (see [3, Chapter 6]).

Table 6 Iterated collocation
method using Qn

n m N ‖u − ũD
n,2‖�

4 16 72 6.18(−05) –
8 64 200 2.74(−07) 7.82
16 256 648 1.11(−09) 7.95
32 1024 2312 4.32(−12) 8.01
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