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Abstract In the framework of multistart and local search algorithms that find
the global minimum of a real function f (x), x ∈ S ⊆ Rn, Gaviano et alias
proposed a rule for deciding, as soon as a local minimum has been found,
whether to perform or not a new local minimization. That rule was designed
to minimize the average local computational cost eval1(· ) required to move
from the current local minimum to a new one. In this paper the expression of
the cost eval2(· ) of the entire process of getting a global minimum is found
and investigated; it is shown that eval2(· ) has among its components eval1(· )
and can be only monotonically increasing or decreasing; that is, it exhibits the
same property of eval1(· ). Moreover, a counterexample is given that shows
that the optimal values given by eval1(· ) and eval2(· ) might not agree. Further,
computational experiments of a parallel algorithm that uses the above rule are
carried out in a MatLab environment.

Keywords Random search · Global optimization · Parallel computing

1 Introduction

Global optimization problems of the following type

Problem 1.1

find x∗ ∈ S, such that f (x∗) ≤ f (x), ∀x ∈ S,
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where f : S → R is a function defined on a set S ⊆ Rn, are often encountered
in the mathematical representation of real-world problems. While there do
exist very efficient algorithms to find a local minimum of the object function
in Problem 1.1, the search of a global minimum can be a very hard problem.
Indeed, Nemirovsky and Yudin [14], and Vavasis [19] have proved, under
suitable assumptions, that the computational complexity of the global opti-
mization problem is exponential.

Numerical techniques for finding solutions to such problems by using paral-
lel schemes have been discussed in the literature (see, e.g., [4, 9, 17, 18, 20].
Many procedures introduced in the literature to solve Problem 1.1 employ
local minimum algorithms; these mostly construct, by starting from a point
x0, a sequence {xj}, with f (xj) > f (x j+1), that converges to a local minimum
x∗. The starting point x0 is chosen uniformly at random in S or according to a
probability distribution based on the algorithm running time history. Clearly,
if we start from different points in S, we can expect to find all the local minima
of f (·) and then its global minimum. Researchers have proposed different
strategies for selecting the starting points of the local searches; see the papers
by Boender and Rinnooy Kan [1], Cetin et al. [2], Desai and Patil [3], Hedar
and Fukushima [10] Levy and Montalvo [12], Lucidi and Piccioni [13], Oblow
[15].

The main point to tackle whenever local search strategies are used to find
a global minimum, is to avoid finding the same local minima. One can choose
the starting point x0 of a new local search such that the function value f (x0)

is less than the value of the last local minimum found. In such a way the local
searches guarantee that a new local minimum point with function value less
than the previous ones can be found. On the other hand, by proceeding in this
way, we reduce the size of the region that could take us to the global minimum.
That is depicted in Fig. 1.

Fig. 1 Graph of a two local
minima l1 and l2 function
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It is clear that the size of the region of points that can take us to l2 is far
smaller once we have found l1. If we assume the condition of choosing as a
starting point of a local search a point with function value less than f (l1), it
gets more difficult for the local search to lead to a global minimum.

In [8] an algorithm Glob was proposed that chooses uniformly at random in
S a point x0 and then, starting from it, according to an optimal rule a new local
search is or is not carried out. This rule assumes that both the probabilities of
getting any local minimum starting from an arbitrary x0 ∈ S and the required
computational costs are known; further, it was derived so that the average
computational cost is minimal. Since usually probabilities and cost are not
known, in the implementation those parameters were approximated along
the minimization process taking into account of the previous computational
history.

In the present paper the properties of the optimal rule proposed in [8]
are investigated. That rule was found by minimizing the computational cost
eval1(· ) required to move from the current local minimum to a new one. Here
we consider the computational cost eval2(· ) of the entire process of finding the
global minimum; it is found that eval2(· ) exhibits the same general features as
eval1(· ) and has among its components eval1(· ). Moreover, a counterexample
is given that shows that the optimal values given by eval1(· ) and eval2(· ) cannot
agree.

Further, numerical experiments are realized with the code written in the
Matlab programming language and using the Matlab parallel toolboxes. The
codes are executed on two computers equipped with four and six processors,
respectively; fourteen configurations of the computing resources have been
investigated. To evaluate the algorithm performances the speedup and the
ef f iciency are reported for each configuration.

2 Preliminaries

In this section we state assumptions and definitions that will be used through-
out the paper; further, we report the results established in [8] to which the new
findings are related. For Problem 1.1 we consider the following assumption.

Assumption 2.1

(i) f (·) has a f inte number m of local minimum points li, i = 1, ..., m and
f (li) > f (li+1);

(ii) meas(S) = 1,

with meas(S) denoting the measure of S.
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Consider the following algorithm scheme.

Algorithm 2.1 (Algorithm Glob)

Choose x0 uniformly on S;
i ← 1; j ← 1;
(x1, f x1) ← local_search(x0);
li = x1; f li = f x1;

repeat
j ← j + 1;
choose x0 uniformly on S;
if f (x0) ≤ f li or ( f (x0) > f li and rand(1) < di)

(x1, f x1) ← local_search(x0);
if f x1 < f li

i ← i + 1;
li ← x1; f li ← f x1;

end if
end if

until a stop rule is met;
end

The parameters di are probability values, that is di ∈ [0, 1]. The function
rand(1) denotes a generator of random numbers in the interval [0, 1]. Further,
we denote by local_search(x0) any procedure that starting from a point x0

returns a local minimum li of Problem 1.1 and its function value.
In algorithm Glob a sequence of local searches is carried out. Once a local

search has been completed and a new local minimum l j is found, a point
x0 at random uniformly on S is chosen. Whenever f (x0) is less than f (l j) a
new search is performed from x0; otherwise a local search is performed with
probability di. We assume that Problem 1.1 satisfies all the conditions required
to make the procedure local_search(x0) convergent. We have the following
proposition.

Proposition 2.1 Let Assumption 2.1 hold and consider a run of algorithm Glob.
Then the probability that li is a global minimum of Problem 1.1 tends to one as
j → ∞.

First, we settle the following notation.

Definition 2.1

• A0, j ≡ {x ∈ S | starting from x, local_search(·) returns local minimum l j};
• Ai, j ≡ {x ∈ S | f (x) ≤ f (li); starting from x, local_search(·) returns local

minimum l j};
• p0, j = meas(A0, j);
• pi, j = meas(Ai, j).
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We have

m∑

i=1

p0,i = meas(S) = 1.

We consider the following definitions and assumptions for algorithm Glob .

Definition 2.2

• ti ≡ the probability that having found the local minimum li, in a subsequent
iteration no new local minimum is detected;

• tr(i1, ..., ip) ≡ the set (trajectory) of p local minimum points li1 , ...., lip

found in a run of algorithm Glob ;
• Probi, j(di) ≡ the probability that algorithm Glob having found the local

minimum li can find the local minimum l j in a subsequent iteration;
• Prob (∞)

i, j (di) ≡ the probability that algorithm Glob having found the local
minimum li can find l j assuming that an infinity number of iterations is
carried out;

• Prob (n)
tr (di1 , ..., dip−1) ≡ the probability that algorithm Glob constructs the

trajectory tr = (i1, ..., ip) in n iterations.

Assumption 2.2

• algorithm Glob runs an inf inite number of iterations;
• the number of function evaluations required by local_search is k = constant.

In [8], the following theorem was proved.

Theorem 2.1 The average number of function evaluations so that algorithm
Glob, having found a local minimum li, f inds any new one is given by

evals1(di) = fi
1

Probi,∗
, i = 1, ..., m − 1, (2.1)

with

Probi,∗ =
m∑

j=i+1

pi, j + di

⎛

⎝
m∑

j=i+1

p0, j −
m∑

j=i+1

pi, j

⎞

⎠ ,

fi = k
m∑

j=i+1

pi, j + kdi

⎛

⎝1 −
m∑

j=i+1

pi, j

⎞

⎠ + (1 − di)

⎛

⎝1 −
m∑

j=i+1

pi, j

⎞

⎠ .
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Further, in [8], the following problem was stated and investigated

Problem 2.1 Let us consider Problem 1.1 and let the values k, p0, j and pi, j be
given. Find a value d∗

i such that

evals1
(
d∗

i

) = min
di

evals1(di).

It turns out that the sign of the derivative of evals1(di) is constant in [0, 1]
and is greater than or equal to zero if

k ≥
(∑m

j=i+1 p0, j

) (
1 − ∑m

j=i+1 pi, j

)

(∑m
j=i+1 pi, j

) (
1 − ∑m

j=i+1 p0, j

) . (2.2)

The latter links the probability pi, j with the number k of function evaluations
performed at each local search in order to choose the most convenient value
of di: if the condition is met, di = 0 is suitable to be chosen otherwise di = 1.
That is,

di =
{

0 if k > (p2 · (1 − p3))/(p3 · (1 − p2)),

1 otherwise,
(2.3)

with

p2 =
m∑

j=i+1

p0, j, p3 =
m∑

j=i+1

pi, j.

In real problems usually the values p0, j and pi, j are not known; hence the
choice of probabilities d1, d2, ..., dm−1 in the optimization of the function in
Problem 1.1 cannot be calculated exactly.

Algorithm 2.1 has been completed with di given by (2.3) and p2, p3 and k
aproximated as follows

p2 1/(number of searches carried out ),

p3 = 1/(number of iterations already carried out), (2.4)

k = mean number of function evaluations carried out in each local search.

3 New results

In this section we assume that algorithm Glob can run an infinite number of
iterations. We calculate the average number of function evaluation such that
the global minimum point is found. Further, it is assumed that we know the
values p0, j and pi, j, i = 1, ..., m − 1 and j = 1, ..., m, and that the number of
function evaluations required by local_search is k = constant.
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We first prove two lemmas.

Lemma 3.1

ti =
i∑

j=1

p0, j +
⎛

⎝
m∑

j=i+1

p0, j −
m∑

j=i+1

pi, j

⎞

⎠ (1 − di),

Probi, j(di) = pi, j + di
(

p0, j − pi, j
)
,

Prob (n)
tr (d1, . . . , dp−1) = p0,i1 · (

pi1,i2 + (p0,i2 − pi1,i2)di1

) · . . . ·
· (pip−i,ip + (p0,ip − pip−1,ip)dip−1

) ·

·
n−p∑

j1,..., jp−1=0
j1+...+ jp−1≤n−p

t j1
i1 · t j2

i2 · ... · t
jp−1

ip−1
.

with n > p and tr = (i1, ..., ip), ip = m.

Proof We get the first statement by noting that whenever x0 is chosen in A0, j

as j = 1, ..., i, then no new local minimum can be found; while whenever x0 is
chosen in A0, j − Ai, j, j = i + 1, ..., m, then the probability of not moving from
li is (1 − di).

The second follows from this remark: we get a new local minimum both
whenever the starting point x0 is chosen in Ai, j and, with probability, di,
whenever is chosen in A0, j − Ai, j. We prove the third statement by noting that
in order to get the trajectory t = (i1, ..., ip), we must first get the minimum in
li1 ; this takes place with probability p0,i1 ; next we must move from the local
minimum li1 to the local minimum in li2 and so on until we get lip . Further, we
don’t move j1 times from li1 , j2 times from li2 ,.. , and jp times from lip . Since
j1 + j2 + ... + jp = n − p, the lemma follows. �

Lemma 3.2

Prob (∞)

i, j (di) = pi, j + di(p0, j − pi, j)∑m
l=i+1(pi,l + di(p0,l − pi,l))

, (3.1)

Prob (∞)

(i1,...,ip)(d1, . . . , dp−1), = p0,i1 · Prob (∞)

i1,i2 · ...Prob (∞)

ip−1,ip
, (3.2)

with ip = im.

Proof The first statement follows from the remark that running the algorithm
for n iterations, the probability of getting l j is given by

(pi, j + di(p0, j − pi, j)) ·
n−1∑

l=0

tl
i; (3.3)
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hence, as n → ∞, we get

pi, j + di(p0, j − pi, j)

1 − ti
, (3.4)

that is (3.1).
As to (3.2), note first that any trajectory with ip �= im has probability zero of

being constructed. In the case ip = im, the probability Prob (n)
tr of the trajectory

t by carrying out only n iterations is given in Lemma 3.1. Assuming by
simplicity that n − p is a multiple of p, we have

(n−p)/p∑

j1=0

t j1
i1 · ... ·

(n−p)/p∑

jp−1=0

t
jp−1

ip−1
≤

n−p∑

j1,..., jp−1=0
j1+...+ jp−1≤n−p

t j1
i1 · ... · t

jp−1

ip−1
≤

(n−p)∑

j1=0

t j1
i1 · ... ·

(n−p)∑

jp−1=0

t
jp−1

ip−1
.

(3.5)
As n → ∞ we get

∞∑

j1=0

t j1
i1 = 1

1 − ti1
, ...,

∞∑

jp−1=0

t
jp−1

ip−1
= 1

1 − tip−1

, (3.6)

that leads us to (3.2). �

Finally we have the following theorem

Theorem 3.1 The average number of function evaluations so that algorithm
Glob f inds the global minimum point is given by

evals2(d1, ..., dm−1)=
∑

tr(·)∈T

Prob (∞)
tr (·)

(
k+ fi1

1

Probi1,i2
, ...+ fip−1

1

Probip−1,ip

)

(3.7)
where

fi = k
m∑

l=i+1

pi,l + kdi

(
1 −

m∑

l=i+1

pi,l

)
+ (1 − di)

(
1 −

m∑

l=i+1

pi,l

)
. (3.8)

and T denotes the set of all feasible trajectories tr(i1, ..., ip) whose last local
minimum point is a global one.

Proof We can write

evals2(d1, ..., dm−1) =
∑

tr∈T

Prob (∞)
tr (·)( f0 + fi1,i2 , ... + fip−1,ip), (3.9)

where f0 and fi, j denote the number of function evaluations needed to get
the first local minimum and the average number of function evaluations to
move from li to l j, respectively. Further, Prob (∞)

tr denotes the probability of
trajectory tr to take place.
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The number of function evaluations needed to get the first local
minimum is

f0 = k. (3.10)

The average number of function evaluations fi, j to move from li to l j is

fi, j = fi
1

Probi, j
, i = 1, ..., m − 1, j = i + 1, ..., m. (3.11)

where fi denotes the average number of function evaluations needed for not
moving from li in a single choice of x0 (that is for any iteration of Glob) and is
given by

fi = k
m∑

l=i+1

pi,l + kdi

(
1 −

m∑

l=i+1

pi,l

)
+ (1 − di)

(
1 −

m∑

l=i+1

pi,l

)
. (3.12)

Clearly (3.10), (3.11), and (3.12) prove the theorem.
�

Now consider the following problem

Problem 3.1 Let us consider Problem 1.1 and let the values k, p0, j and pi, j be
given. Find values d∗

i , i = 1, ..., m − 1, such that

evals2
(
d∗

1, ..., d∗
m−1

) = min
d1,...,dm−1

evals2 (d1, ..., dm−1) . (3.13)

with di ∈ I ≡ {x ∈ Rn | 0 ≤ x j ≤ 1, j = 1..., n}, i = 1, ..., m − 1.

We can prove

Lemma 3.3 evals2(d1, ..., dm−1) attains its minimum at a vertex of the simplex I.

Proof We just need to show that the derivative sign of evals2(d1, ..., dm−1) with
respect to di, i = 1, . . . , m − 1 is constant in the interval [0, 1]. We write (3.7)
by pointing out the variable di, that is

evals2(d1, ..., dm−1) = k
∑

tr∈T

Prob (∞)
tr

+
∑

tr∈Ti,i+1

Prob (∞)
tr

(
fi

Probi,i+1
+ htr(· )

)

. . .

+
∑

tr∈Ti,m

Prob (∞)
tr

(
fi

Probi,m
+ htr(· )

)

+
∑

tr∈T−Ti

gtr(· ) (3.14)



622 Numer Algor (2012) 60:613–629

where htr(· ) denotes the sum of terms in (k + fi1
1

Probi1 ,i2
, ...) of (3.7) that

does not depend on di and gtr(· ) any term of the sum in (3.7). Further, Ti,
i = 1, . . . , m − 1 is the set of the all trajectories that pass through the local
minimum li and Ti, j, j = i + 1, . . . , m, denotes the set of all trajectories that
move from li to l j.

By the definition of Prob (∞)
tr , Probi, j and fi in (3.1) and (3.8), we can write

for j = i + 1, · · · , m

∑

tr∈Ti, j

Prob (∞)
tr

(
fi

Probi, j
+ htr(· )

)

= (k − 1)
∑m

l=i+1 pi,l + 1 + di
(
1 − ∑m

l=i+1 pi,l
)
(k − 1)

∑m
l=i+1 pi,l + di

∑m
l=i+1(p0,l − pi,l)

∑

tr∈Ti, j

ktr(· )

+ pi, j + di(p0, j − pi, j)∑m
l=i+1 pi,l + di

∑m
l=i+1(p0,l − pi,l)

∑

tr∈Ti, j

ktr(· )htr(· ) (3.15)

where ktr(· ) denotes the product of those terms in Prob (∞)
tr that do not depend

on di. Combining (3.14) and (3.15), since
∑

tr∈T Prob (∞)
tr = 1, we get

evals2(d1, ..., dm−1)

= k + (k − 1)
∑m

l=i+1 pi,l + 1 + di
(
1 − ∑m

l=i+1 pi,l
)
(k − 1)

∑m
l=i+1 pi,l + di

∑m
l=i+1(p0,l − pi,l)

∑

tr∈Ti

ktr(· )

+
∑m

j=i+1

(
pi, j

∑
tr∈Ti, j

ktr(· )htr(· )
)+di

∑m
j=i+1((p0, j−pi, j)

∑
tr∈Ti, j

ktr(· )htr(· ))
∑m

l=i+1 pi,l + di
∑m

l=i+1(p0,l − pi,l)

+
∑

tr∈T−Ti

gtr(· ). (3.16)

The latter may can be written in a compact way

evals2(d1, ..., dm−1) = θ + α + βdi

γ + δdi
(3.17)

where α, β, γ , δ and θ are values that do not depend on di. The derivative of
evals2(d1, ..., dm−1) with respect to di is

evals2(d1, ..., dm−1)di = βγ + αδ

(γ + δdi)2
. (3.18)

The lemma is clearly proven. �

We note that evals1(di) as given in (2.1) is part of the expression of
evals2(d1, ..., dm−1) in (3.16). We now report a counterexample that shows that
an optimal value di for Problem 2.1 is not necessarily an optimal value for
Problem 3.1.
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Table 1 Probabilities values p0,1 = 0.5 p0,2 = 0.4 p0,3 = 0.1
p1,2 = 0.05 p1,3 = 0.04 p2,3 = 0.01

Counterexample 3.1 Consider the case m = 3. In this case we can have four
trajectories and the set T is given by

T = {(3), (1, 2, 3), (1, 3), (2, 3)}. (3.19)

From equation (3.16) we find

evals2(d1, d2) =
+ k + p0,1

(k − 1)(p1,2 + p1,3) + 1 + d1(k − 1)(1 − p1,2 − p1,3)

p1,2 + p1,3 + d1(p0,2 − p1,2 + p0,3 − p1,3)

+p0,1
p1,2 + d1(p0,2 − p1,2)

p1,2 + p1,3 + d1(p0,2 − p1,2 + p0,3 − p1,3)

· (k − 1)p2,3 + 1 + d2(k − 1)(1 − p2,3)

p2,3 + d2(p0,3 − p2,3)

+ p0,2

(
(k − 1)p2,3 + 1 + d2(k − 1)(1 − p2,3)

p2,3 + d2(p0,3 − p2,3)

)
. (3.20)

By (2.1) we get

evals1_d1(d1)= (k−1)(p1,2+ p1,3)+1 + d1(k − 1)(1− p1,2− p1,3)

p1,2 + p1,3 + d1(p0,2 − p1,2 + p0,3 − p1,3)
, (3.21)

evals1_d2(d2)= (k − 1)p2,3 + 1 + d2(k − 1)(1 − p2,3)

p2,3 + d2(p0,3 − p2,3)
. (3.22)

By choosing values pi, j as given in Table 1, and evaluating evals2(d1, d2) at
the vertices of the simplex I we get Table 2. Further by evaluating evals1_d1(d1)

and evals1_d2(d2) at the endpoints of [0.1] we get Table 3.
From Tables 2 and 3 we can see that for k = 16 and k = 4, evals2(d1, d2) ,

evals1_d1(d1) and evals1_d2(d2) attain the minimum at the same values of d1

and d2. That does not hold for k = 8.

Table 2 Evaluations of evals2(· ) at the vertices

k evals2(0, 0) evals2(0, 1) evals2(1, 0) evals2(1, 1)

16 120.06 150.56 140.00 176.00
8 98.63 80.33 109.60 88.00
4 87.92 45.22 87.92 44.00
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Table 3 Evaluations of evals1_d1(· ) and evals1_d2(· ) at 0 and 1

k evals1_d1(0) evals1_d1(1) evals1_d2(0) evals1_d2(1)

16 26.11 32.00 115.00 160.00
8 18.11 16.00 107.00 80.00
4 14.11 8.00 103.00 40.00

4 Numerical results

In this section a parallel version of Algorithm 2.1, was presented. The algo-
rithm follows the multiple instructions, multiple data (MIMD) model; in an
environment of N processors there is one server and N-1 clients. The server
accomplishes the following

• reads all the initial data and sends them to each client;
• receives the intermediate data from a sender client;
• combines them with all the data already received;
• sends back the updated data to the client sender;
• gathers the final data from each client.

while each client executes the following

• receives initial data from server;
• runs algorithm Glob ;
• sends intermediate data to server;
• receives updated values from server;
• stops running Glob whenever its stop rule is met in any client execution;
• sends final data to server.

The communication that takes place between the server and each client
concerns mainly the parameters in (2.4), that is, p2, p3 and k. Each client, as
soon as it either finds a new local minimizer or a fixed number of iterations
have been executed, sends a message to the server containing the data gathered
after the last sent message; that is

• last minimum found;
• the number of function evaluations since last message sending;
• the number of iterations since last message sending;
• the number of local searches carried out since last message sending;
• status variable of value 0 or 1 denoting that the stop rule has been met.

The server combines each set of intermediate data received with the ones
stored in its memory and sends to the client the new data. If the server
receives as status variable 1 in the subsequent messages sent to clients the
status variable will keep the same value, meaning that the client has to stop
running Glob and has to send the final data to the server.

The parallel version of Algorithm 2.1 has been tested in a parallel MatLab
environment under the Linux operating system.
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The following test problems have been considered.

Problem 4.1

minf (x) = π

n

{
10sin2(πy1) +

n−1∑

i=1

[
(yi − 1)2

(
1 + 10sin2(πyi+1)

)] + (yn − 1)2

}

with n = 100, yi = 1 + 1
4 (xi − 1), S ≡ {x ∈ Rn | − 10 ≤ xi ≤ 10, i = 1, ..., n};

Problem 4.2

minf (x) = (x1 − 1)2 +
n∑

i=2

i
(
2x2

i − xi−1
)2

with n = 25, S ≡ {x ∈ Rn | − 10 ≤ xi ≤ 10, i = 1, ..., n};

Problem 4.3

minf (x) = 10n +
n∑

i=1

(
x2

j − 10cos
(
2πxj

)) ;

with n = 8, S ≡ {x ∈ Rn | − 2.56 ≤ xi ≤ 2.56, i = 1, ..., n};

Problem 4.4

minf (x)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
2

ρ2
i

〈x − mi, xt − mi〉
‖x − mi‖ − 2

ρ3
i

(‖xt − mi‖2 + 4 − fi)

)

×‖x − mi‖3+
(

1− 4

ρi

〈x−mi, xt−mi〉
‖x−mi‖ + 3

ρ2
i

(‖xt−mi‖2+4− fi)

)

×‖x−mi‖2+ fi, x ∈ Bi, ∀i

‖x − xt‖2 + 4, x /∈ Bi, ∀i,

with n = 20, Bi ≡ {x ∈ R
n | ‖x − mi‖ ≤ ρi}, for i = 1, ..., 9, S ≡ {x ∈ Rn | −

1 ≤ x j ≤ 1, j = 1, . . . , n}, mi, (i = 1, ..., 9), and xt denoting ten points uniformly
chosen in S such that the Bi balls do not overlap each other, fi real values to be
taken as the values of f (· ) at mi.

Problems 4.1, 4.2, and 4.3 appeared in [5, 12] and [16] respectively. Problem
4.4 belongs to a family of problems introduced in [7] and implemented in the
software GKLS (cfr. [6]).

The local minimization has been carried out by a code, called cgtrust, written
by C.T. Kelley [11]. This code implements a trust region type algorithm that
uses a polynomial procedure to compute the step size along a search direction.
The cgtrust code was written by Kelley according to the MatLab programming
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language. In order to speed up execution, this has been converted in the C
language and by using the mex MatLab utility, compiled so that it could be
run as a built-in function. Two computers have been used; the first equipped
with an Intel Quad CPU Q9400 based on four processors, the second with a
AMD PHENOM II X6 1090T based on six processors. Experiments have been
carried out both on each single computer and on the two connected to a local
network. In Table 4 we report the fourteen configurations of the computing
resources used in each of our experiments. We shall use the MatLab notation
that denotes a processor as a worker available in the configuration.

The code used when using just one worker does not make any reference to
Matlab parallel tools; as a consequence, the code is much simpler than the one
implemented for more than one worker. Since our algorithm makes use of ran-
dom procedures, to get significant results in solving the test problems, 100 runs
of the algorithm have been done on each problem. The data reported in the
tables are all mean values. The parameter k that evaluates the computational
cost of local searches has been computed as the sum of function and gradient
evaluations of the current objective function. The algorithm stops whenever
the global minimum has been found within a fixed accuracy. That is the stop
rule is

| f ∗ − f̄ | < ε1| f ∗| + ε2, ε1 = 10−3, ε2 = 10−5

with f ∗ and f̄ function values at the global minimum point and at the last local
minimum found.

To evaluate the performance of our algorithm we consider two indices, the
speedup and the efficiency; the first estimates the decrease of the time of a
parallel execution with respect to a sequential run. The second index estimates
how much the parallel execution exploit the computer resources. In Tables 5,
6, 7, and 8 we report the results gathered for each configuration given in

Table 4 The configurations of the computing resources

Config. no. Computer 1 Computer 2 Workers in 1 Workers in 2

1 Intel Quad 1
2 Intel Quad 2
3 Intel Quad 3
4 Intel Quad 4
5 Amd phenom 6 1
6 Amd phenom 6 2
7 Amd phenom 6 4
8 Amd phenom 6 6
9 Intel Quad Amd phenom 6 2 2
10 Intel Quad Amd phenom 6 4 4
11 Intel Quad Amd phenom 6 4 6
12 Amd phenom 6 Intel Quad 2 2
13 Amd phenom 6 Intel Quad 4 4
14 Amd phenom 6 Intel Quad 6 4
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Table 5 Results working with Amd Phenom 6

procs f un1 f un2 f un3 f un4

secs speed eff secs speed eff secs speed eff secs speed eff

1 0.06 472.2 478.1 84.50
2 0.08 0.70 0.35 618.6 0.76 0.38 685.5 0.70 0.35 90.80 0.93 0.47
4 0.03 2.28 0.57 196.7 2.40 0.60 225.5 2.12 0.53 34.78 2.43 0.61
6 0.02 2.59 0.43 122.9 3.84 0.64 146.7 3.26 0.54 19.87 4.25 0.71

Table 6 Results working with Intel Quad

procs f un1 f un2 f un3 f un4

secs speed eff secs speed eff secs speed eff secs speed eff

1 0.15 803.6 820.9 143.0
2 0.12 1.28 0.64 996.9 0.81 0.40 855.5 0.96 0.48 154.8 0.92 0.46
3 0.03 5.57 1.86 520.5 1.54 0.51 482.2 1.70 0.57 84.20 1.70 0.57
4 0.03 5.74 1.44 280.6 2.86 0.72 338.0 2.43 0.61 59.76 2.39 0.60

Table 7 Results working with Intel Quad and Amd Phenom 6

procs f un1 f un2 f un3 f un4

secs speed eff secs speed eff secs speed eff secs speed eff

1 0.10 637.9 649.5 113.8
2 + 2 0.03 3.95 0.99 307.2 2.08 0.52 275.6 2.36 0.59 54.68 2.08 0.52
4 + 4 0.03 3.85 0.48 131.9 4.84 0.60 134.6 4.83 0.60 24.23 4.70 0.59
4 + 6 0.03 4.11 0.41 83.56 7.63 0.76 96.12 6.76 0.68 18.92 6.01 0.60

Table 8 Results working with Amd Phenom 6 and Intel Quad

procs f un1 f un2 f un3 f un4

secs speed eff secs speed eff secs speed eff secs speed eff

1 0.10 637.9 649.5 113.8
2 + 2 0.03 3.92 0.98 255.9 2.49 0.62 287.7 2.26 0.56 48.1 2.37 0.59
4 + 4 0.03 3.95 0.49 133.7 4.77 0.60 116.6 5.57 0.70 19.18 5.93 0.74
6 + 4v 0.026 4.06 0.41 90.50 7.05 0.70 109.6 5.93 0.59 13.69 8.31 0.83
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Table 4; in each table for each function we report the computational expired
time, the speedup and the efficiency. Note that the rows in Tables 7 and 8
referring to one worker have been calculated as the means of the values in the
corresponding rows in Tables 5 and 6.

From the data in the tables we can make the following remarks.

• In almost all the experiments the parallel algorithm improves largely the
speedup of the computation. The efficiency in many experiments is above
0.70 although the task of a worker is to start the process and to collect and
to distribute the intermediate and final data.

• The speedup becomes less than one only when two workers are employed.
Clearly this has to be related to the fact that the complexity of the parallel
code is not balanced by the use of just one additional worker.
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