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Abstract The classical Falkner methods (Falkner, Phil Mag S 7:621, 1936)
are well-known for solving second-order initial-value problems u′′(t) =
f (t, u(t), u′(t)). In this paper, we propose the adapted Falkner-type meth-
ods for the systems of oscillatory second-order differential equations u′′(t) +
Mu(t) = g(t, u(t)) and make a rigorous error analysis. The error bounds for
the global errors on the solution and the derivative are presented. In particular,
the error bound for the global error of the solution is shown to be independent
of ‖M‖. We also give a stability analysis and plot the regions of stability for
our new methods. Numerical examples are included to show that our new
methods are very competitive compared with the reformed Falkner methods
in the scientific literature.
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1 Introduction

This paper is concerned with oscillatory second-order initial value problems of
the form {

u′′(t) + Mu(t) = g(t, u(t)), t ∈ [t0, T],
u(t0) = u0, u′(t0) = u′

0,
(1)

where M ∈ Rd×d is a symmetric positive semi-definite matrix that implicitly
contains the frequencies of the problems. Such problems are frequently en-
countered in celestial mechanics, theoretical physics, chemistry, electronics,
and so on. They are particularly attractive when these problems come from the
spatial semi-discretizations of wave equations based on the method of lines.
In practice, they can be integrated with general purpose methods or other
codes adapted to the special structures of the problems under consideration.
Generally the adapted methods are more efficient because they make full use
of the information transpired from the special structures.

In the one-dimensional case u′′(t) + w2u(t) = g(t, u(t)) or the case where
the single-frequency matrix M = w2 I is a diagonal matrix, many multi-step
methods adapted to the problems (1) have been developed (see [1–3], for
example). These methods share the fact that they integrate the unperturbed
problems u′′(t) + w2u(t) = 0 exactly. Very recently, two-step extended Runge-
Kutta-Nyström-type methods are proposed for the multidimensional systems
u′′(t) + Mu(t) = g(t, u(t)) (see [4]).

For a second-order initial value problem

u′′(t) = f (t, u(t), u′(t)), u(t0) = u0, u′(t0) = u′
0, (2)

one of the effective multi-step integrators is due to Falkner [5] which can be
written in the form

un+1 = un + hu′
n + h2

k−1∑
j=0

β j∇ j fn, u′
n+1 = u′

n + h
k−1∑
j=0

γ j∇ j fn, (3)

where fn = f (tn, un, u′
n) and ∇ j fn denotes the jth backward difference. The

coefficients β j and γ j can be generated by the generating functions

Gβ(t) =
∞∑
j=0

β jt j = t + (1 − t) ln(1 − t)

(1 − t) ln2(1 − t)
, Gγ (t) =

∞∑
j=0

γ jt j = −t
(1 − t) ln(1 − t)

.

Analogously, there exist implicit formulas [6] that read

un+1 = un + hu′
n + h2

k∑
j=0

β∗
j ∇ j fn+1, u′

n+1 = u′
n + h

k∑
j=0

γ ∗
j ∇ j fn+1, (4)
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with generating functions for the coefficients given by

Gβ∗(t) =
∞∑
j=0

β∗
j t j = t + (1 − t) ln(1 − t)

ln2(1 − t)
, Gγ ∗(t) =

∞∑
j=0

γ ∗
j t j = −t

ln(1 − t)
.

For the variable step version, we refer the reader to [7].
Recently, for the special second-order initial value problem

u′′(t) = f (t, u(t)), u(t0) = u0, u′(t0) = u′
0, (5)

Ramos et al. [8] proposed and studied a reformed Falkner scheme as follows

un+1 = un + hu′
n + h2

k−1∑
j=0

β j∇ j fn, u′
n+1 = u′

n + h
k∑

j=0

γ ∗
j ∇ j fn+1, (6)

which evaluates un+1 using the first formula in (3) and evaluates u′
n+1 using the

second formula in (4). Due to the absence of the first derivative on the function
f , the value fn+1 can be obtained from un+1 directly. Note that in this way the
second formula of (6) is no longer implicit.

The authors in [8] show that the convergence order of the explicit scheme
(6) is k + 1 whereas it is well known that the classical explicit Falkner method
(3) has only convergence of order k.

The method (6) is called “an unusual implementation of the explicit Falkner
method” in [8]. For the sake of convenience, we call the method (6) “a k-
step reformed Falkner method (RFMk)” in this paper. The purpose of this
paper is to propose an extension of scheme (6) adapted to the oscillatory
problems (1). The new methods (which will be called adapted Falkner-type
methods) can integrate exactly the multidimensional unperturbed problems
u′′(t) + Mu(t) = 0, unfortunately, however, scheme (6) cannot. Moreover, we
will give a rigorous error analysis for the new methods and propose uniform
error bounds. Particularly, an interesting issue is that the error bounds for the
global error of the solution are independent of ‖M‖.

This paper is organized as follows: In Section 2, we formulate the adapted
Falkner-type methods. In Section 3, we present a rigorous error analysis for
the new methods and obtain the uniform error bounds. Section 4 is devoted
to a stability analysis and the regions of stability for our new methods.
Numerical examples are included in Section 5. We conclude the paper with
some comments in the last section.

2 Formulation of the new methods

Firstly, we introduce the matrix-valued φ-functions appeared first in [9]

φ0(M) =
∞∑

k=0

(−1)k Mk

(2k)! , φ1(M) =
∞∑

k=0

(−1)k Mk

(2k + 1)! , ∀M ∈ Rd×d. (7)
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The interesting properties of these functions are established in the following
proposition.

Proposition 2.1 If M is symmetric and positive semi-def inite, then

‖φ0(M)‖ ≤ 1, ‖φ1(M)‖ ≤ 1,

where ‖ · ‖ denotes spectral norm.

Proof Since M is symmetric and positive semi-definite, we have M = PT�2 P,
where

�2 =

⎛
⎜⎜⎜⎝

w2
1

w2
2

. . .

w2
d

⎞
⎟⎟⎟⎠ (8)

and P is an orthogonal matrix. So we have

φ0(M) =
∞∑

k=0

(−1)k Mk

(2k)! =
∞∑

k=0

(−1)k(PT�2 P)k

(2k)!

= PT
∞∑

k=0

(−1)k�2k

(2k)! P = PTφ0(�
2)P (9)

with

φ0(�
2) =

⎛
⎜⎜⎜⎝

cos w1

cos w2

. . .

cos wd

⎞
⎟⎟⎟⎠ . (10)

The definition of spectral norm results in
∥∥φ0(�

2)
∥∥ ≤ 1 and

‖φ0(M)‖ = ∥∥PTφ0(�
2)P
∥∥ ≤ ∥∥φ0(�

2)
∥∥ ≤ 1.

‖φ1(M)‖ ≤ 1 can be obtained in a similar way. 
�

The true solutions to problems (1) and its derivatives satisfy the following
equations [10]

u(tn + h) = φ0(V)u(tn) + hφ1(V)u′(tn)

+ h2
∫ 1

0
(1 − z)φ1((1 − z)2V)g(tn + hz, u(tn + hz))dz,

u′(tn + h) = −hMφ1(V)u(tn) + φ0(V)u′(tn)

+ h
∫ 1

0
φ0((1 − z)2V)g(tn + hz, u(tn + hz))dz, (11)
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where V = h2 M. Here and in the sequel, the integral of a matrix-valued
function or a vector-valued function is understood as componentwise.

Given approximations u j ≈ u(t j), the interpolation polynomial pn through
the points (tn−k+1, g(tn−k+1, un−k+1)), . . . , (tn, g(tn, un)) is given by

pn(tn + θh) =
k−1∑
j=0

(−1) j
(−θ

j

)
∇ jgn, g j = g(t j, u j).

Here, ∇ jgn denotes the jth backward difference, defined recursively by

∇0gn = gn, ∇ jgn = ∇ j−1gn − ∇ j−1gn−1, j = 1, 2, . . . .

Similarly, we consider the interpolation polynomial p∗
n through the points

(tn−k+1, g(tn−k+1, un−k+1)), . . . , (tn+1, g(tn+1, un+1))

which reads

p∗
n(tn + θh) =

k∑
j=0

(−1) j
(−θ + 1

j

)
∇ jgn+1.

Replacing g(tn + hz, u(tn + hz)) in the first equation of (11) by the interpola-
tion polynomial pn(tn + zh) and replacing g(tn + hz, u(tn + hz)) in the second
equation of (11) by the interpolation polynomial p∗

n(tn + zh), respectively,
define a new numerical method

un+1 = φ0(V)un + hφ1(V)u′
n + h2

∫ 1

0
(1 − z)φ1((1 − z)2V)pn(tn + zh)dz,

u′
n+1 = −hMφ1(V)un + φ0(V)u′

n + h
∫ 1

0
φ0((1 − z)2V)p∗

n(tn + zh)dz. (12)

By inserting the interpolation polynomials pn and p∗
n into (12), we get a new

scheme

un+1 = φ0(V)un + hφ1(V)u′
n + h2

k−1∑
j=0

β j(V)∇ jgn,

u′
n+1 = −hMφ1(V)un + φ0(V)u′

n + h
k∑

j=0

γ ∗
j (V)∇ jgn+1, (13)

where the coefficients β j(V) and γ ∗
j (V) are defined by

β j(V) = (−1) j
∫ 1

0
(1 − z)φ1((1 − z)2V)

(−z
j

)
dz,

γ ∗
j (V) = (−1) j

∫ 1

0
φ0((1 − z)2V)

(−z + 1
j

)
dz.

Obviously, the new scheme (13) is an explicit scheme. The scheme (13) is called
a k-step adapted Falkner-type method (AFMk).
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It can be observed that when M → 0 (V → 0), (13) reduces to the k-step
reformed Falkner method (6) proposed in [8].

The coefficients β j(V) are found from the generating function

Gβ(t, V) =
∞∑
j=0

β j(V)t j

= [
φ1(V)(1 − t) ln(1 − t) + I − (1 − t)φ0(V)

]
× [(1 − t)(I ln2(1 − t) + V)

]−1
, (14)

and can be determined recursively as follows:

β0(V) = V−1[I − φ0(V)], β1(V) = V−1[I − φ1(V)],

βn(V) = V−1

[
I − 1

n
φ1(V) − β0(V)Sn − β1(V)Sn−1 − . . . − βn−2(V)S2

]
,

n ≥ 2,

where

Sm =
m−1∑
j=1

1

j(m − j)
, m ≥ 2.

Similarly, the generating function corresponding to γ ∗
j (V) is given by

Gγ ∗(t, V) =
∞∑
j=0

γ ∗
j (V)t j

= − [I ln(1 − t) + (−1 + t)φ0(V) ln(1 − t) + (−1 + t)Vφ1(V)]

× [I ln2(1 − t) + V
]−1

(15)

which gives the following recursive expressions:

γ ∗
0 (V) = φ1(V), γ ∗

1 (V) = V−1[I − φ0(V)] − φ1(V),

γ ∗
n (V) = V−1

[
1

n
I + 1

n(n−1)
φ0(V)−γ ∗

0 (V)Sn−γ ∗
1 (V)Sn−1 − ... − γ ∗

n−2(V)S2

]
,

n ≥ 2.

The derivation of the generating functions in (14) and (15) has an explanation
in Appendix A.

Remark 2.1 The scheme (13) was discovered for y′′ + w2 y = g(t, y) in [11].
In this paper, we consider the new scheme (13) for the multidimensional
oscillatory systems and give the generating functions.



Numer Algor (2013) 62:355–381 361

Example 2.1 The case of k = 1 gives

un+1 = φ0(V)un + hφ1(V)u′
n + h2V−1 [I − φ0(V)] gn,

u′
n+1 = −hMφ1(V)un + φ0(V)u′

n

+ h
{

V−1 [I − φ0(V)] gn+1 + (φ1(V) − V−1 [I − φ0(V)]
)

gn
}
, (16)

which will be shown to be convergence of order two. It can be observed that
when M → 0 (V → 0), (16) reduces to the well-known Velocity Verlet formula
[12]. So (16) is an extension of the Velocity Verlet formula for oscillatory
problems (1).

3 Error analysis

The purpose of this section is to give an error analysis of scheme (13) when
applied to oscillatory problems (1). We will derive uniform error bounds
on bounded time intervals. In what follows, we use Euclidean norm and its
induced matrix norm (spectral norm) and denote them by ‖ · ‖.

Before going on with our work, we restate the discrete Gronwall’s lemma
(Lemma 2.4 in [13]) which is useful to our error analysis.

Lemma 3.1 Let α, φ, ψ and χ be nonnegative functions def ined for t = n
t,
n = 0, 1, . . . , M, and assume χ is nondecreasing. If

φk + ψk ≤ χk + 
t
k−1∑
n=1

αnφn, k = 0, 1, . . . , M,

and if there is a positive constant ĉ such that 
t
k−1∑
n=1

αn ≤ ĉ, then

φk + ψk ≤ χkeĉk
t, k = 0, 1, . . . , M,

where the subscript indices k and n denote the values of functions at tk = k
t
and tn = n
t, respectively.

Now we are ready to state our main convergence result for the adapted
Falkner-type method (13).

Theorem 3.1 Suppose that M be symmetric and positive semi-def inite in the
initial value problem (1) and ∂g

∂u be uniformly bounded in a strip along the exact
solution u, and consider the k-step adapted Falkner-type method (13) with step
length h satisfying 0 < h < H with H suf f iciently small. Let f (t) = g(t, u(t))
and assume f (t) ∈ Ck+1

[t0,T]. Then, for

‖u j − u(t j)‖ ≤ c0hk+1, j = 1, . . . , k − 1, ‖u′
k−1 − u′(tk−1)‖ ≤ c0hk+1,
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the error bounds

‖un − u(tn)‖ ≤ Chk+1, ‖u′
n − u′(tn)‖ ≤ C′hk+1

hold uniformly for k ≤ n ≤ T−t0
h . The constant C depends on T, k,

sup
0≤t≤tn+1

‖ f (k)(t)‖ and sup
0≤t≤tn+1

‖ f (k+1)(t)‖, but is independent of ‖M‖, n and h. The

constant C′ depends on T ,k, ‖M‖, sup
0≤t≤tn+1

‖ f (k)(t)‖ and sup
0≤t≤tn+1

‖ f (k+1)(t)‖, but is

independent of n and h.

Proof Let p̃n denote the interpolation polynomial through the exact data

(tn−k+1, f (tn−k+1)), . . . , (tn, f (tn)),

where f (t) = g(t, u(t)). This polynomial has the form

p̃n(tn + θh) =
k−1∑
j=0

(−1) j
(−θ

j

)
∇ j f (tn), (17)

where the backward differences are defined recursively by

∇0 f (tn) = f (tn), ∇ j f (tn) = ∇ j−1 f (tn) − ∇ j−1 f (tn−1), j = 1, 2, . . . .

Its interpolation error is given by

f (tn + θh) − p̃n(tn + θh) = hk(−1)k
(−θ

k

)
f (k)(ζ(θ)) (18)

with ζ(θ) ∈ [tn−k+1, tn+1]. Similarly, let p̃∗
n denote the interpolation polynomial

through the exact data

(tn−k+1, f (tn−k+1)), . . . , (tn+1, f (tn+1)),

and we have

p̃∗
n(tn + θh) =

k∑
j=0

(−1) j
(−θ + 1

j

)
∇ j f (tn+1). (19)

Its interpolation error is given by

f (tn + θh) − p̃∗
n(tn + θh) = hk+1(−1)k+1

(−θ + 1
k + 1

)
f (k+1)(ξ(θ)) (20)

with ξ(θ) ∈ [tn−k+1, tn+1].
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Replacing pn(tn + zh) by p̃n(tn + zh) and replacing p∗
n(tn + zh) by p̃∗

n(tn +
zh) in (12), respectively, we have

u(tn + h) = φ0(V)u(tn) + hφ1(V)u′(tn)

+ h2
∫ 1

0
(1 − z)φ1((1 − z)2V) p̃n(tn + zh)dz + δn+1,

u′(tn + h) = −hMφ1(V)u(tn) + φ0(V)u′(tn)

+ h
∫ 1

0
φ0((1 − z)2V) p̃∗

n(tn + zh)dz + δ′
n+1 (21)

with defects

δn+1 = h2
∫ 1

0
(1 − z)φ1((1 − z)2V)[ f (tn + zh) − p̃n(tn + zh)]dz,

δ′
n+1 = h

∫ 1

0
φ0((1 − z)2V)[ f (tn + zh) − p̃∗

n(tn + zh)]dz. (22)

Due to (18) and (20) and Proposition 2.1, these defects are bounded by

‖δn+1‖ ≤ C1hk+2 sup
0≤t≤tn+1

∥∥ f (k)(t)
∥∥ , ‖δ′

n+1‖ ≤ C′
1hk+2 sup

0≤t≤tn+1

∥∥ f (k+1)(t)
∥∥ ,

where C1 and C′
1 only depend on k.

Let en = un − u(tn) and e′
n = u′

n − u′(tn). Subtracting (21) from (12) yields
the error recursions

en+1 = φ0(V)en + hφ1(V)e′
n

+ h2
∫ 1

0
(1 − z)φ1((1 − z)2V)[pn(tn + zh) − p̃n(tn + zh)]dz − δn+1,

e′
n+1 = −hMφ1(V)en + φ0(V)e′

n

+ h
∫ 1

0
φ0((1 − z)2V)[p∗

n(tn + zh) − p̃∗
n(tn + zh)]dz − δ′

n+1,

which can also be expressed in the form(
en+1

e′
n+1

)
= Q

(
en

e′
n

)
+
(

h2 An − δn+1

hBn − δ′
n+1

)
(23)

with

Q =
(

φ0(V) hφ1(V)

−hMφ1(V) φ0(V)

)
,

An =
∫ 1

0
(1 − z)φ1((1 − z)2V)[pn(tn + zh) − p̃n(tn + zh)]dz,

Bn =
∫ 1

0
φ0((1 − z)2V)[p∗

n(tn + zh) − p̃∗
n(tn + zh)]dz.

(24)
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Solving the recursion (23) yields

(
en

e′
n

)
= Qn−k+1

(
ek−1

e′
k−1

)
+

n−1∑
j=k−1

Qn− j−1

(
h2 A j − δ j+1

hB j − δ′
j+1

)
.

By Appendix B, we have

Qm =
(

φ0(m2V) mhφ1(m2V)

−mhMφ1(m2V) φ0(m2V)

)
. (25)

From (25) and ∥∥mhφ1(m2V)
∥∥ ≤ (T − t0)

∥∥φ1(m2V)
∥∥ ≤ T − t0,

for n ≥ k, it follows that

‖en‖ ≤ ‖ek−1‖ + (T − t0)
∥∥e′

k−1

∥∥
+

n−1∑
j=k−1

{(
h2
∥∥pj

(
t j + zh

)− p̃ j
(
t j + zh

)∥∥+ ∥∥δ j+1

∥∥)

+ (T − t0)
(

h
∥∥∥p∗

j

(
t j + zh

)− p̃∗
j

(
t j + zh

)∥∥∥+
∥∥∥δ′

j+1

∥∥∥)}
≤ ‖ek−1‖ + (T − t0)

∥∥e′
k−1

∥∥
+

n−1∑
j=k−1

⎧⎨
⎩
⎛
⎝h2C2

j∑
l= j−k+1

‖g(tl, ul) − g(tl, u(tl))‖ + ‖δ j+1‖
⎞
⎠

+ (T − t0)

⎛
⎝hC′

2

j+1∑
l= j−k+1

‖g (tl, ul) − g (tl, u (tl))‖ +
∥∥∥δ′

j+1

∥∥∥
⎞
⎠
⎫⎬
⎭

≤
n∑

j=1

C3h‖e j‖ + C4hk+1, (26)

where ‖g(tl, ul) − g(tl, u(tl))‖ ≤ C0‖el‖ are used.
From the computation process of (26) it can be observed that C3 only

depends on k and T whereas C4 only depends on k, T, sup
0≤t≤tn+1

‖ f (k)(t)‖ and

sup
0≤t≤tn+1

‖ f (k+1)(t)‖.

When h is sufficiently small, it follows from (26) that

‖en‖ =
n−1∑
j=1

C3

1 − C3h
h‖e j‖ + C4

1 − C3h
hk+1 ≤

n−1∑
j=1

C5h‖e j‖ + C6hk+1, n ≥ k.

(27)
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The conditions ‖ei‖ ≤ c0hk+1, i = 0, 1, . . . , k − 1 give

‖en‖ ≤
n−1∑
j=1

h‖e j‖ + c0hk+1, 0 ≤ n ≤ k − 1. (28)

Then from (27) and (28), we obtain

‖en‖ ≤
n−1∑
j=1

C7h‖e j‖ + C8hk+1. (29)

By Lemma 3.1, we set

φn = ‖en‖, ψn = 0, χn = C8hk+1, αn = C7. (30)

Therefore, as long as the error en remains in a neighborhood of 0, the following
result holds:

h
n−1∑
j=0

α j = h
n−1∑
j=0

C7 ≤ Ĉ. (31)

The application of the discrete Gronwall lemma to (29) gives

‖en‖ ≤ C8hk+1eĈnh ≤ Chk+1. (32)

where C only depends on k, T, sup
0≤t≤tn+1

‖ f (k)(t)‖ and sup
0≤t≤tn+1

‖ f (k+1)(t)‖ and is

independent of ‖M‖, n and h.
Similarly,∥∥e′
n

∥∥ ≤ (T − t0) ‖M‖ ‖ek−1‖ + ∥∥e′
k−1

∥∥
+

n−1∑
j=k−1

{
(T − t0) ‖M‖ (h2

∥∥pj
(
t j + zh

)− p̃ j
(
t j + zh

)∥∥+ ∥∥δ j+1

∥∥)

+
(

h
∥∥∥p∗

j

(
t j + zh

)− p̃∗
j

(
t j + zh

)∥∥∥+
∥∥∥δ′

j+1

∥∥∥)}
≤ (T − t0) ‖M‖ ‖ek−1‖ + ∥∥e′

k−1

∥∥
+

n−1∑
j=k−1

⎧⎨
⎩(T − t0) ‖M‖

⎛
⎝h2C2

j∑
l= j−k+1

‖g (tl, ul) − g (tl, u (tl))‖ + ∥∥δ j+1

∥∥
⎞
⎠

+
⎛
⎝hC′

2

j+1∑
l= j−k+1

‖g (tl, ul) − g (tl, u (tl))‖ +
∥∥∥δ′

j+1

∥∥∥
⎞
⎠
⎫⎬
⎭

≤
n∑

j=k

C′
3h
∥∥e j
∥∥+ C′

4hk+1, (33)
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where C′
3 depends on k and ‖M‖, h whereas C′

4 depends on k, T, ‖M‖,
sup

0≤t≤tn+1

‖ f (k)(t)‖ and sup
0≤t≤tn+1

‖ f (k+1)(t)‖. The bound of e′
n can be obtained from

‖en‖ ≤ Chk+1. 
�

4 Stability

Firstly, we study zero-stability of the adapted Falkner-type method (13).
Since the symmetric positive semi-definite matrix M can be diagonalized as
a diagonal matrix, we only need to consider one dimensional equation u′′(t) +
w2u(t) = g(t, u(t)). In this case, it is clear that V = w2h2, φ0(V) = cos(wh) and
φ1(V) = sin(wh)/(wh). We will write the k-step adapted Falkner-type method
(13) as a one-step method with high dimension and bound the product of the
resulting matrices in an adequate norm.

In order to obtain a one-step recurrence, we give variable vn+1 = (un+1 −
cos(wh)un)/h and two k + 1-vectors

Vn = (un, u′
n, vn, . . . , vn−(k−2)

)T
, En = (h�n, �n, �n, 0, . . . , 0)

T , (34)

where �n =
k−1∑
j=0

β j(w
2h2)∇ jgn and �n =

k∑
j=0

γ ∗
j (w

2h2)∇ jgn+1. Thus, the adapted

Falkner-type method (13) can be rewritten in the form

Vn+1 = LVn + hEn, (35)

where L is a (k + 1) × (k + 1) matrix given by

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

cos(wh) sin(wh)/w 0 . . . 0 0
−w sin(wh) cos(wh) 0 . . . 0 0

0 sin(wh)/(wh) 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(k+1)×(k+1)

(36)

In what follows we restate the the stability definition in terms of a bounded
product of matrices [14].

Definition 4.1 The method given by (35) is stable if

∥∥L j
∥∥ ≤ R, for k − 1 ≤ j ≤ N,

where N = T−t0
h and R > 0 is a real number.
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In order to calculate L j simply, we let

A =
(

cos(wh) sin(wh)/w

−w sin(wh) cos(wh)

)
2×2

, B =
(

0 . . . 0 0
0 . . . 0 0

)
2×(k−1)

,

C =
⎛
⎜⎝

0 sin(wh)/(wh)
...

...

0 0

⎞
⎟⎠

(k−1)×2

, D =

⎛
⎜⎜⎜⎝

0 . . . 0 0
1 . . . 0 0
...

. . .
...

...

0 . . . 1 0

⎞
⎟⎟⎟⎠

(k−1)×(k−1)

and have

L =
(

A B
C D

)
. (37)

It can be verified that Lm has the following form

Lm =
(

Am O
mC∗ Dm

)
, (38)

where mC∗ will be determined in the following two propositions. In the
following analysis, we use mc∗

ij, i = 1, . . . , k − 1, j = 1, 2 to denote the entries
of mC∗.

Proposition 4.1 When m ≤ k − 1, the entries of mC∗ are given by

mc∗
i1 =cos((m + 1 − i)wh) − cos((m − 1 − i)wh)

2h
, 1 ≤ i ≤ m,

mc∗
i2 = sin((m + 1 − i)wh) − sin((m − 1 − i)wh)

2wh
, 1 ≤ i ≤ m,

mc∗
i1 = mc∗

i2 = 0, i ≥ m + 1. (39)

Proof We prove this proposition by induction. For m = 1, we have

1c∗
11 =0, 1c∗

12 = sin(wh)

wh
, 1c∗

i1 =1c∗
i2 = 0, i ≥ 2

which satisfy (39). Assuming that the conditions in (39) hold for m = q, we can
obtain

q+1c∗
i1 =

[
cos((q + 1 − i)wh) − cos((q − 1 − i)wh)

2h

]
cos(wh)

+
[

sin((q + 1 − i)wh) − sin((q − 1 − i)wh)

2wh

]
(−w sin(wh))

= cos((q + 2 − i)wh) − cos((q − i)wh)

2h
, 1 ≤ i ≤ q, (40)
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where q+1C∗ = qC∗ A + DqC is used. In a similar way, we have

q+1c∗
i2 = sin((q + 2 − i)wh) − sin((q − i)wh)

2wh
, 1 ≤ i ≤ q. (41)

The equation q+1C∗ = qC∗ A + DqC also gives

q+1c∗
q+1,1 = 0 = cos((q + 2 − i)wh) − cos((q − i)wh)

2h
, i = q + 1

q+1c∗
q+1,2 = sin(wh)

wh
= sin((q + 2 − i)wh) − sin((q − i)wh)

2wh
, i = q + 1,

q+1c∗
i,1 = q+1c∗

i,2 = 0, i ≥ q + 2.

(42)

It follows that the conditions in (39) hold for m = q + 1 from (40), (41)
and (42). 
�

Proposition 4.2 When m ≥ k − 1, the entries of mC∗ satisfy

mc∗
i1 =cos((m + 1 − i)wh) − cos((m − 1 − i)wh)

2h
,

mc∗
i2 = sin((m + 1 − i)wh) − sin((m − 1 − i)wh)

2wh
,

(43)

where i = 1, . . . , k − 1.

Proof The proof is similar to that of the above proposition. 
�

About Am, we have the following results

Am =
(

cos(mwh) sin(mwh)/w

−w sin(mwh) cos(mwh)

)
(44)

which can be proved by induction.
Now we consider another norm denoted ‖ · ‖1 and given by

‖L‖1 = max
1≤ j≤k+1

k+1∑
i=1

|lij|, (45)

where lij, i, j = 1, . . . , k + 1 denote the entries of L. For k − 1 ≤ m ≤ N,

‖Lm‖1 = max

{
|cos(mwh)| + |−w sin(mwh)| +

k−1∑
i=1

∣∣mc∗
i1

∣∣ ,
∣∣∣∣ sin(mwh)

w

∣∣∣∣+ |cos(mwh)| +
k−1∑
i=1

∣∣mc∗
i2

∣∣} , (46)

where Dm = O(k−1)×(k−1) with m ≥ k − 1 are used.
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From Proposition 4.2, we have

|cos(mwh)| + |−w sin(mwh)| +
k−1∑
i=1

∣∣mc∗
i1

∣∣
= |cos(mwh)| + |−w sin(mwh)|

+
k−1∑
i=1

∣∣∣∣cos((m + 1 − i)wh) − cos((m − 1 − i)wh)

2h

∣∣∣∣
= |cos(mwh)| + |−w sin(mwh)| +

k−1∑
i=1

∣∣∣∣− sin((m − i)wh) sin(wh)

h

∣∣∣∣
≤ 1 + w + 1

2
w2h

k−1∑
i=1

(m − i) ≤ C̄1, (47)

where C̄1 depends on w. Similarly, it follows that

| cos(wh)| + |sin(mwh)/w| +
k−1∑
i=1

|mc∗
i2| ≤ C̄2. (48)

Due to (46)–(48), we have for k − 1 ≤ m ≤ N

∥∥Lm
∥∥

1 ≤ C̄, with C̄ = max{C̄1, C̄2}

and hence, according to Definition 4.1, the method is stable.
In order to determine whether a numerical method will produce reasonable

results with a given step length h > 0, we need another notion of stability that
is different from zero-stability. In order to analyze the stability and phase
property of the new methods in this paper, we consider the modified test
equation [15]

y′′(t) + w2 y(t) = −εy(t), w2 + ε > 0, (49)

where w represents an estimate of the dominant frequency λ, and ε = λ2 − w2

is the error of estimation.
The k-step adapted Falkner-type method (13) can also be expressed in the

following form

un+1 = φ0(V)un + hφ1(V)u′
n

+ h2
(
b̄ 1(V)gn + b̄ 2(V)gn−1 + · · · + b̄ k(V)gn−(k−1)

)
,

u′
n+1 = −hMφ1(V)un + φ0(V)u′

n

+ h
(
b 0(V)gn+1 + b 1(V)gn + · · · + b k(V)gn−(k−1)

)
, (50)
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where b̄ i(V), i = 1, . . . , k and bi(V), i = 0, . . . , k depend on k. They can be
formulated as follows

b̄ i(V) =
k−1∑

j=i−1

(
j

i − 1

)
β j(V)(−1)i−1, bi(V) =

k∑
j=i

(
j
i

)
γ ∗

j (V)(−1)i (51)

which are shown in the Appendix C.
Letting Un = (un+1, un, . . . , un−(k−2), hu′

n+1)
T , the application of scheme (50)

to (49) yields

A(V, z)Un = B(V, z)Un−1,

where V = w2h2, z = εh2,

A(V, z) =

⎛
⎜⎜⎜⎜⎜⎝

1
1

. . .

1
zb 0(V) 1

⎞
⎟⎟⎟⎟⎟⎠ (52)

and

B(V, z) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ0(V) − zb̄ 1(V) −zb̄ 2(V) · · · −zb̄ k−1(V) −zb̄ k(V) φ1(V)

1
1

. . .

1
−Vφ1(V) − zb 1(V) −zb 2(V) · · · −zb k−1(V) −zb k(V) φ0(V)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(53)

The matrix M(V, z) = A(V, z)−1 B(V, z) is called the stability matrix. The
behavior of the numerical solution will depend on the eigenvalues ri(V, z), i =
1, . . . , k + 1 of the stability matrix, and the stability property of the method
will be characterized by the spectral radius ρ(M), respectively.

Because the M(V, z) depend on the variables V and z, geometrically, the
characterization of stability becomes a two-dimensional region in the (V, z)-
plane for an adapted Falkner-type method. According to the terminology
introduced by Coleman and Ixaru [16], we have the following definitions of
stability for a k step adapted Falkner-type integrator.

• Rs = {V > 0, z > 0| |ri(V, z)| < 1, i = 1, . . . , k + 1} is called the region of
stability of a k-step adapted Falkner-type method.

• Rp = {V > 0, z > 0|, r1(V, z) = eiθ(V,z), r2(V, z) = e−iθ(V,z), |ri(V, z)| ≤
1, i = 3, . . . , k + 1} is called the region of periodicity of a k-step adapted
Falkner-type method.
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Fig. 1 The regions of stability of k-step adapted Falkner-type methods (AFMk) with k = 1, 2, 3, 4

The regions of stability for the k-step adapted Falkner-type methods with k =
1, 2, 3, 4 are depicted in Fig. 1.

Remark 4.1 We can observe that there exists a nonempty region of stability
for 4-step adapted Falkner-type method (AFM4) whereas both the interval of
stability and the interval of periodicity are empty for 4-step reformed Falkner
method (RFM4) given in (6). This can explain why the global error obtained
by RFM4 is very large when h is large to some extent in figures of Section 5.
The paper [8] contains detailed explanation about this phenomenon.

5 Numerical experiments

In this section, we will illustrate our new methods with four model problems.
The methods chosen for comparison are:

• RFMk: the k-step reformed Falkner methods (6) with k = 1, 2, 3, 4 given
in [8];

• AFMk: the k-step adapted Falkner-type methods with k = 1, 2, 3, 4 given
in this paper.
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Problem 1 Two coupled oscillators with different frequencies, studied by
Vigo-Aguiar et al. [17]

⎧⎨
⎩

y′′
1 + y1 = 2εy1 y2, y1(0) = 1, y′

1(0) = 0,

y′′
2 + 2y2 = εy2

1 + 4εy3
2, y2(0) = 1, y′

2(0) = 0, t ∈ [0, 1000].

In our numerical test we choose ε = 10−3. The system is integrated with
the step-sizes h = 1/(20 j), j = 1, 2, 3, 4 to show the accuracy of the different
numerical methods. The numerical results are presented in Fig. 2.

Problem 2 Consider a nonlinear wave equation

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂2u
∂t2

− ∂2u
∂x2

= −1

5
u3, 0 < x < 1, t > 0,

u(0, t) = u(1, t) = 0, u(x, 0) = sin(πx)

2
, ut(x, 0) = 0.

By using second-order symmetric differences, this problem is converted into a
system of ODEs in time

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d2ui

dt2
− ui+1 − 2ui + ui−1


x2
= −1

5
u3

i , 0 < t ≤ tend,

ui(0) = sin(πxi)

2
, u

′
i(0) = 0, i = 1, . . . , N − 1,

Fig. 2 Accuracy curves for
Problem 1
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where 
x = 1/N is the spatial mesh step and xi = i
x. This semi-discrete
oscillatory system has the form⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d2U
dt2

+ MU = F(t, U), 0 < t ≤ tend.

U(0) =
(

sin(πx1)

2
, . . . ,

sin(πxN−1)

2

)T

, U ′(0) = 0,

where U(t) = (u1(t), . . . , uN−1(t))T with ui(t) ≈ u(xi, t), i = 1, . . . , N − 1, and

M = 1


x2

⎛
⎜⎜⎜⎜⎜⎝

2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2

⎞
⎟⎟⎟⎟⎟⎠ , (54)

F(t, U) = F(t, U) =
(

−1

5
u3

1, . . . ,−
1

5
u3

N−1

)T

.

The system is integrated in the interval t ∈ [0, 150] with N = 20 and the
integration step sizes h = 1/(30 j), j = 1, 2, 3, 4. The numerical results are pre-
sented in Fig. 3. In this experiment we note that the error log10(GE) is very
large for RFM4 with h = 1/30, hence we do not plot the points in Fig. 3. The
same situations will be encountered in the following problems and we deal
with them in a similar way. This is because both the interval of stability and
the interval of periodicity are empty. Ramos explain this phenomenon with
another example in [8].

Fig. 3 Accuracy curves for
Problem 2
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Problem 3 Consider the sine-Gordon equation with periodic boundary
conditions ⎧⎪⎨

⎪⎩
∂2u
∂t2

= ∂2u
∂x2

− sin u, −1 < x < 1, t > 0,

u(−1, t) = u(1, t).

We carry out a semi-discretization on the spatial variable by using second-
order symmetric differences and obtain the following system of second-order
ODEs in time

d2U
dt2

+ MU = F(t, U), 0 < t ≤ tend,

where U(t) = (u1(t), . . . , uN(t))T with ui(t) ≈ u(xi, t), i = 1, . . . , N,

M = 1


x2

⎛
⎜⎜⎜⎜⎜⎝

2 −1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 −1 2

⎞
⎟⎟⎟⎟⎟⎠

with 
x = 2/N and xi = −1 + i
x, and F(t, U) = − sin(U) = −( sin u1, . . .,

sin uN
)T . We take the initial conditions as

U(0) = (π)N
i=1, Ut(0) = √

N
(

0.01 + sin

(
2π i
N

))N

i=1

with N = 64.

The problem is integrated in the interval [0, 10] with the step-sizes h =
1/100, 1/150, 1/200, 1/250 for RFM4 and h = 1/50, 1/100, 1/150, 1/200 for the
other methods. Figure 4 shows that for the same step-size h, our methods are
more accurate than the methods proposed in [8].

Problem 4 Consider a nonlinear wave equation⎧⎪⎪⎨
⎪⎪⎩

∂2u
∂t2

− ∂2u
∂x2

= u5 − u3 − 10u, 0 < x < 1, t > 0,

u(0, t) = u(1, t) = 0, u(x, 0) = x(1 − x)

100
, ut(x, 0) = 0.

By using second-order symmetric differences, this problem was converted into
a system of ODEs in time⎧⎪⎪⎪⎨

⎪⎪⎪⎩
d2ui

dt2
− ui+1 − 2ui + ui−1


x2
= u5

i − u3
i − 10ui, 0 < t ≤ tend,

ui(0) = xi(1 − xi)

100
, u

′
i(0) = 0, i = 1, . . . , N − 1,



Numer Algor (2013) 62:355–381 375

Fig. 4 Accuracy curves for
Problem 3
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where 
x = 1/N is the spatial mesh step and xi = i
x. This semi-discrete
oscillatory system has the form⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d2U
dt2

+ MU = F(t, U), 0 < t ≤ tend.

U(0) =
(

x1(1 − x1)

100
, . . . ,

xN−1(1 − xN−1)

100

)T

, U ′(0) = 0,

where U(t) = (u1(t), . . . , uN−1(t))T with ui(t) ≈ u(xi, t), i = 1, . . . , N − 1, M is
given by

M = 1


x2

⎛
⎜⎜⎜⎜⎜⎝

2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2

⎞
⎟⎟⎟⎟⎟⎠ (55)

and

F(t, U) = (u5
1 − u3

1 − 10u1, . . . , u5
N−1 − u3

N−1 − 10uN−1)
)T

.

The system is integrated in the interval t ∈ [0, 100] with N = 20 and the step-
sizes h = 1/(30 j), j = 1, 2, 3, 4. The numerical results are presented in Fig. 5.

The four figures show that for the same step-size h, our methods are more
accurate than the methods proposed in [8]. About this point, some comments
are listed below.
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Fig. 5 Accuracy curves for
Problem 4
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Remark 5.1 For adapted Falkner methods, at the beginning of the implemen-
tation, the matrices φ0(V), φ1(V), β j(V) and γ ∗

j (V) need to be evaluated with
Horner’s method then can be used repeatedly in the sequel calculations.

Remark 5.2 At each time step, it can be observed that for adapted Falkner
methods, the evaluations of matrix × vector multiplication are more than the
reformed Falkner methods. Therefore we show the accuracy versus the CPU
time to show that our methods are more efficient than the methods proposed
in [8]. Let’s take RFM4 and AFM4 as examples. Applying them to Problem 1,
we present the numerical results in Table 1. Table 1 shows that AFM4 needs
less CPU time than RFM4 for achieving the same accuracy and so AFM4
is more efficient than RFM4. For the other problems, it is noted that the
matrices by using second-order symmetric differences based on the method
of lines are sparse, in fact, tridiagonal, and we obtain the same conclusions.

Table 1 Numerical results of RFM4 and AFM4 for the Problem 1 in [0, 1000] with different step
sizes h = 1/(10 · j)

j RFM4 AFM4
Max-error CPU-time (s) Max-error CPU-time (s)

1 5.1453 × 10−4 0.296 4.4302 × 10−7 0.641
2 2.1465 × 10−5 0.625 2.5085 × 10−8 1.297
3 3.0554 × 10−6 0.922 3.7912 × 10−9 1.921
4 7.5206 × 10−7 1.219 9.5870 × 10−10 2.594
5 2.5173 × 10−7 1.531 3.2614 × 10−10 3.235
6 1.0258 × 10−7 1.860 1.3558 × 10−10 3.859
7 4.7926 × 10−8 2.140 6.3775 × 10−11 4.500
8 2.4760 × 10−8 2.453 3.3389 × 10−11 5.156
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The numerical results in Table 1 are executed on the computer lenovo M6600
(Inter(R) Pentium(R) CPU 3.00 GHz, 0.99 G).

In our numerical experiments, for each initial value problem, we take the
numerical solution obtained by the classical four-stage RKN method of order
five [18] with small step size as the exact solution.

6 Conclusions

The oscillatory problems (1) have constituted a very important category of
differential equations in scientific computing. New approaches to dealing with
(1) have been proposed in recent years, such as exponential fitting modified
Runge–Kutta–Nyström schemes, ARKN methods and ERKN integrators, we
refer the reader to [19–23]. In this paper, we study adapted Falkner-type
methods and give a rigorous error analysis. For a k-step adapted Falkner-type
method, we give the error bounds ‖un − u(tn)‖ ≤ Chk+1 and

∥∥u′
n − u′(tn)

∥∥ ≤
C′hk+1, where C is independent of ‖M‖, h and n whereas C′ is independent of
h and n. We also give a stability analysis and present the regions of stability for
our new methods. Numerical examples confirm that the bounds are realistic
and the new methods are more efficient than the reformed Falkner methods
given in the paper [8].

Acknowledgements The authors are sincerely thankful to the anonymous referees for their
constructive comments and valuable suggestions.

Appendix A

The expression (14) can be derived as follows:

Gβ(t, V) =
∞∑
j=0

β j(V)t j

=
∞∑
j=0

(−1) j
∫ 1

0
(1 − z)φ1((1 − z)2V)

(−z
j

)
dz · t j

=
∫ 1

0
(1 − z)φ1((1 − z)2V)

∞∑
j=0

(−t) j
(−z

j

)
dz

=
∫ 1

0
(1 − z)φ1((1 − z)2V)(1 − t)−zdz

=
∞∑

k=0

(−1)kVk

(2k + 1)!
∫ 1

0
(1 − z)2k+1(1 − t)−zdz.
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Using integration by parts gives

∫ 1

0
(1 − z)(1 − t)−zdz = 1

ln(1 − t)
+ t

(1 − t) ln2(1 − t)
. (56)

Furthermore, for k ≥ 1 we have

∫ 1

0
(1 − z)2k+1(1 − t)−zdz = 1

ln(1 − t)
− 2k + 1

ln2(1 − t)

+ (2k + 1)2k

ln2(1 − t)

∫ 1

0
(1 − z)2k−1(1 − t)−zdz. (57)

The above analysis results in

Gβ(t, V) =
∞∑

k=0

(−1)kVk

(2k + 1)!
∫ 1

0
(1 − z)2k+1(1 − t)−zdz

=
∞∑

k=0

(−1)kVk

(2k + 1)! · 1

ln(1 − t)

+
(

t

(1 − t) ln2(1 − t)
I +

∞∑
k=1

(−1)kVk

(2k + 1)!
(

− 2k + 1

ln2(1 − t)

))

+
( ∞∑

k=1

(−1)kVk

(2k + 1)!
(2k + 1)2k

ln2(1 − t)

∫ 1

0
(1 − z)2k−1(1 − t)−zdz

)
, (58)

where

∞∑
k=0

(−1)kVk

(2k + 1)! · 1

ln(1 − t)
= 1

ln(1 − t)
φ1(V), (59)

t

(1 − t) ln2(1 − t)
I +

∞∑
k=1

(−1)kVk

(2k + 1)!
(

− 2k + 1

ln2(1 − t)

)

= t

(1 − t) ln2(1 − t)
I +

∞∑
k=0

(−1)kVk

(2k + 1)!
(

− 2k + 1

ln2(1 − t)

)

+ 1

ln2(1 − t)
I

= 1

(1 − t) ln2(1 − t)
I − φ0(V)

ln2(1 − t)
, (60)
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∞∑
k=1

(−1)kVk

(2k + 1)!
(2k + 1)2k

ln2(1 − t)

∫ 1

0
(1 − z)2k−1(1 − t)−zdz

= −V

ln2(1 − t)

∫ 1

0
(1 − z)φ1((1 − z)2V)(1 − t)−zdz

= −V

ln2(1 − t)
Gβ(t, V). (61)

Inserting the expressions (59)–(61) into (58) yields

Gβ(t, V) = 1

ln(1 − t)
φ1(V) + 1

(1 − t) ln2(1 − t)
I − φ0(V)

ln2(1 − t)

+ −V

ln2(1 − t)
Gβ(t, V). (62)

The generating functions Gβ(t, V) can be derived from formula (62) straight-
forwardly.

The expression (15) can be obtained in a similar way.

Appendix B

We derive (25) by induction. m = 1 is trivial. Assuming that (25) holds for
m = k, then we obtain

Qk+1 = Qk Q =
(

φ0(k2V) khφ1(k2V)

−khMφ1(k2V) φ0(k2V)

)(
φ0(V) hφ1(V)

−hMφ1(V) φ0(V)

)

=
(

φ0((k + 1)2V) (k + 1)hφ1((k + 1)2V)

−(k + 1)hMφ1((k + 1)2V) φ0((k + 1)2V)

)
.

The last equality is obtained by using the following propositions:

cφ1(c2V)φ0(V) + φ1(V)φ0(c2V) = (1 + c)φ1((1 + c)2V),

φ0(c2V)φ0(V) − cVφ1(V)φ1(c2V) = φ0((1 + c)2V). (63)



380 Numer Algor (2013) 62:355–381

Now we prove the above propositions as follows

cφ1(c2V)φ0(V) + φ1(V)φ0(c2V)

= c
∞∑

k=0

c2k(−1)kVk

(2k + 1)!
∞∑
j=0

(−1) jV j

(2 j)! +
∞∑

k=0

(−1)kVk

(2k + 1)!
∞∑
j=0

c2 j(−1) jV j

(2 j)!

=
∞∑

p=0

( p∑
k=0

c2k+1(−1)kVk

(2k + 1)! · (−1)p−kV p−k

(2(p − k))!

+
p∑

k=0

(−1)kVk

(2k + 1)! · c2(p−k)(−1)p−kV p−k

(2(p − k))!

)

=
∞∑

p=0

( p∑
k=0

c2k+1

(2k + 1)!(2p − 2k)! +
p∑

k=0

c2(p−k)

(2k + 1)!(2p − 2k)!

)
(−1)pV p

=
∞∑

p=0

⎛
⎝ p∑

k=0

c2k+1

(2k + 1)!(2p − 2k)! +
p∑

q=0

c2q

(2p − 2q + 1)!(2q)!

⎞
⎠ (−1)pV p

=
∞∑

p=0

(2p+1∑
k=0

ck

k!(2p + 1 − k)!

)
(−1)pV p =

∞∑
p=0

(1 + c)2p+1

(2p + 1)! (−1)pV p

= (1 + c)φ1((1 + c)2V).

The second formula in (63) can be obtained in a similar way.

Appendix C

The proof of (51)

k−1∑
l=0

b̄ l+1(V) fn−l =
k−1∑
j=0

β j(V)∇ j fn =
k−1∑
j=0

β j(V)

j∑
l=0

(
j
l

)
(−1)l fn−l

results in

b̄ l+1 =
k−1∑
j=l

β j(V)

(
j
l

)
(−1)l.

Replacing l with i − 1, we obtain the first formula of (51). The second one can
be obtained in a similar way. 
�
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