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Abstract In certain spaces of analytic functions the error term of a quadrature
formula is a bounded linear functional. We give a survey of the methods used
in order to compute explicitly, or in some cases estimate, the norm of the error
functional. The results, some of which are fairly recent, cover Gauss, Gauss–
Lobatto, Gauss–Radau, Gauss–Kronrod and Fejér type rules.
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1 Introduction

The most common method for estimating the error of a quadrature formula
is by means of a high-order derivative of the function involved. The disadvan-
tages of such an approach are too well-known to be analyzed here. Derivative-
free error estimates can be obtained by either contour integration or Hilbert
space methods.

Contour integration techniques appeared for the first time in a 1932 pa-
per by Fock (cf. [9]) for estimating the error of Gaussian quadrature rules,
although the same idea had been previously used by Hermite in 1878 (cf. [21]),
and Heine in 1881 (cf. [20, p. 16]), for estimating the error in polyno-
mial interpolation; the latter, when integrated, leads to error estimates for
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interpolatory quadrature rules. The method is fairly straightforward; using
Cauchy’s theorem, the error term Rn( f ) of a quadrature formula can be
estimated by

|Rn( f )| ≤ l(�)

2π
max
z∈�

|Kn(z)| max
z∈�

| f (z)|,

assuming that f is analytic in a domain D, � is a contour in D surrounding
the interval of integration, l(�) is the length of �, and Kn(z) is the so-called
kernel (for further details see the end of Section 2). An apparent advantage
of this method is that the above estimate can be optimized by appropriately
choosing the contour �; contours most frequently used are either concentric
circles or confocal ellipses; the latter shrink to the interval of integration as the
sum of the semiaxes approaches 1, and this makes them a preferred choice for
functions having a pole in the vicinity of the interval of integration. All this
gave rise to a rich literature; for the earlier work on the subject one can look
at [8, Section 4.6], [10, Section 4.1.1] and [13], while more recent results can be
found in [23–39, 46, 48–56].

Hilbert space methods were first proposed by Davis in 1953 (see [6]), who
considered the error term Rn( f ) of a quadrature formula as a bounded linear
functional in an appropriate Hilbert space H of analytic functions f . Then one
immediately obtains

|Rn( f )| ≤ ‖Rn‖ ‖ f‖, (1.1)

where ‖Rn‖ is the norm of the error functional Rn and ‖ f‖ is the norm of f in
the Hilbert space H. This approach has a number of advantages. For one thing,
it is quite sharp as equality can be obtained in (1.1) for some f ∈ H. Moreover,
the nice separation of (1.1) between the influence of the quadrature formula
(expressed by ‖Rn‖) and of the function to which it is applied (expressed by
‖ f‖) allows to compare estimates coming from different quadrature rules. Of
course, all these depend on the ability to compute not only the norm of f , but
also the norm of Rn. Regarding the latter, if {pk} is a complete orthonormal
system in H, then

‖Rn‖2 =
∞∑

k=0

|Rn (pk)|2 .

The idea of Davis was soon followed by work of Davis and Rabinowitz
[7], Yanagiwara [57] and Hämmerlin [16–18] with an aim towards obtaining
bounds of ‖Rn‖ for specific quadrature rules and Hilbert spaces H. This in-
spired many authors to try minimizing ‖Rn‖ over certain classes of quadrature
rules. Extensive reviews on the subject can be found in [8, Section 4.7], [10,
Section 4.1.2] and [13].

It is obvious that estimate (1.1) is sharper whenever ‖Rn‖ can be computed
explicitly in an appropriate Hilbert space H. The inspiration was given by
Hämmerlin in [19], where he defined a seminormed linear space in order to
estimate the error of the Gauss formula for the Legendre weight function. In
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the present paper, we review error estimates of type (1.1) where ‖Rn‖ can
be computed explicitly. Our estimates concern Gauss, Gauss–Lobatto, Gauss–
Radau, Gauss–Kronrod and interpolatory quadrature rules.

2 The norm of the error functional

We consider the quadrature formula

∫ 1

−1
f (t)w(t)dt =

n∑

ν=1

wν f (τν) + Rn( f ), (2.1)

where w is a nonnegative weight function, assumed to be integrable over
[−1, 1], the τν are certain distinct nodes in [−1, 1], ordered decreasingly, and
the wν are the corresponding weights.

An interesting method for obtaining derivative-free error estimates was
suggested by Hämmerlin in [19]. Let f be a holomorphic function in Cr = {z ∈
C : |z| < r}, r > 1. Then f can be written as

f (z) =
∞∑

k=0

akzk, z ∈ Cr. (2.2)

Define

| f |r = sup
{|ak|rk : k ∈ N0 and Rn

(
tk) �= 0

}
. (2.3)

Then | · |r is a seminorm in the space

Xr = { f : f holomorphic in Cr and | f |r < ∞}.
As f ∈ C[−1, 1], we have, from (2.1),

|Rn( f )| ≤
(

‖w‖1 +
n∑

ν=1

|wν |
)

‖ f‖∞, (2.4)

where ‖ · ‖1 and ‖ · ‖∞ denote the L1 and L∞ norm of a function, respectively;
hence, Rn is a bounded and, equivalently, continuous linear functional on
(C[−1, 1], ‖ · ‖∞). The continuity of Rn, together with the uniform conver-
gence of the series in (2.2) on [−1, 1], implies

Rn( f ) =
∞∑

k=0

ak Rn
(
tk) ,

which, by virtue of (2.3), gives

|Rn( f )| ≤
[ ∞∑

k=0

∣∣Rn
(
tk

)∣∣
rk

]
| f |r. (2.5)
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As, from (2.4), |Rn(tk)| ≤ ‖w‖1 + ∑n
ν=1 |wν |, the series in (2.5) is converging,

and therefore Rn is a bounded linear functional on (Xr, | · |r) with norm ‖Rn‖.
Consequently,

|Rn( f )| ≤ ‖Rn‖| f |r, (2.6)

where, from (2.5),

‖Rn‖ ≤
∞∑

k=0

∣∣Rn
(
tk

)∣∣
rk

. (2.7)

Furthermore, for φ(z) = ∑∞
k=0 sign(Rn(tk))

zk

rk
, hence, |φ|r = 1, we have

Rn(φ) =
∞∑

k=0

sign
(
Rn

(
tk

))
Rn

(
tk

)

rk
,

that is,

|Rn(φ)| =
[ ∞∑

k=0

∣∣Rn
(
tk

)∣∣
rk

]
|φ|r,

which, combined with (2.7), implies

‖Rn‖ =
∞∑

k=0

∣∣Rn
(
tk

)∣∣
rk

. (2.8)

The computation of the seminorm | f |r requires the knowledge of the
coefficients ak, k ≥ 0 (cf. (2.2)), which are not always available, hence | f |r
often has to be estimated. If f belongs to the Hardy space H2,

H2 =
{

f : f holomorphic in Cr and ‖ f‖2,r =
(∫

|z|=r
| f (z)|2|dz|

)1/2

< ∞
}

,

then the polynomials pk(z) = zk

rk
√

2πr
, k = 0, 1, 2, . . . , form a complete or-

thonormal system in H2, thus, from Parseval’s identity, we have

‖ f‖2,r = √
2πr

( ∞∑

k=0

|ak|2r2k

)1/2

,

and given that

∞∑

k=0

|ak|2 r2k ≥ sup
{|ak|2 r2k : k ∈ N0

}

≥ sup
{|ak|2 r2k : k ∈ N0 and Rn

(
tk) �= 0

} = | f |2r ,
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we get

| f |r ≤ 1√
2πr

‖ f‖2,r.

Also, from the latter and the definition of ‖ f‖2,r, there follows that

| f |r ≤ max
|z|=r

| f (z)| (2.9)

(cf. [19, Section 4] or [1, Section 1.1]).
Although formula (2.8) is useful for obtaining an estimate for ‖Rn‖ (see

[19, 41]), it cannot be used for computing ‖Rn‖ explicitly. A practical repre-
sentation for ‖Rn‖ can be derived if we have some information on the sign
of Rn(tk), k ≥ 0; and the representation becomes particularly useful if the
quadrature formula (2.1) is of interpolatory type. All this was presented for
the first time by Akrivis in [1, Section 1.2] and is summarized in Theorem 2.1.

Formula (2.1) is called interpolatory if it integrates exactly all polynomials of
degree up to (at least) n − 1, i.e., Rn( f ) = 0 for all f ∈ Pn−1. Many well-known
formulae are of interpolatory type, among them the Gauss, Gauss–Lobatto,
Gauss–Radau and Gauss–Kronrod rules as well as the Fejér rule of the first or
second kind (also known as Pólya and Filippi rule, respectively), and the Basu
and Clenshaw–Curtis rules.

Theorem 2.1 Consider the quadrature formula (2.1). Let πn(t) = �n
ν=1(t − τν)

and ε ∈ {−1, 1}.

(a) If εRn(tk) ≥ 0, k ≥ 0, then

‖Rn‖ = r

∣∣∣∣Rn

(
1

r − t

)∣∣∣∣ . (2.10)

If, in addition, formula (2.1) is interpolatory, then

‖Rn‖ = r

∣∣∣∣
1

πn(r)

∫ 1

−1

πn(t)
r − t

w(t)dt

∣∣∣∣ . (2.11)

(b) If ε(−1)k Rn(tk) ≥ 0, k ≥ 0, then

‖Rn‖ = r

∣∣∣∣Rn

(
1

r + t

)∣∣∣∣ . (2.12)

If, in addition, formula (2.1) is interpolatory, then

‖Rn‖ = r

∣∣∣∣
1

πn(−r)

∫ 1

−1

πn(t)
r + t

w(t)dt

∣∣∣∣ . (2.13)
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Proof

(a) From (2.8), we have, in view of εRn(tk) ≥ 0, k ≥ 0, and the continuity of
Rn on (C[−1, 1], ‖ · ‖∞),

‖Rn‖ =
∞∑

k=0

|εRn(tk)|
|ε|rk

=
∞∑

k=0

εRn(tk)

rk

=
∣∣∣∣∣

∞∑

k=0

εRn(tk)

rk

∣∣∣∣∣ = |ε|
∣∣∣∣∣

∞∑

k=0

Rn(tk)

rk

∣∣∣∣∣ =
∣∣∣∣∣

∞∑

k=0

Rn

((
t
r

)k
)∣∣∣∣∣

=
∣∣∣∣∣Rn

( ∞∑

k=0

(
t
r

)k
)∣∣∣∣∣ =

∣∣∣∣Rn

(
1

1 − t/r

)∣∣∣∣ = r

∣∣∣∣Rn

(
1

r − t

)∣∣∣∣ .

If formula (2.1) is interpolatory, then, letting pn−1 to be the polynomial
of degree at most n − 1 interpolating the function 1/(r − t) at the points
τ1, τ2, . . . , τn, we have

1

r − t
− pn−1(t) = 1 − (r − t)pn−1(t)

r − t
. (2.14)

Now, as the left-hand side vanishes at the interpolating points, the
τ1, τ2, . . . , τn must be zeros of the numerator on the right-hand side, and
as this is a polynomial of degree at most n, we get

1 − (r − t)pn−1(t) = cnπn(t). (2.15)

If we write pn−1 in the Lagrange form of the interpolating polynomial and
then equalize the coefficients of tn on both sides of (2.15) or set t = r in
(2.15), we find

cn = 1

πn(r)
,

which, inserted into (2.15), gives, together with (2.14),

1

r − t
− pn−1(t) = 1

πn(r)
πn(t)
r − t

. (2.16)

Now, if we integrate (2.16) with respect to the weight function w on
[−1, 1], we get

Rn

(
1

r − t

)
= 1

πn(r)

∫ 1

−1

πn(t)
r − t

w(t)dt,

which, inserted into (2.10), implies (2.11).
(b) The proof is similar to that of part (a) using the condition ε(−1)k Rn(tk) ≥

0, k ≥ 0, and the function 1/(r + t) instead of εRn(tk) ≥ 0, k ≥ 0, and
1/(r − t), respectively. 	
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Incidentally, estimate (2.6) with | f |r bounded by (2.9) can be obtained by
a contour integration method (cf. [13]). If f is a single-valued holomorphic
function in a domain D containing [−1, 1] in its interior, and � is a contour in
D surrounding [−1, 1], then applying the error term Rn( f ), viewed as a linear
functional, on Cauchy’s formula

f (t) = 1

2π i

∮

�

f (z)

z − t
dz, t ∈ [−1, 1],

we get the representation

Rn( f ) = 1

2π i

∮

�

Kn(z) f (z)dz, (2.17)

where the function Kn(z), referred to as the kernel, is given by

Kn(z) = Rn

(
1

z − ·
)

.

From (2.17), there immediately follows

|Rn( f )| ≤ l(�)

2π
max
z∈�

|Kn(z)| max
z∈�

| f (z)|, (2.18)

where l(�) denotes the length of �. Now, taking � = ∂Cr = {z ∈ C : |z| =
r}, r > 1, it can be shown, using arguments similar to those of Theorem 2.1,
that

max
|z|=r

|Kn(z)| =
⎧
⎨

⎩

|Kn(r)| if εRn(tk) ≥ 0, k ≥ 0,

|Kn(−r)| if ε(−1)k Rn(tk) ≥ 0, k ≥ 0

=
∞∑

k=0

|Rn(tk)|
rk+1

= ‖Rn‖
r

(cf. (2.8)), and given that l(∂Cr) = 2πr, (2.18) gives

|Rn( f )| ≤ ‖Rn‖ max
|z|=r

| f (z)|. (2.19)

3 Computation of the error norm

The estimation or computation of ‖Rn‖ in (Xr, | · |r) by means of formula
(2.8) or Theorem 2.1 began with the work of Hämmerlin in 1972 (cf. [19])
for estimating ‖Rn‖ in the case of the Gauss formula for the Legendre weight
function w(t) = 1, −1 ≤ t ≤ 1. Starting from (2.8) and estimating effectively
|Rn(t2k)|, k ≥ n (by symmetry, Rn(t2k−1) = 0, k ≥ 1), he obtained

‖Rn‖ ≤ 22n−1(n!)4

n(2n + 1)[(2n)!]2

[
r

(r − 1)2n
− r

(r + 1)2n

]
.

This was continued a few years later by Akrivis (cf. [1, 2]). He obtained
estimates for and examined the asymptotic behavior as r → 1+ of ‖Rn‖ for
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symmetric quadrature formulae, such as the Gauss and Gauss–Lobatto rules
for the Gegenbauer weight function w(t) = (1 − t2)α, α > −1, −1 < t < 1,
paying particular attention to the special cases α = 0 (Legendre weight) and
α = ∓1/2 (Chebyshev weights of the first or second kind), or the Filippi
and Clenshaw–Curtis rules. Subsequently, all this was extended (cf. [1, 5])
to nonsymmetric quadrature formulae, such as the Gauss rule for the Jacobi
weight function w(t) = (1 − t)α(1 + t)β, α, β > −1, −1 < t < 1, paying partic-
ular attention to the case α = −β = ∓1/2 (Chebyshev weights of the third
or fourth kind), or the Gauss–Radau rule for the Legendre weight function.
The methods used are based on expressions of the form ‖Rn‖ = r|Rn(φ)| with
an appropriate φ (cf. (2.10) and (2.12)), and then utilizing either the best
approximation of φ in Pd, where d is the degree of exactness of the quadrature
formula in question, or the expansion of φ in terms of Chebyshev polynomials
of any one of the four kinds.

In what follows, we mainly concentrate on quadrature formulae for which
‖Rn‖ can be computed explicitly by means of (2.10)–(2.13).

3.1 The error norm of Gaussian rules

If the quadrature formula (2.1) is the Gauss rule for the weight function w on
[−1, 1], i.e., τν are the zeros of the nth-degree (monic) orthogonal polynomial
πn(·; w), then there exists the following important result of Gautschi (see [11]
or [13, Lemma 4.1]).

Lemma 3.1

(a) If w(t)/w(−t) is nondecreasing on (−1, 1), then Rn(tk) ≥ 0, k ≥ 0.
(b) If w(t)/w(−t) is nonincreasing on (−1, 1), then (−1)k Rn(tk) ≥ 0, k ≥ 0.

The proof of Lemma 3.1 makes use of an interesting result of Hunter
(cf. [22]).

In case that w(t)/w(−t) is constant, then w(t)/w(−t) = 1, i.e., w is an even
function, and, by symmetry, Rn(tk) = 0 for all k odd, hence, both cases of the
lemma hold simultaneously.

Obviously, Lemma 3.1 can be used in conjunction with Theorem 2.1 in order
to compute ‖Rn‖. First of all, for the Jacobi weight function w(t) = (1 − t)α(1 +
t)β, α, β > −1, −1 < t < 1, we have

w(t)
w(−t)

=
(

1 + t
1 − t

)β−α

,

which, as it can easily be seen, is increasing on (−1, 1) if α < β and decreasing
if α > β.



Numer Algor (2012) 60:555–578 563

A special case of the Jacobi weight function are the Chebyshev weights of
any one of the four kinds

w(1)(t) = (1 − t2)−1/2, w(2)(t) = (1 − t2)1/2, −1 < t < 1, (3.1)

w(3)(t) = (1 − t)−1/2(1 + t)1/2, w(4)(t) = (1 − t)1/2(1 + t)−1/2, −1 < t < 1.

(3.2)

The first two are even functions, so, according to what was said before,
w(1), w(2) and w(3) satisfy part (a) of Lemma 3.1, while w(4) satisfies part (b).
Then ‖Rn‖ can be computed by means of (2.11) and (2.13), respectively. The
following results appeared first in [1, 2, 5].

Theorem 3.2 Consider the Gauss formula (2.1), and let τ = r − √
r2 − 1.

(a) For w = w(1), we have

‖R(1)
n ‖ = 2πrτ 2n

(1 + τ 2n)
√

r2 − 1
, n ≥ 1. (3.3)

(b) For w = w(2), we have

‖R(2)
n ‖ = 2πrτ 2n+2

√
r2 − 1

1 − τ 2n+2
, n ≥ 1. (3.4)

(c) For w = w(3) or w = w(4), we have

‖R(3)
n ‖ = 2πrτ 2n+1

1 + τ 2n+1

√
r + 1

r − 1
, n ≥ 1, (3.5)

and ‖R(4)
n ‖ is given by the same formula (3.5).

Proof

(a) Applying (2.11) with w = w(1), we have

‖R(1)
n ‖ = r

Tn(r)

∫ 1

−1

Tn(t)
r − t

(1 − t2)−1/2dt, (3.6)

where Tn is the nth-degree Chebyshev polynomial of the first kind.
Setting t = cos θ in the integral on the right-hand side of (3.6), and us-
ing the well-known trigonometric representation Tn(cos θ) = cos nθ ,
we get

∫ 1

−1

Tn(t)
r − t

(1 − t2)−1/2dt =
∫ π

0

cos nθ

r − cos θ
dθ

= πτ n

√
r2 − 1

, n = 0, 1, 2, . . . (3.7)
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(cf. [15, Equation 3.613.1 with a = −1/r]). Also,

Tn(r) = (r − √
r2 − 1)n + (r + √

r2 − 1)n

2

= 1 + τ 2n

2τ n
, n = 0, 1, 2, . . . . (3.8)

(cf. [47, p. 5]), which inserted, together with (3.7), into (3.6), yields
(3.3).

(b)–(c) The proof of (3.4) and (3.5) follows similarly to that of (3.3), using the
trigonometric representations for the nth-degree Chebyshev polyno-
mials of the second and third kind Un and Vn, formula

∫ π

0

cos nθ

r + cos θ
dθ = (−1)nπτ n

√
r2 − 1

, n = 0, 1, 2, . . .

(cf. (3.7) and set π − θ in place of θ), and expressions analogous to
(3.8) for Un and Vn.

Also, as w(4)(t) = w(3)(−t), from (2.1) and (2.8), it is easy to see that ‖R(4)
n ‖ =

‖R(3)
n ‖. 	


The class of Gauss formulae (2.1), for which one can explicitly compute
‖Rn‖ has been substantially extended in [3, 4, 40], where the underlying weight
function is of Bernstein–Szegö type. These are weight functions consisting of
any one of the four Chebyshev weights divided by an arbitrary polynomial
which remains positive on [−1, 1], i.e.,

w(1)
ρ (t) = (1 − t2)−1/2

ρ(t)
, w(2)

ρ (t) = (1 − t2)1/2

ρ(t)
, −1 < t < 1, (3.9)

w(3)
ρ (t) = (1 − t)−1/2(1 + t)1/2

ρ(t)
, w(4)

ρ (t) = (1 − t)1/2(1 + t)−1/2

ρ(t)
, −1 < t < 1,

(3.10)

where ρ(t) > 0 on [−1, 1]. In [3], there were considered the two cases

ρa(t) = 1 + a2 + 2at and ρb 1(t) = (2b 1 + 1)t2 + b 2
1, b 1 > 0,

in [4], the case

ρb 2(t) = b 2
2 − (2b 2 − 1)t2, b 2 > 1,

while [40] is concerned with the case of an arbitrary quadratic polynomial

ρ(t) = ρ(t; α, β, δ) = β(β − 2α)t2 + 2δ(β − α)t + α2 + δ2,

0 < α < β, β �= 2α, |δ| < β − α (3.11)
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(cf. [14, Proposition 2.1]). Clearly,

ρa(t) = ρ(t; 1, 2, a), ρb 1(t) = ρ(t; b 1, 2b 1 + 1, 0) and

ρb 2(t) = ρ(t; b 2, 2b 2 − 1, 0),

hence, we present here only the results for the general case (3.11). There
should be noted that when ρ = ρa the conditions on α, β, δ in (3.11) im-
pose |a| < 1; however, this is not restrictive, as for |a| > 1, we have ρa(t) =
a2

(
1

a2
+ 1 + 2

a
t
)

= a2(1 + d2 + 2dt), where d = 1/a, |d| < 1, so, apart from a

constant factor, this case falls into the previous one; on the other hand, for
|a| = 1, the resulting weight function, assuming it is integrable, is one of the
Chebyshev weights; for a detailed analysis of all this the reader is referred to
[3, Section 2a]. First, we begin with

Lemma 3.3

(a) Consider the weight functions w(1)
ρ and w(2)

ρ , with ρ given by (3.11). Then
w(1)

ρ (t)/w(1)
ρ (−t) and w(2)

ρ (t)/w(2)
ρ (−t) are strictly increasing on (−1, 1) if

β − 2α > 0, β(β − 2α) ≤ α2 + δ2, δ < 0, (3.121)

or

β − 2α < 0, δ < 0, (3.122)

equal to 1 if δ = 0, and strictly decreasing on (−1, 1) if

β − 2α > 0, β(β − 2α) ≤ α2 + δ2, δ > 0, (3.131)

or

β − 2α < 0, δ > 0. (3.132)

(b) Consider the weight functions w(3)
ρ and w(4)

ρ , with ρ given by (3.11). Then
w(3)

ρ (t)/w(3)
ρ (−t) is strictly increasing on (−1, 1) if either (3.121) or (3.122)

holds, or δ = 0, and w(4)
ρ (t)/w(4)

ρ (−t) is strictly decreasing on (−1, 1) if
either (3.131) or (3.132) holds, or δ = 0.

The proof of Lemma 3.3 is rather straightforward and is given in
[40, Lemma 2.2].

Now, Lemma 3.3, together with Lemma 3.1, allow us to use Theorem 2.1
in order to compute ‖Rn‖ for each of the weight functions (3.9) and (3.10),
with ρ given by (3.11). Of paramount importance in this computation is that
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the corresponding (monic) orthogonal polynomials are given in terms of the
respective Chebyshev polynomials, that is,

π(1)
n,ρ(t) = 1

2n−1

[
Tn(t) + 2δ

β
Tn−1(t) +

(
1 − 2α

β

)
Tn−2(t)

]
, n ≥ 2,

π
(1)
1,ρ(t) = t + δ

β − α
,

π(2)
n,ρ(t) = 1

2n

[
Un(t) + 2δ

β
Un−1(t) +

(
1 − 2α

β

)
Un−2(t)

]
, n ≥ 1,

π(3)
n,ρ(t) = 1

2n

[
Vn(t) + 2δ

β
Vn−1(t) +

(
1 − 2α

β

)
Vn−2(t)

]
, n ≥ 2,

π
(3)
1,ρ(t) = t − α − δ

β
,

π(4)
n,ρ(t; α, β, δ) = (−1)nπ(3)

n,ρ(−t; α, β, −δ), n ≥ 1

(cf. [14, Equations (3.8), (3.8)1, (3.9), (3.10), (3.10)1, (3.11)]). Then following
the steps in the proof of Theorem 3.2, we obtain (cf. [40, Theorems 3.1–3.3])

Theorem 3.4 Consider the Gauss formula (2.1), and let τ = r − √
r2 − 1.

(a) For w = w(1)
ρ , with ρ given by (3.11), we have

‖R(1)
n,ρ‖

= 8πrτ2n

[(β − 2α)τ2 + 2δτ + β][(β − 2α)τ2(1 + τ2n−4) + 2δτ(1 + τ2n−2) + β(1 + τ2n)]
√

r2 − 1
,

n ≥ 1,

(3.14)

if either (3.121) or (3.122) holds, or δ = 0, and the same formula (3.14),
with δ replaced by −δ, if either (3.131) or (3.132) holds.

(b) For w = w(2)
ρ , with ρ given by (3.11), we have

‖R(2)
n,ρ‖

= 8πrτ2n+2
√

r2 − 1

[(β − 2α)τ2 + 2δτ + β][(β − 2α)τ2(1 − τ2n−2) + 2δτ(1 − τ2n) + β(1 − τ2n+2)] ,

n ≥ 1,

(3.15)

if either (3.121) or (3.122) holds, or δ = 0, and the same formula (3.15),
with δ replaced by −δ, if either (3.131) or (3.132) holds.
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(c) For w = w(3)
ρ or w = w(4)

ρ , with ρ given by (3.11), we have

‖R(3)
n,ρ‖

= 8πrτ2n+1

[(β − 2α)τ2 + 2δτ + β][(β − 2α)τ2(1 + τ2n−3) + 2δτ(1 + τ2n−1) + β(1 + τ2n+1)]

×
√

r + 1

r − 1
, n ≥ 1,

(3.16)

if either (3.121) or (3.122) holds, or δ = 0, and ‖R(4)
n,ρ‖ is given by the same

formula (3.16), with δ replaced by −δ, if either (3.131) or (3.132) holds, or
δ = 0.

Obviously, Theorem 3.4 includes, as a special case, Theorem 3.2; indeed, for
α = 1, β = 2, δ = 0 in (3.11), we have ρ(t) = ρ(t; 1, 2, 0) = 1, hence, w(i)

ρ =
w(i), i = 1, 2, 3, 4.

Estimates (2.19) for the Gauss formula (2.1) relative to the weight functions
w = w(i)

ρ , i = 1, 2, 3, 4, with ρ given by (3.11), are quite sharp. This has been
attested not only in [40, Section 4], but also fairly recently when these estimates
were compared to bounds derived by contour integration on elliptic contours,
which are known to be more efficient than circular ones (cf. [46, Section 3],
[52, Section 3], [54, Section 3] and [56, Section 5]); in most cases, the estimates
(2.19) were as good as, and in some cases even better than, the bounds obtained
by contour integration.

3.2 The error norm of Gauss–Lobatto rules

Assume that the quadrature formula (2.1) is the Gauss–Lobatto rule for the
weight function w on [−1, 1],

∫ 1

−1
f (t)w(t)dt = wL

0 f (1) +
n∑

ν=1

wL
ν f (τ L

ν ) + wL
n+1 f (−1) + RL

n ( f ), (3.17)

where τ L
ν are the zeros of the nth-degree (monic) orthogonal polynomial

π L
n (·) = πn(·; wL) relative to the weight function wL(t) = (1 − t2)w(t). Then

the following theorem holds.

Theorem 3.5 Consider the Gauss–Lobatto formula (3.17) for the weight func-
tion w on the interval [−1, 1].
(a) If w(t)/w(−t) is nondecreasing on (−1, 1), then

‖RL
n ‖ = r

(r2 − 1)π L
n (r)

∫ 1

−1

π L
n (t)

r − t
wL(t)dt. (3.18)

(b) If w(t)/w(−t) is nonincreasing on (−1, 1), then

‖RL
n ‖ = r

(r2 − 1)π L
n (−r)

∫ 1

−1

π L
n (t)

r + t
wL(t)dt. (3.19)



568 Numer Algor (2012) 60:555–578

The proof is based on the comparison between formula (3.17) and the Gauss
formula for the weight function wL (cf. [42, Theorem 2.1]).

The first case for which ‖RL
n ‖ has been computed explicitly is that of the

Chebyshev weight function of the first kind w(1). It has been done by Akrivis
in his doctoral dissertation (cf. [1, Section 1.5b]). By using (2.10) and expressing
1/(r − t) in terms of the Chebyshev polynomials of the first kind, he derived

‖RL(1)
n ‖ = 2πrτ 2n+2

(1 − τ 2n+2)
√

r2 − 1
, n ≥ 1, (3.20)

where τ = r − √
r2 − 1.

Much more can be obtained if we apply Theorem 3.5 to the weight functions
(3.9) and (3.10), with ρ given by (3.11), and use Lemma 3.3.

Theorem 3.6 Consider the Gauss–Lobatto formula (3.17), and let τ = r −√
r2 − 1.

(a) For w = w(1)
ρ , with ρ given by (3.11), we have

‖RL(1)
n,ρ ‖

= 8πrτ2n+2

[(β − 2α)τ2 + 2δτ + β][(β − 2α)τ2(1 − τ2n−2) + 2δτ(1 − τ2n) + β(1 − τ2n+2)]
√

r2 − 1
,

n ≥ 1,

(3.21)

if either (3.121) or (3.122) holds, or δ = 0, and the same formula (3.21),
with δ replaced by −δ, if either (3.131) or (3.132) holds.

(b) For w = w(2)
ρ , with ρ given by (3.11), we have

‖RL(2)
n,ρ ‖ = 8πrτ 2n+4(τ 2 − 2γ1τ − 4γ2)

√
r2 − 1

[(β − 2α)τ 2 + 2δτ + β](4γ2τ 2ωn + 2γ1τωn+1 − ωn+2)
, n ≥ 1,

(3.22)
where

γ1 = αδ

[(β − α)2 − δ2]n2 + (β2 − α2 − δ2)n + αβ
,

γ2 = [(β − α)2 − δ2](n + 1)2 + (β2 − α2 − δ2)(n + 1) + αβ

4{[(β − α)2 − δ2]n2 + (β2 − α2 − δ2)n + αβ} , (3.23)

ωn = (β − 2α)τ 2(1 − τ 2n−2) + 2δτ(1 − τ 2n) + β(1 − τ 2n+2),

if either (3.121) or (3.122) holds, or δ = 0, and the same formulae (3.22),
(3.23), with δ replaced by −δ, if either (3.131) or (3.132) holds.

(c) For w = w(3)
ρ or w = w(4)

ρ , with ρ given by (3.11), we have

‖RL(3)
n,ρ ‖ = 8πrτ 2n+3(τ + 2γ )

[(β − 2α)τ 2 + 2δτ + β](2γ τωn + ωn+1)

√
r + 1

r − 1
, n ≥ 1,

(3.24)
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where

γ = (β − α − δ)(n + 1) + α

2[(β − α − δ)n + α] , (3.25)

and ωn as in (3.23), if either (3.121) or (3.122) holds, or δ = 0; and ‖RL(4)
n,ρ ‖

is given by the same formulae (3.24), (3.25) and (3.23), with δ replaced by
−δ, if either (3.131) or (3.132) holds, or δ = 0.

Proof

(a) As wL(1)
ρ (t) = (1 − t2)w(1)

ρ (t) = w(2)
ρ (t), from (3.18) and (3.19), we get

‖RL(1)
n,ρ ‖ = ‖R(2)

n,ρ‖
r2 − 1

,

where R(2)
n,ρ is the error term of the Gauss formula for the weight

function w(2)
ρ , and the result follows from Theorem 3.4(b).

(b)–(c) The proof is substantially more complicated, and the reader is re-
ferred to [42, Theorems 3.4 and 3.5]. 	


Obviously, (3.20) is a special case of (3.21) with α = 1, β = 2, δ = 0.

3.3 The error norm of Gauss–Radau rules

Assume that the quadrature formula (2.1) is the Gauss–Radau rule for the
weight function w on [−1, 1] and additional node at −1 or 1,

∫ 1

−1
f (t)w(t)dt =

n∑

ν=1

wR(−)
ν f (τ R(−)

ν ) + w
R(−)
n+1 f (−1) + RR(−)

n ( f ), (3.26)

or
∫ 1

−1
f (t)w(t)dt = w

R(+)
0 f (1) +

n∑

ν=1

wR(+)
ν f (τ R(+)

ν ) + RR(+)
n ( f ), (3.27)

where τ R(−)
ν are the zeros of the nth-degree (monic) orthogonal polynomial

π R(−)
n (·)=πn(·; wR(−)) relative to the weight function wR(−)(t) = (1 + t)w(t),

and τ R(+)
ν are the zeros of the nth-degree (monic) orthogonal polynomial

π R(+)
n (·) = πn(·; wR(+)) relative to the weight function wR(+)(t) = (1 − t)w(t).

Unfortunately, here we don’t have a general result like Theorem 3.5 in the
Gauss–Lobatto case, hence each weight function has to be treated separately.
However, it is not difficult to show that

‖RR(+)
n (·; w(t))‖ = ‖RR(−)

n (·; w(−t))‖
(cf. [45, Eq. (1.17)]), which saves some computations; in particular, if w is an
even weight function, then ‖RR(+)

n ‖ = ‖RR(−)
n ‖.
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Akrivis, in his doctoral dissertation (cf. [1, Section 1.7]), using (2.10) and
expressing 1/(r − t) in terms of the Chebyshev polynomials of the first or
second kind, obtained estimates for ‖RR(−)

n ‖ and ‖RR(+)
n ‖ in the case of the

Legendre weight function w(t) = 1, −1 ≤ t ≤ 1.
Only recently, we succeeded to compute ‖RR(−)

n ‖ and ‖RR(+)
n ‖ explicitly for

most of the Chebyshev weights (3.1) and (3.2). First of all, we showed

Lemma 3.7

(a) The error term of the Gauss–Radau formula (3.26) with w = w(1) satisf ies

(−1)k−1 RR(−)(1)
n (tk) ≥ 0, k ≥ 0. (3.28)

(b) The error term of the Gauss–Radau formula (3.26) with w = w(2) satisf ies

(−1)k−1 RR(−)(2)
n (tk) ≥ 0, k ≥ 0, 1 ≤ n ≤ 40. (3.29)

(c) The error term of the Gauss–Radau formula (3.26) with w = w(4) satisf ies

(−1)k−1 RR(−)(4)
n (tk) ≥ 0, k ≥ 0. (3.30)

The proof of (3.28) and (3.30) is based on the comparison of formula (3.26)
with w = w(1) or w = w(4) with the (2n)-point Gauss–Lobatto formula for the
weight w(1) or the Gauss formula for the weight w(2), respectively. For part
(b), we proved (3.29) for k(even) ≥ 2kR(−)(2)

n and verified it numerically for
k(even) < 2kR(−)(2)

n , 1 ≤ n ≤ 40, where kR(−)(2)
n are certain integers tabulated

in [45, Table 1]; for k odd, the validity of (3.29) follows from the definiteness
of the Gauss–Radau formula (cf. [45, Propositions 2.1, 2.2, 2.11 and Lemma
2.4]).

Unfortunately, RR(−)(3)
n (tk) does not keep a constant sign for all k even

(cf. [45, Lemmas 2.7 and 2.8]).

Remark 3.1 In [45, Conjecture 2.5], it is conjectured that (3.29) is true for all
n ≥ 1.

Now, from (2.13), in view of Lemma 3.7, we get

Theorem 3.8 Consider the Gauss–Radau formula (3.26), and let τ = r −√
r2 − 1.

(a) For w = w(1), we have

‖RR(−)(1)
n ‖ = 2πrτ 2n+1

(1 − τ 2n+1)
√

r2 − 1
, n ≥ 1. (3.31)
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(b) For w = w(2), we have

‖RR(−)(2)
n ‖ = 2πrτ 2n+3

( n+2
n+1 − τ

) √
r2 − 1

1 − τ 2n+4 − n+2
n+1τ(1 − τ 2n+2)

, 1 ≤ n ≤ 40. (3.32)

(c) For w = w(4), we have

‖RR(−)(4)
n ‖ = 2πrτ 2n+2

1 − τ 2n+2

√
r + 1

r − 1
, n ≥ 1. (3.33)

On the other hand, for w = w(3), we have

‖RR(−)(3)
n ‖ <

2πrτ 2n+2
(
τ + 2n+3

2n+1

)

1+ τ 2n+3 + 2n+3
2n+1τ(1 + τ 2n+1)

√
r +1

r −1
+ 2π

r2kR(−)(3)
n −2(r2 −1)

, n ≥ 1,

(3.34)

where kR(−)(3)
n are integers tabulated in [45, Table 2] for 1 ≤ n ≤ 10, but they

can also be computed for any n. An estimate slightly sharper but substantially
more complicated than (3.34) is given in [45, Eq. (2.58)], although for all
practical purposes both estimates give the same results, and this is also the
case even if one uses just the first term on the right-hand side of (3.34) (cf. [45,
Example 3.2]).

Moreover, for the Gauss–Radau formula (3.27) with w = w(i), i = 1, 2, 3,
‖RR(+)(1)

n ‖, ‖RR(+)(2)
n ‖ for 1 ≤ n ≤ 40, and ‖RR(+)(3)

n ‖ are given by the same for-
mulae (3.31), (3.32) and (3.33), respectively, while for ‖RR(+)(4)

n ‖ the estimates
(3.34) and [45, Eq. (2.58)] hold; for further details, the reader is referred to [45,
Theorems 2.3, 2.6, 2.9, 2.10, 2.13 and 2.14].

Theorem 3.8 and estimates (3.34) and [45, Eq. (2.58)] shed some light on
conjectures of Gautschi (cf. [12, Section 4.2]) regarding remainder estimates
based on contour integration of the Gauss–Radau formulae in question (cf. [45,
end of each of Subsections 2.1–2.4]).

3.4 The error norm of Gauss–Kronrod rules

Assume that the quadrature formula (2.1) is the Gauss–Kronrod rule for the
weight function w on [−1, 1],

∫ 1

−1
f (t)w(t)dt =

n∑

ν=1

σ K
ν f (τν) +

n+1∑

μ=1

σ ∗K
μ f (τ ∗K

μ ) + RK
n ( f ), (3.35)

where τν are the Gauss points, i.e., the zeros of the (monic) orthogonal poly-
nomial πn(·; w), and the τ ∗K

μ , σ K
ν , σ ∗K

μ are chosen such that (3.35) has maxi-
mum degree of exactness (at least) 3n + 1, i.e., RK

n ( f ) = 0 for all f ∈ P3n+1.
Unfortunately, general results, like those in the Gauss and Gauss–Lobatto
cases (cf. Theorems 2.1 and 3.5), are not possible here, therefore each weight
function has to be treated as a separate case.
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First of all, for the Legendre weight function w(t) = 1, −1 ≤ t ≤ 1, following
the idea of Hämmerlin in [19] (cf. the beginning of Section 3), we showed that

‖RK
n ‖ <

(n!)2(dn − in + 1)!
2n−2(2n)!(dn + 1)!

[
r

(r − 1)dn−in+2
+ (−1)in r

(r + 1)dn−in+2

]
,

2 ≤ n ≤ 30,

where dn is the degree of exactness of the quadrature formula in question,
dn = 3n + 1 for n even and dn = 3n + 2 for n odd, and in is an appropriate
constant, which is tabulated for 2 ≤ n ≤ 30 (cf. [41, Table 1]), but it can also be
computed for any n > 30.

The next result concerns the Bernstein–Szegö weight functions (3.9) and
(3.10), with ρ given by

ργ (t) = ρ(t; 1, 2/(1 + γ ), 0) = 1 − 4γ

(1 + γ )2
t2, −1 < γ ≤ 0. (3.36)

First, we proved (cf. [44, Proposition 3.2])

Lemma 3.9

(a) The error term of the Gauss–Kronrod formula (3.35) for w = w(1)
ργ

, with ργ

given by (3.36), satisf ies

RK(1)
n,ργ

(tk) ≤ 0, k ≥ 0, n ≥ 4. (3.37)

(b) The error term of the Gauss–Kronrod formula (3.35) for w = w(2)
ργ

, with ργ

given by (3.36), satisf ies

RK(2)
n,ργ

(tk) ≥ 0, k ≥ 0, n ≥ 2. (3.38)

(c) The error term of the Gauss–Kronrod formula (3.35) for w = w(4)
ργ

, with ργ

given by (3.36), satisf ies

(−1)k RK(4)
n,ργ

(tk) ≤ 0, k ≥ 0, n ≥ 3. (3.39)

To prove (3.38) and (3.39), we compared the quadrature formulae in
question with the (2n + 1) and the (2n)-point Gauss formula for the Bernstein–
Szegö weight function ŵ(2)

ργ
(t) = (1 − t2)1/2/[ργ (t)]2, and then we used Lemmas

3.1 and 3.3; while, for (3.37), the quadrature formula under consideration
was compared with the (2n − 1)-point Gauss–Kronrod formula for the weight
function w(2)

ργ
.
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Now, from (2.11) and (2.13), in view of Lemma 3.9, we get (cf. [44, Theorems
3.8–3.10])

Theorem 3.10 Consider the Gauss–Kronrod formula (3.35), and let τ = r −√
r2 − 1.

(a) For w = w(1)
ργ

, with ργ given by (3.36), we have

‖RK(1)
n,ργ

‖

= 2π(1 + γ )2rτ 4n−2(τ 2 − γ )

(1 − γ τ 2)[1 − τ 4n − 2γ τ 2(1 − τ 4n−4) + γ 2τ 4(1 − τ 4n−8)]√r2 − 1
,

n ≥ 4, −1 < γ ≤ 0,

‖RK(1)
1,ργ

‖ = 2π(1 + γ )2rτ 6

(1 − γ τ 2)[1 + τ 6 − γ τ 2(1 + τ 2)]√r2 − 1
, −1 < γ < 1,

‖RK(1)
2,ργ

‖

= 2π(1 + γ )2rτ 8[τ 2 − (1 + 2γ )]
(1 − γ τ 2)[1 + τ 10 − (1 + 3γ )τ 2(1 + τ 6) + γ (1 + 2γ )τ 4(1 + τ 2)]√r2 − 1

,

−1 < γ ≤ −1/2.

(b) For w = w(2)
ργ

, with ργ given by (3.36), we have

‖RK(2)
n,ργ

‖ = 2π(1 + γ )2rτ 4n+2(τ 2 − γ )
√

r2 − 1

(1 − γ τ 2)[1 − τ 4n+4 − 2γ τ 2(1 − τ 4n) + γ 2τ 4(1 − τ 4n−4)] ,
n ≥ 2, −1 < γ ≤ 0,

‖RK(2)
1,ργ

‖ = 2π(1 + γ )2rτ 8
√

r2 − 1

(1 − γ τ 2)[1 − τ 8 − γ τ 2(1 − τ 4)] , −1 < γ < 1.

(c) For w = w(4)
ργ

or w = w(3)
ργ

, with ργ given by (3.36), we have

‖RK(4)
n,ργ

‖

= 2π(1 + γ )2rτ 4n(τ 2 − γ )

(1 − γ τ 2)[1 − τ 4n+2 − 2γ τ 2(1 − τ 4n−2) + γ 2τ 4(1 − τ 4n−6)]
√

r + 1

r − 1
,

n ≥ 3, −1 < γ ≤ 0,

(3.40)

and ‖RK(3)
n,ργ

‖ is given by the same formula (3.40).
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Remark 3.2 Unfortunately, the error term of the Gauss–Kronrod formula
(3.35) for each of the weight functions w(1)

ργ
, with n = 3, and w(4)

ργ
or w(3)

ργ
, with

n = 1, 2, does not satisfy a condition of type (3.37)–(3.39), which is necessary
for applying Theorem 2.1.

3.5 The error norm of interpolatory rules

Let’s assume that the quadrature formula (2.1) is the interpolatory rule with
w(t) = 1,

∫ 1

−1
f (t)dt =

n∑

ν=1

wF
ν f (τ F

ν ) + RF
n ( f ), (3.41)

where τ F
ν are the zeros of the nth-degree Chebyshev polynomial of any one of

the second, third or fourth kind, i.e.,

τ F(2)
ν = cos

ν

n + 1
π, ν = 1, 2, · · · , n,

τ F(3)
ν = cos

2ν − 1

2n + 1
π, ν = 1, 2, · · · , n,

τ F(4)
ν = cos

2ν

2n + 1
π, ν = 1, 2, · · · , n,

respectively. For τ F
ν = τ F(2)

ν formula (3.41) is known as the Fejér rule of the
second kind or Filippi rule. In order to be able to compute ‖RF(i)

n ‖, i = 2, 3, 4,

we need (cf. [43, Section 3])

Lemma 3.11

(a) The error term of the interpolatory formula (3.41) with τ F
ν = τ F(2)

ν satisf ies

RF(2)
n (tk) ≥ 0, k ≥ 0. (3.42)

(b) The error term of the interpolatory formula (3.41) with τ F
ν = τ F(3)

ν satisf ies

(−1)k RF(3)
n (tk) ≥ 0, k ≥ 0, 1 ≤ n ≤ 20. (3.43)

(c) The error term of the interpolatory formula (3.41) with τ F
ν = τ F(4)

ν satisf ies

RF(4)
n (tk) ≥ 0, k ≥ 0, 1 ≤ n ≤ 20. (3.44)

The proof of (3.42) is based on the definiteness of the respective quadrature
formula, while for parts (b) and (c), we follow the technique used in Lemma
3.7(b) for k even, except that here it is applied to all k even or odd.

Remark 3.3 In [43, Conjecture 3.2], it is conjectured that (3.43) and (3.44) are
true for all n ≥ 1.
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Now, in addition to Lemma 3.11, the computation of ‖RF(i)
n ‖, i = 2, 3, 4,

would require a formula for
∫ 1

−1

πn(t)
r ∓ t

dt, r > 1, with πn being any one of the

nth-degree Chebyshev polynomials of the second, third or fourth kind. Such
formulae were obtained, even for the nth-degree Chebyshev polynomial of
the first kind πn = Tn, in [43, Proposition 2.2] for all |r| > 1; for example, if
πn = Un, πn = Vn or πn = Wn, then

∫ 1

−1

πn(t)
r ∓ t

dt = πn(±r) ln

(
r + 1

r − 1

)
∓ 4

[(n+1)/2]∑

k=1

πn−2k+1(±r)
2k − 1

, n ≥ 1, (3.45)

where [·] denotes the integer part of a real number.
Analogous formulae were obtained for |r| < 1 in the Cauchy Principal

Value sense (cf. [43, Proposition 2.3]).
Based on (2.11), (2.13) and (3.45), one derives, in view of (3.42)–(3.44)

(cf. [43, Proposition 3.3]),

Theorem 3.12 Consider the interpolatory formula (3.41).

(a) For τ F
ν = τ F(2)

ν , we have

‖RF(2)
n ‖ = r ln

(
r + 1

r − 1

)
− 4r

Un(r)

[(n+1)/2]∑

k=1

Un−2k+1(r)
2k − 1

, n ≥ 1. (3.46)

(b) For τ F
ν = τ F(3)

ν , we have

‖RF(3)
n ‖ = r ln

(
r + 1

r − 1

)
+ 4r

Vn(−r)

[(n+1)/2]∑

k=1

Vn−2k+1(−r)
2k − 1

, 1 ≤ n ≤ 20.

(c) For τ F
ν = τ F(4)

ν , we have

‖RF(4)
n ‖ = r ln

(
r + 1

r − 1

)
− 4r

Wn(r)

[(n+1)/2]∑

k=1

Wn−2k+1(r)
2k − 1

, 1 ≤ n ≤ 20.

Remark 3.4 Unfortunately, the error term of the interpolatory formula (3.41)
with τ F

ν the zeros of the nth-degree Chebyshev polynomial of the first kind,

τ F(1)
ν = cos

2ν − 1

2n
π, ν = 1, 2, · · · , n, known as the Fejér rule of the first kind

or Pólya rule, does not satisfy a condition of type (3.42)–(3.44), which is
necessary for applying Theorem 2.1.

Akrivis, in his doctoral dissertation (cf. [1, Eqs. (1.7.5) and (1.7.6)] and the
correction in [43, p. 1227]), has obtained a bound for ‖RF(2)

n ‖, which is pretty
close to the actual value (3.46), so our result for ‖RF(2)

n ‖ is a refinement of
Akrivis’s result.
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53. Spalević, M.M.: Error estimates of anti-Gaussian quadrature formulae. J. Comput. Appl.
Math. 236, 3542–3555 (2012)
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