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Abstract In order to solve large sparse linear complementarity problems
on parallel multiprocessor systems, we construct modulus-based synchronous
two-stage multisplitting iteration methods based on two-stage multisplittings
of the system matrices. These iteration methods include the multisplitting re-
laxation methods such as Jacobi, Gauss–Seidel, SOR and AOR of the modulus
type as special cases. We establish the convergence theory of these modulus-
based synchronous two-stage multisplitting iteration methods and their re-
laxed variants when the system matrix is an H+-matrix. Numerical results show
that in terms of computing time the modulus-based synchronous two-stage
multisplitting relaxation methods are more efficient than the modulus-based
synchronous multisplitting relaxation methods in actual implementations.
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1 Introduction

Let R
n and R

n×n be the n-dimensional real vector space and the n-by-n real
matrix space, respectively. For given matrix A ∈ R

n×n and vector q ∈ R
n, the

linear complementarity problem, abbreviated as LCP(q, A), consists of finding
a pair of vectors r, z ∈ R

n such that

r := Az + q ≥ 0, z ≥ 0 and zT(Az + q) = 0,

where zT denotes the transpose of the vector z. We refer to [9] for detailed
descriptions about this problem and its practical backgrounds.

To solve the LCP(q, A) fast and economically by iterative methods, Bai
recently proposed in [2] a class of modulus-based splitting iteration methods,
which provides a general framework for the modulus iteration [18, 19], the
modified modulus iteration [13], and the nonstationary extrapolated modulus
iteration [16, 17]. In order to suit computational requirements of the modern
high-speed multiprocessor environments, Bai and Zhang further presented in
[7] synchronous parallel counterparts for the modulus-based splitting iteration
methods by making use of multiple splittings of the system matrix A [6, 20].
This class of modulus-based synchronous multisplitting (MSM) iteration meth-
ods only needs to solve, at each iteration step, sub-systems of linear equations
rather than linear complementarity sub-problems [4, 5], and is also convergent
when the system matrix A ∈ R

n×n is an H+-matrix.
To precisely describe the MSM iteration method, we first state the concept

of matrix multisplitting. Let � be a given positive integer with � ≤ n, A = Mk −
Nk, k = 1, 2, . . . , �, be splittings of the system matrix A ∈ R

n×n, and Ek ∈ R
n×n,

k = 1, 2, . . . , �, be nonnegative diagonal matrices satisfying
�∑

k=1
Ek = I (the

identity matrix). Then the collection of triples (Mk, Nk, Ek) (k = 1, 2, . . . , �)

is called a multisplitting of the matrix A. In addition, the matrices Ek (k =
1, 2, . . . , �) are called weighting matrices. Then the MSM iteration method
established in [7] can be described as follows.

Method 1.1 (The MSM iteration method for LCP(q, A)) Let (Mk, Nk, Ek)

(k = 1, 2, . . . , �) be a multisplitting of the system matrix A ∈ R
n×n, � ∈ R

n×n

be a positive diagonal matrix, and γ be a positive constant. Given an initial
vector x(0) ∈ R

n, for m = 0, 1, 2, . . . until the iteration sequence {z(m)}∞m=0 ⊂ R
n

is convergent, compute z(m+1) ∈ R
n by

z(m+1) = 1

γ

(∣
∣x(m+1)

∣
∣+ x(m+1)

)

and x(m+1) ∈ R
n according to

x(m+1) =
�∑

k=1

Ekx(m,k),
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where x(m,k), k = 1, 2, . . . , �, are obtained by solving the linear systems

(� + Mk)x(m,k) = Nkx(m) + (� − A)|x(m)| − γ q, k = 1, 2, . . . , �, (1)

respectively.

In practical applications, however, the multiple splittings A = Mk − Nk,
k = 1, 2, . . . , �, may be determined by the inherent properties of the original
problem, which probably results in unbalanced distribution of the tasks among
the processors. Also, the sub-systems of linear equations defined by (1) may
be still too large to be solved by direct method. To avoid these shortcomings
of the MSM iteration method, in this paper we employ splitting iteration
methods again to solve the sub-systems of linear equations in (1), resulting
in a class of modulus-based synchronous two-stage multisplitting (MSTM)
iteration methods for parallelly solving the LCP(q, A). With special choices
of the two-stage multisplitting of the system matrix, we can obtain a sequence
of modulus-based synchronous two-stage multisplitting relaxation methods,
including Jacobi, Gauss–Seidel, SOR and AOR, respectively. When the system
matrix A ∈ R

n×n is an H+-matrix [1], we prove the convergence of the MSTM
iteration method and its relaxed variants. Numerical results show that in terms
of computing time the modulus-based synchronous two-stage multisplitting
Gauss–Seidel and SOR methods are more efficient than the MSM iteration
method in actual implementations.

The outline of the paper is as follows. In Section 2 we present some
necessary notations and useful lemmas. In Section 3 we establish the MSTM
iteration method and its relaxed variants. The convergence of these modulus-
based synchronous two-stage multisplitting iteration methods are proved in
Section 4, and the numerical results are given in Section 5. Finally, in Section 6,
we end the paper by a few concluding remarks.

2 Notations and lemmas

We denote by Nn = {1, 2, . . . , n} the set of the first n positive integers. Given
two real m-by-n matrices A = (aij) and B = (bij), we write A ≥ B (or A >

B) if aij ≥ bij (or aij > bij) hold for all i ∈ Nm and j ∈ Nn. A ∈ R
m×n is said to

be a nonnegative (or positive) matrix if aij ≥ 0 (or aij > 0) hold for all i ∈ Nm

and j ∈ Nn. |A| = (|aij|) stands for the absolute value of the matrix A ∈ R
m×n.

Note that |A| is a nonnegative matrix. We use AT and ρ(A) to represent the
transpose and the spectral radius of the square matrix A ∈ R

n×n, respectively.
These notations are easily specified to vectors in R

n.
For A, B ∈ R

n×n satisfying |A| ≤ B, it holds that ρ(A) ≤ ρ(|A|) ≤ ρ(B).
For a nonnegative matrix A ∈ R

n×n, if there exists a positive vector x ∈ R
n

such that Ax < x, then ρ(A) < 1.
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For A = (aij) ∈ R
n×n, its comparison matrix 〈A〉 = (〈aij〉) ∈ R

n×n is defined
by

〈aij〉 =
{ |aij|, for i = j,

−|aij|, for i 	= j,
i, j = 1, 2, . . . , n.

A square matrix A ∈ R
n×n is called a Z -matrix if its off-diagonal entries are

non-positive. A nonsingular matrix A ∈ R
n×n is called an M-matrix if it is a Z -

matrix and A−1 ≥ 0, an H-matrix if its comparison matrix 〈A〉 is an M-matrix,
and an H+-matrix if it is an H-matrix with positive diagonal entries; see [1, 8,
22]. Let A, B ∈ R

n×n be M-matrices, D ∈ R
n×n be a positive diagonal matrix,

and C ∈ R
n×n. Then A ≤ B implies B−1 ≤ A−1, and A ≤ C ≤ D implies that

C is an M-matrix.
For a given matrix A ∈ R

n×n, let M, N ∈ R
n×n be such that A = M − N.

Then A = M − N is called a splitting of the matrix A if M is nonsingular.
The splitting A = M − N is called a convergent splitting if ρ(M−1 N) < 1. It is
called a weak regular splitting if M−1 ≥ 0 and M−1 N ≥ 0; a regular splitting
if M−1 ≥ 0 and N ≥ 0; an M-splitting if M is an M-matrix and N ≥ 0; an
H-splitting if 〈M〉 − |N| is an M-matrix; and an H-compatible splitting if
〈A〉 = 〈M〉 − |N|; see [1, 15]. Evidently, if A = M − N is an H-splitting, then
A and M are H-matrices and ρ(M−1 N) ≤ ρ(〈M〉−1|N|) < 1; and if it is an H-
compatible splitting and A is an H-matrix, then it is an H-splitting and thus
convergent.

The following lemma presents basic and useful properties of an H-matrix.

Lemma 2.1 [8, 14] Let A ∈ R
n×n be an H-matrix, D = diag(A) be the diagonal

matrix of A, and B = D − A. Then the following statements hold true:

(i) A is nonsingular;
(ii) |A−1| ≤ 〈A〉−1;

(iii) |D| is nonsingular and ρ(|D|−1|B|) < 1.

If the system matrix A ∈ R
n×n is an H+-matrix, the LCP(q, A) has a

unique solution. This result was proved in [3] and is precisely described in the
following lemma.

Lemma 2.2 [3–5] Let A ∈ R
n×n be an H+-matrix. Then the LCP(q, A) has a

unique solution for any q ∈ R
n.

By making use of modulus of a vector, the LCP(q, A) can be equivalently
transformed into a system of fixed-point equations. This result is exactly stated
below.
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Lemma 2.3 [2] Let A = M − N be a splitting of the matrix A ∈ R
n×n, � be a

positive diagonal matrix, and γ a positive constant. Then for the LCP(q, A) the
following statements hold true:

(i) if (z, r) is a solution of the LCP(q, A), then x = 1
2γ (z − �−1r) satisf ies the

implicit f ixed-point equation

(� + M)x = Nx + (� − A)|x| − γ q; (2)

(ii) if x satisf ies the implicit f ixed-point equation (2), then

z = γ −1(|x| + x) and r = γ −1�(|x| − x)

is a solution of the LCP(q, A).

3 The MSTM iteration methods

Let (Mk, Nk, Ek) (k = 1, 2, . . . , �) be a multisplitting of the system matrix A
of the LCP(q, A). For k = 1, 2, . . . , �, let Mk = Fk − Gk be splittings of the
matrices Mk ∈ R

n×n. Then we call the collection (Mk : Fk, Gk; Nk; Ek) (k =
1, 2, . . . , �) a two-stage multisplitting of the matrix A; see [6, 21].

Given a positive diagonal matrix � and a positive constant γ , from
Lemma 2.3 we straightforwardly know that if x satisfies each of the � implicit
fixed-point equations

(� + Mk)x = Nkx + (� − A)|x| − γ q, k = 1, 2, . . . , �, (3)

then

z = γ −1(|x| + x) and r = γ −1�(|x| − x) (4)

is a solution of the LCP(q, A).
Based on the above concept and the equivalent formulation (3) and (4), we

can establish the MSTM iteration method for solving the LCP(q, A) as follows.

Method 3.1 (The MSTM iteration method for LCP(q, A)) Let (Mk :
Fk, Gk; Nk; Ek) (k = 1, 2, . . . , �) be a two-stage multisplitting of the system
matrix A ∈ R

n×n, and νk (k = 1, 2, . . . , �) be prescribed positive integers.
Given an initial vector x(0) ∈ R

n, for m = 0, 1, 2, . . . until the iteration sequence
{z(m)}∞m=0 ⊂ R

n is convergent, compute z(m+1) ∈ R
n by

z(m+1) = 1

γ
(|x(m+1)| + x(m+1))

and x(m+1) ∈ R
n according to

x(m+1) =
�∑

k=1

Ekx(m,k,νk),
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where x(m,k,νk), k = 1, 2, . . . , �, are obtained by solving the linear systems
{

(� + Fk)x(m,k, j+1) = Gkx(m,k, j) + b (m,k),

k = 1, 2, . . . , �, j = 0, 1, . . . , νk − 1,
(5)

respectively, with

b (m,k) = Nkx(m) + (� − A)|x(m)| − γ q

and x(m,k,0) = x(m).

This MSTM iteration method has quite good parallel computational proper-
ties. At every iteration step m, each sub-system of linear equations defined by
(5) can be solved independently on one processor of the multiprocessor system
and, hence, Method 3.1 can be implemented in parallel. The splitting matrices
Mk and Fk (k = 1, 2, . . . , �), the weighting matrices Ek (k = 1, 2, . . . , �), and
the positive integers νk (k = 1, 2, . . . , �) can be chosen in such a way that the
tasks distributed on the � processors of the multiprocessor system are well
balanced so that Method 3.1 achieves high parallel computing efficiency in
actual implementations. Moreover, considerable saving on the computational
workload is available, since the entries of x(m,k,νk) corresponding to the zero-
diagonal elements of the weighting matrix Ek need not be computed.

We remark that when νk = 1 and Gk = 0, k = 1, 2, . . . , �, the MSTM itera-
tion method naturally reduces to the MSM iteration method.

Method 3.1 is an implicit one and, at every iterate, each processor needs
to solve a linear sub-system of the form (5). This makes the MSTM iteration
method less convenient in concrete applications. In the following, we will
discuss several special explicit forms of Method 3.1, which are convenient for
practical implementations.

To this end, we let D=diag(A) and, for k=1, 2, . . . , �, let D(M)

k =diag(Mk),
L(M)

k be strictly lower-triangular parts of Mk, and U (M)

k be zero-diagonal ma-
trices such that Mk = D(M)

k − L(M)

k − U (M)

k . Then the collection (Mk : D(M)

k −
L(M)

k , U (M)

k ; Nk; Ek) (k = 1, 2, . . . , �) is called a two-stage triangular multisplit-
ting of the matrix A. Analogously, when A ∈ R

n×n is partitioned into blocks,
we naturally admit that the matrices Mk, Nk, Fk and Gk, as well as D(M)

k , L(M)

k

and U (M)

k have the conformable block partitions, too. Take
⎧
⎪⎪⎨

⎪⎪⎩

Fk = 1

α

(
D(M)

k − βL(M)

k

)
,

Gk = 1

α

(
(1 − α)D(M)

k + (α − β)L(M)

k + αU (M)

k

)
,

k = 1, 2, . . . , �,

in the secondary splittings Mk = Fk − Gk (k = 1, 2, . . . , �) in Method 3.1,
where α and β are prescribed relaxation parameters. Then we obtain the
following modulus-based synchronous two-stage multisplitting accelerated over-
relaxation (MSTMAOR) iteration method.
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Method 3.2 (The MSTMAOR iteration method for LCP(q, A)) Let (Mk :
D(M)

k − L(M)

k , U (M)

k ; Nk; Ek) (k = 1, 2, . . . , �) be a two-stage triangular multi-
splitting of the system matrix A ∈ R

n×n, and νk (k = 1, 2, . . . , �) be prescribed
positive integers. Given an initial vector x(0) ∈ R

n, for m = 0, 1, 2, . . . until the
iteration sequence {z(m)}∞m=0 ⊂ R

n is convergent, compute z(m+1) ∈ R
n by

z(m+1) = 1

γ

(∣
∣x(m+1)

∣
∣+ x(m+1)

)

and x(m+1) ∈ R
n according to

x(m+1) =
�∑

k=1

Ekx(m,k,νk),

where x(m,k,νk), k = 1, 2, . . . , �, are obtained by solving the linear systems
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
α� + D(M)

k − βL(M)

k

)
x(m,k, j+1) =

[
(1 − α)D(M)

k + (α − β)L(M)

k + αU (M)

k

]

× x(m,k, j) + αb (m,k),

k = 1, 2, . . . , �, j = 0, 1, . . . , νk − 1,

respectively, with

b (m,k) = Nkx(m) + (� − A)
∣
∣x(m)

∣
∣− γ q

and x(m,k,0) = x(m).

In particular, when we choose the parameter pairs (α, β) to be (α, α), (1, 1)

and (1, 0), respectively, Method 3.2 gives the modulus-based synchronous two-
stage multisplitting successive overrelaxation (MSTMSOR) iteration method,
the modulus-based synchronous two-stage multisplitting Gauss–Seidel (MST-
MGS) iteration method, and the modulus-based synchronous two-stage mul-
tisplitting Jacobi (MSTMJ) iteration method, correspondingly, for solving the
LCP(q, A). Hence, Method 3.2 produces an extensive sequence of modulus-
based synchronous two-stage multisplitting relaxation methods, which are
quite practical and efficient for solving the large sparse linear complementarity
problems on the high-speed multiprocessor systems. Moreover, the relaxation
parameters (α, β) can be adjusted suitably so that the convergence properties
of the modulus-based synchronous two-stage multisplitting AOR method can
be improved substantially in actual applications.

4 Convergence theory

In this section, we are going to establish the convergence theory for the
modulus-based synchronous two-stage multisplitting iteration method and its
relaxed variants, described in Section 3, when the system matrix A ∈ R

n×n of
the LCP(q, A) is an H+-matrix.
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To this end, we assume that (z∗, r∗) is a solution of the LCP(q, A). Then by
Lemma 2.3 we know that

x∗ = 1

2
γ
(
z∗ − �−1r∗

)

satisfies the implicit fixed-point equation (2). For the iteration sequences
{z(m)}∞m=0 ⊂ R

n and {x(m)}∞m=0 ⊂ R
n generated by Methods 3.1 and 3.2, respec-

tively, we see that lim
m→∞ z(m) = z∗ if and only if lim

m→∞ x(m) = x∗. It follows that

in order to prove the convergence of the iteration sequence {z(m)}∞m=0, we only
need to prove the convergence of the iteration sequence {x(m)}∞m=0 instead.

Because A is an H+-matrix, with the notations D = diag(A) and B =
D − A we see that |D| = D. Moreover, from Lemma 2.1(iii) we know that
ρ(D−1|B|) < 1 holds true. Denote by J = D−1|B| and Jε = J + εeeT , where
e = (1, 1, . . . , 1)T ∈ R

n is the vector of entries being all equal to one and ε > 0
is an arbitrary small number such that ρε := ρ(Jε) < 1. Then 〈A〉 = D − |B| =
D(I − J) and, by the Perron–Frobenius theorem [22], there exists a positive
vector vε ∈ R

n such that Jεvε = ρεvε.
Let (Mk : Fk, Gk; Nk; Ek) (k = 1, 2, . . . , �) and (Mk : D(M)

k − L(M)

k , U (M)

k ;
Nk; Ek) (k = 1, 2, . . . , �) be a two-stage multisplitting and a two-stage trian-
gular multisplitting of the matrix A, respectively. Then we have the following
facts:

(a) For the MSTM iteration method, it holds that

(� + Fk)x∗ = Gkx∗ + Nkx∗ + (� − A)|x∗| − γ q, k = 1, 2, . . . , �;(6)

(b) For the MSTMAOR iteration method, it holds that
(
α� + D(M)

k − βL(M)

k

)
x∗ =

[
(1 − α)D(M)

k + (α − β)L(M)

k + αU (M)

k

]
x∗

+ α(Nkx∗ + (� − A)|x∗| − γ q),

k = 1, 2, . . . , �. (7)

Based on the above preparation, now we demonstrate the convergence of
the MSTM and the MSTMAOR iteration methods, i.e., Methods 3.1 and 3.2.

Theorem 4.1 Let A ∈ R
n×n be an H+-matrix, with D = diag(A) and B =

D − A, and let (Mk : Fk, Gk; Nk; Ek) (k = 1, 2, . . . , �) and (Mk : D(M)

k −
L(M)

k , U (M)

k ; Nk; Ek) (k = 1, 2, . . . , �) be a two-stage multisplitting and a two-
stage triangular multisplitting of the matrix A, respectively. Assume that γ > 0
and the positive diagonal matrix � satisf ies � ≥ D.

(i) If A = Mk − Nk and Mk = Fk − Gk, k = 1, 2, . . . , �, are H-compatible
splittings, then the iteration sequence {z(m)}∞m=0 generated by Method 3.1
converges to the unique solution z∗ of the LCP(q, A) for any initial vector
x(0) ∈ R

n and any positive integers νk (k = 1, 2, . . . , �) not less than 1.
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(ii) If, for k = 1, 2, . . . , �, A = Mk − Nk are H-compatible splittings and
Mk = D − L(M)

k − U (M)

k satisfy 〈Mk〉 = D − |L(M)

k | − |U (M)

k | with
diag(Mk) = D, then the iteration sequence {z(m)}∞m=0 generated by
Method 3.2 converges to the unique solution z∗ of the LCP(q, A) for any
initial vector x(0) ∈ R

n and any positive integers νk (k = 1, 2, . . . , �) not
less than 1, provided the relaxation parameters α and β satisfy

0 < β ≤ α <
1

ρ(D−1|B|) .

Proof From the definition of Method 3.1 we have

x(m+1) =
�∑

k=1

Ek

[
(
(� + Fk)

−1Gk
)νk x(m) +

νk−1∑

i=0

(
(� + Fk)

−1Gk
)i

· (� + Fk)
−1
(
Nkx(m) + (� − A)|x(m)| − γ q

)
]

, (8)

and from the system of fixed-point equation (6) we obtain

x∗ =
�∑

k=1

Ek

[
(
(� + Fk)

−1Gk
)νk x∗ +

νk−1∑

i=0

(
(� + Fk)

−1Gk
)i

· (� + Fk)
−1 (Nkx∗ + (� − A)|x∗| − γ q)

]

. (9)

Subtracting (9) from (8) results in the error about the MSTM iteration method
as follows:

x(m+1) − x∗ =
�∑

k=1

Ek

[
(
(� + Fk)

−1Gk
)νk

(x(m) − x∗) +
νk−1∑

i=0

(
(� + Fk)

−1Gk
)i

· (� + Fk)
−1 (Nk(x(m) − x∗) + (� − A)(|x(m)| − |x∗|)

)
]

.

(10)
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Analogously, based on the definition of Method 3.2 and the system of fixed-
point equations (7) we can obtain the error about the MSTMAOR iteration
method as follows:

x(m+1)−x∗

=
�∑

k=1

Ek

[((
α� + D−βL(M)

k

)−1 [
(1−α)D + (α−β)L(M)

k + αU (M)

k

])νk

× (
x(m) − x∗

)

+
νk−1∑

i=0

((
α� + D − βL(M)

k

)−1 [
(1 − α)D + (α − β)L(M)

k + αU (M)

k

])i

· α
(
α� + D − βL(M)

k

)−1

× (
Nk(x(m) − x∗) + (� − A)(|x(m)| − |x∗|)

)
]

. (11)

The error relationships (10) and (11) are the bases for proving the convergence
of Methods 3.1 and 3.2, respectively.

We first demonstrate the validity of (i). As A = Mk − Nk (k = 1, 2, . . . , �)
are H-compatible splittings of the H+-matrix A, we know that Mk (k =
1, 2, . . . , �) are H+-matrices. Similarly, as Mk = Fk − Gk (k = 1, 2, . . . , �) are
H-compatible splittings of the H+-matrices Mk and � is a positive diagonal
matrix, we see that Fk and, hence, � + Fk, k = 1, 2, . . . , �, are H+-matrices.
Therefore, from Lemma 2.1(ii) we have

∣
∣(� + Fk)

−1
∣
∣ ≤ 〈� + Fk〉−1 = (� + 〈Fk〉)−1 , k = 1, 2, . . . , �. (12)

By taking absolute values on both sides of the equality (10), making use of
the estimates (12) and the inequality ||x(m)| − |x∗|| ≤ |x(m) − x∗|, and arranging
similar terms together, we obtain

∣
∣x(m+1) − x∗

∣
∣ ≤

�∑

k=1

Ek

[
(∣
∣(� + Fk)

−1
∣
∣ |Gk|

)νk +
νk−1∑

i=0

(∣
∣(� + Fk)

−1
∣
∣ |Gk|

)i

· ∣∣(� + Fk)
−1
∣
∣ (|Nk| + |� − A|)

]
∣
∣x(m) − x∗

∣
∣

≤
�∑

k=1

Ek

[
(
(� + 〈Fk〉)−1 |Gk|

)νk +
νk−1∑

i=0

(
(� + 〈Fk〉)−1 |Gk|

)i

· (� + 〈Fk〉)−1 (|Nk| + |� − A|)
]
∣
∣x(m) − x∗

∣
∣

:= LMSTM
∣
∣x(m) − x∗

∣
∣ , (13)
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where

LMSTM =
�∑

k=1

Ek

[
(
(� + 〈Fk〉)−1 |Gk|

)νk +
νk−1∑

i=0

(
(� + 〈Fk〉)−1 |Gk|

)i

· (� + 〈Fk〉)−1 (|Nk| + |� − A|)
]

. (14)

Again, as A = Mk − Nk and Mk = Fk − Gk, k = 1, 2, . . . , �, are H-
compatible splittings, i.e.,

〈A〉 = 〈Mk〉 − |Nk| and 〈Mk〉 = 〈Fk〉 − |Gk|, k = 1, 2, . . . , �,

it holds for k = 1, 2, . . . , � that

|Nk| = 〈Fk〉 − |Gk| − 〈A〉 = 〈Fk〉 − |Gk| − D + |B|. (15)

Denote by D(F)

k = diag(Fk), k = 1, 2, . . . , �. Then D(F)

k (k = 1, 2, . . . , �) are
positive diagonal matrices. As � is also a positive diagonal matrix, we immedi-
ately see that � + DF

k (k = 1, 2, . . . , �) are also positive diagonal matrices and

(� + 〈Fk〉)−1 ≥ (� + D(F)

k )−1, k = 1, 2, . . . , �. (16)

Therefore, from (14) and (15) we have

LMSTM =
�∑

k=1

Ek

[
(
(� + 〈Fk〉)−1|Gk|

)νk +
νk−1∑

i=0

(
(� + 〈Fk〉)−1|Gk|

)i

· (� + 〈Fk〉)−1((� + 〈Fk〉) − |Gk| − 2(D − |B|))
]

=
�∑

k=1

Ek

[
(
(� + 〈Fk〉)−1|Gk|

)νk +
νk−1∑

i=0

(
(� + 〈Fk〉)−1|Gk|

)i

· (I − (� + 〈Fk〉)−1(|Gk| + 2(D − |B|)))
]

= I − 2
�∑

k=1

Ek

νk−1∑

i=0

(
(� + 〈Fk〉)−1|Gk|

)i
(� + 〈Fk〉)−1(D − |B|)

≤ I − 2
�∑

k=1

Ek

νk−1∑

i=0

(
(� + 〈Fk〉)−1|Gk|

)i
(� + 〈Fk〉)−1 D(I − Jε).
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It then follows that

LMSTMvε ≤ vε − 2
�∑

k=1

Ek

νk−1∑

i=0

(
(� + 〈Fk〉)−1|Gk|

)i
(� + 〈Fk〉)−1 D(I − Jε)vε

= vε − 2(1 − ρε)

�∑

k=1

Ek

νk−1∑

i=0

(
(� + 〈Fk〉)−1|Gk|

)i
(� + 〈Fk〉)−1 Dvε.

(17)

After substituting (16) into (17) and noticing ρε < 1, we can further obtain

LMSTMvε ≤ vε − 2(1 − ρε)

�∑

k=1

Ek(� + 〈Fk〉)−1 Dvε

≤ vε − 2(1 − ρε)

�∑

k=1

Ek(� + D(F)

k )−1 Dvε

< vε.

Therefore, ρ(LMSTM) < 1 and, according to (13) and (14), we immediately
know that the iteration sequence {x(m)}∞m=0 and, thereby, {z(m)}∞m=0, generated
by Method 3.1, converges to the unique solution z∗ of the LCP(q, A) for any
initial vector x(0) ∈ R

n and any positive integers νk (k = 1, 2, . . . , �) not less
than 1.

Now, we demonstrate the validity of (ii). By taking absolute values on
both sides of the equality (11), making use of Lemma 2.1(ii) and the estimate
||x(m)| − |x∗|| ≤ |x(m) − x∗|, and arranging similar terms together, we obtain

|x(m+1) − x∗| ≤ LMSTMAOR(α, β)|x(m) − x∗|, (18)

where

LMSTMAOR(α, β)

=
�∑

k=1

Ek

[((
α� + D−β

∣
∣
∣L(M)

k

∣
∣
∣
)−1 [|1−α|D + (α−β)|L(M)

k | + α|U (M)

k |
])νk

+
νk−1∑

i=0

((
α� + D−β|L(M)

k |
)−1[|1−α|D + (α−β)|L(M)

k | + α|U (M)

k |
])i

· α(α� + D−β|L(M)

k |)−1(|Nk| + |�− A|)
]

. (19)

Because |� − A| = (� − D) + |B| and

〈A〉 = 〈Mk〉 − |Nk|, 〈Mk〉 = D − |L(M)

k | − |U (M)

k |, k = 1, 2, . . . , �,
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it holds for k = 1, 2, . . . , � that

α (|Nk| + |� − A|) =
(
α� + D − β|L(M)

k |
)

−
[
(1 + α)D + (α − β)|L(M)

k | + α|U (M)

k | − 2α|B|
]

and

α(α� + D − β|L(M)

k |)−1(|Nk| + |� − A|)
= I − (α� + D − β|L(M)

k |)−1

·
[
(|1 − α|D + (α − β)|L(M)

k | + α|U (M)

k |) + ((1 + α − |1 − α|)D − 2α|B|)
]
.

It then follows from (19) that

LMSTMAOR(α, β)vε

= vε −
�∑

k=1

Ek

νk−1∑

i=0

((
α� + D − β

∣
∣
∣L(M)

k

∣
∣
∣
)−1

×
[
|1 − α|D + (α − β)

∣
∣
∣L(M)

k

∣
∣
∣+ α

∣
∣
∣U (M)

k

∣
∣
∣
])i

·
(
α� + D − β

∣
∣
∣L(M)

k

∣
∣
∣
)−1 [

(1 + α − |1 − α|)D − 2α|B|]vε

≤ vε −
�∑

k=1

Ek

νk−1∑

i=0

((
α� + D − β

∣
∣
∣L(M)

k

∣
∣
∣
)−1

×
[
|1 − α|D + (α − β)

∣
∣
∣L(M)

k

∣
∣
∣+ α

∣
∣
∣U (M)

k

∣
∣
∣
])i

·
(
α� + D − β

∣
∣
∣L(M)

k

∣
∣
∣
)−1

D
[
(1 + α − |1 − α|)I − 2αJε

]
vε

= vε − θε

�∑

k=1

Ek

νk−1∑

i=0

((
α� + D − β

∣
∣
∣L(M)

k

∣
∣
∣
)−1

×
[
|1 − α|D + (α − β)

∣
∣
∣L(M)

k

∣
∣
∣+ α

∣
∣
∣U (M)

k

∣
∣
∣
] )i

·
(
α� + D − β

∣
∣
∣L(M)

k

∣
∣
∣
)−1

Dvε, (20)

where

θε = 1 + α − |1 − α| − 2αρε.

As 0 < α < 1
ρ(D−1|B|) implies

θ := 1 + α − |1 − α| − 2αρ(J) > 0,



72 Numer Algor (2013) 62:59–77

by continuity of the spectral radius of a matrix we can take ε sufficiently small
such that θε > 0, too. Thereby, from (20) we can further obtain the estimate

LMSTMAOR(α, β)vε ≤ vε − θε

�∑

k=1

Ek

(
α� + D − β

∣
∣
∣L(M)

k

∣
∣
∣
)−1

Dvε

≤ vε − θε

�∑

k=1

Ek(α� + D)−1 Dvε

= vε − θε(α� + D)−1 Dvε

< vε.

Therefore, ρ(LMSTMAOR(α, β)) < 1 and, according to (18) and (19), we im-
mediately know that the iteration sequence {x(m)}∞m=0 and, thereby, {z(m)}∞m=0,
generated by Method 3.2, converges to the unique solution z∗ of the LCP(q,
A) for any initial vector x(0) ∈ R

n and any positive integers νk (k = 1, 2, . . . , �)
not less than 1. �


We remark that under the conditions of Theorem 4.1, the MSTMGS and
the MSTMJ iteration methods are convergent, and the MSTMSOR iteration
method is convergent if the iteration parameter α satisfies 0 < α < 1

ρ(D−1|B|) .

5 Numerical results

In this section, we use two numerical examples to examine the parallel com-
puting efficiency, defined by E� = T1/(�T�), of the modulus-based synchronous
two-stage multisplitting relaxation methods, where T1 and T� denote the
elapsed wall times in seconds for solving the LCP(q, A) on sequential and
parallel (with � processors) computers, respectively.

We write the codes in C and MPICH2, perform the experiments on the
PC clusters in which each computing node consists of two X5550 CPUs
(four processors and 2.67 GHz for each CPU) with 24 GB of memory, and
employ local communication to exchange messages among the processors.
In actual implementations, all iterations are started from the initial vector
x(0) = (1, 1, . . . , 1)T ∈ R

n and terminated when the current residuals satisfy

RES(z(m)) := ∥
∥min

{
Az(m) + q, z(m)

}∥
∥

2 < 10−5,

where the minimum is taken componentwisely. The multisplitting (Mk, Nk,
Ek) (k = 1, 2, . . . , �) of the system matrix A ∈ R

n×n of the LCP(q, A) is
taken analogously to that in [7]. More specifically, Mk = D − Ek BEk, k =
1, 2, . . . , �, where D = diag(A) and B = D − A. Then the two-stage triangular
multisplitting (Mk : D(M)

k − L(M)

k , U (M)

k ; Nk; Ek) (k = 1, 2, . . . , �) of the matrix
A is chosen such that D(M)

k = D, and L(M)

k and U (M)

k are, respectively, the
strictly lower-triangular and the strictly upper-triangular matrices of Mk for



Numer Algor (2013) 62:59–77 73

k = 1, 2, . . . , �. In addition, we set γ = 2 and � = D, and choose the iteration
parameters α in MSTMSOR such that the number of total iteration steps is
minimized; see Tables 1 and 3. We also choose μk = 2 (k = 1, 2, . . . , �), which
are the experimentally found best numbers of inner iteration steps.

Example 5.1 The LCP(q, A) is given by

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

S −I −I

S −I
. . .

S
. . . −I
. . . −I

S

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ R
n×n

and q = (−1, 1, −1, 1, . . .) ∈ R
n, where n = n2

o, with no being a positive inte-
ger, and S = tridiag(−1, 4, −1) ∈ R

no×no is a tridiagonal matrix with diagonal
entries being equal to 4 and off-diagonal entries being equal to −1.

The experimentally found optimal parameters α for MSTMSOR for Exam-
ple 5.1 are shown in Table 1. From this table we see that for each no the range
of this parameter changes with respect to the number of processors.

The elapsed wall time and the parallel computing efficiency of MSM,
MSTMGS and MSTMSOR iteration methods for solving the LCP(q, A) given
by Example 5.1 are listed in Table 2.

From this table we have observed that for almost all values of no and �

MSM costs much more computing time than MSTMGS and MSTMSOR, and
MSTMGS costs slightly more computing time than MSTMSOR. And for a
fixed value of no the computing time of MSM is decreasing with a reduction
factor more than 1

2 , while those of MSTMGS and MSTMSOR are decreasing
with a reduction factor a little bit less than 1

2 , when the number � of processors
doubles.

The parallel computing efficiency of almost all tested cases exceeds 0.6, and
some of them even exceed 1.0. For a fixed value of no, the parallel computing
efficiency of MSM is increasing with the number � of processors. For each
no, the parallel computing efficiency of MSTMGS and MSTMSOR is not
monotone with respect to the number of processors due to the memory systems
of the PC clusters, as well as different communication ways, data sizes, and
workload overlaps with respect to different processor numbers. The highest

Table 1 The experimentally found optimal parameters α for MSTMSOR for Example 5.1

no �

1 2 4 8 16 32 64 128

512 [2.8, 2.9] [2.6, 3.1] [2.5, 3.1] [2.5, 3.1] 2.7 [2.3, 2.9] [2.2, 2.6] [2.1, 2.2]
1,024 [2.9, 3.3] [3.0, 3.1] [3.0, 3.1] [2.9, 3.1] [2.8, 3.1] [2.7, 3.2] [2.7, 2.8] [2.3, 2.7]
2,048 [3.1, 3.5] [3.2, 3.4] [3.1, 3.4] [3.1, 3.4] [3.1, 3.4] [3.0, 3.4] [2.9, 3.2] 2.9
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Table 2 Numerical results for MSM, MSTMGS and MSTMSOR methods for Example 5.1

no Method � 1 2 4 8 16 32 64 128

512 MSM T� 89.77 43.97 20.24 8.74 3.64 1.28 0.49 0.23
E� – 1.02 1.11 1.28 1.54 2.19 2.86 3.05

MSTMGS T� 8.84 5.21 3.47 1.73 0.56 0.25 0.14 0.10
E� – 0.85 0.64 0.64 0.99 1.11 0.99 0.69

MSTMSOR T� 8.58 4.87 3.04 1.52 0.56 0.26 0.14 0.10
E� – 0.88 0.71 0.71 0.96 1.03 0.96 0.67

1,024 MSM T� 752.73 364.68 176.34 80.63 36.74 15.29 6.41 2.24
E� – 1.03 1.07 1.17 1.28 1.54 1.83 2.63

MSTMGS T� 67.06 39.45 26.29 13.63 6.88 3.34 1.14 0.57
E� – 0.85 0.64 0.62 0.61 0.63 0.92 0.92

MSTMSOR T� 64.50 36.43 22.74 11.75 5.95 2.92 1.11 0.57
E� – 0.89 0.71 0.69 0.68 0.69 0.91 0.88

2,048 MSM T� 10,725.01 5,065.48 1,890.34 842.14 345.74 151.88 66.52 27.56
E� – 1.06 1.42 1.59 1.94 2.21 2.52 3.04

MSTMGS T� 515.81 303.62 202.57 105.17 53.10 26.62 13.49 6.69
E� – 0.85 0.64 0.61 0.61 0.61 0.60 0.60

MSTMSOR T� 491.96 277.28 173.27 89.98 45.34 22.81 11.59 5.82
E� – 0.89 0.71 0.68 0.68 0.67 0.66 0.66

parallel computing efficiency of MSTMGS and MSTMSOR are attained at
� = 32, 64 and 2 when no = 512, 1,024 and 2,048, respectively.

Example 5.2 The LCP(q, A) is yielded from the nine-point finite difference
approximation on a uniform grid with the mesh size h = 16/2τ of the following
free boundary problem modeling the flow of water through a porous dam: Find
u on the rectangle domain [0, 16] × [0, 24] such that in the domain

u ≥ 0, uss + utt ≤ 1 and u(uss + utt − 1) = 0,

and on the boundary

u =

⎧
⎪⎪⎨

⎪⎪⎩

(24 − t)2/2, for s = 0, 0 < t ≤ 24,

(4 − t)2/2, for s = 16, 0 < t ≤ 4,

(242(16 − s) + 42s)/32, for 0 ≤ s ≤ 16, t = 0,

0, otherwise.

See [7] for the concrete structure of the system matrix A.

The experimentally found optimal parameters α for MSTMSOR for Ex-
ample 5.2 are shown in Table 3. From this table we see that for each τ this

Table 3 The experimentally found optimal parameters α for MSTMSOR for Example 5.2

τ Grid �

1 2 4 8 16 32 64 128

6 65 × 97 2.0 2.0 2.0 1.9 [1.8, 1.9] 1.7 – –
7 129 × 193 2.0 2.0 2.0 2.0 1.9 1.9 1.7 –
8 257 × 385 2.0 2.0 2.0 2.0 2.0 1.9 1.9 1.7
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Table 4 Numerical results for MSM, MSTMGS and MSTMSOR methods for Example 5.2

τ Method � 1 2 4 8 16 32 64 128

6 MSM T� 13.95 6.91 3.33 1.51 0.64 0.43 – –
E� – 1.01 1.05 1.15 1.36 1.01 – –

MSTMGS T� 3.14 1.68 0.86 0.46 0.28 0.23 – –
E� – 0.93 0.91 0.85 0.70 0.43 – –

MSTMSOR T� 2.79 1.50 0.77 0.42 0.26 0.21 – –
E� – 0.93 0.91 0.83 0.67 0.42 – –

7 MSM T� 352.58 170.74 83.48 30.63 13.92 5.49 3.20 –
E� – 1.03 1.06 1.44 1.58 2.01 1.72 –

MSTMGS T� 49.35 25.91 13.13 6.75 3.64 2.12 1.62 –
E� – 0.95 0.94 0.91 0.85 0.73 0.48 –

MSTMSOR T� 43.88 23.08 11.72 6.05 3.29 1.94 1.49 –
E� – 0.95 0.94 0.91 0.83 0.71 0.46 –

8 MSM T� 7,620.86 3,792.76 2,024.22 846.90 325.29 128.74 41.87 22.08
E� – 1.00 0.94 1.12 1.46 1.85 2.84 2.70

MSTMGS T� 952.51 572.42 377.23 135.01 52.84 30.16 15.21 10.82
E� – 0.83 0.63 0.88 1.13 0.99 0.98 0.69

MSTMSOR T� 846.77 509.41 336.09 120.53 47.33 27.32 13.89 10.11
E� – 0.83 0.63 0.88 1.12 0.97 0.95 0.65

parameter first remains unchanged and then decreases with respect to the
number of processors.

The elapsed wall time and the parallel computing efficiency of MSM,
MSTMGS and MSTMSOR iteration methods for solving the LCP(q, A) given
by Example 5.2 are listed in Table 4.

From this table we have observed that for almost all values of τ and �

MSM costs much more computing time than MSTMGS and MSTMSOR, and
MSTMGS costs slightly more computing time than MSTMSOR. And for a
fixed value of τ the computing time of MSM is almost always decreasing with
a reduction factor more than 1

2 , while those of MSTMGS and MSTMSOR are
decreasing with a reduction factor a little bit less than 1

2 , when the number � of
processors doubles.

The parallel computing efficiency of almost all tested cases exceeds 0.5, and
some of them even exceed 1.0. For a fixed value of τ , the parallel computing
efficiency of MSM is almost increasing with the number � of processors. When
τ = 6 and 7, the parallel computing efficiency of MSTMGS and MSTMSOR is
decreasing and, when τ = 8, it is not monotone, with respect to the number � of
processors. When τ = 8, the highest parallel computing efficiency of MSTMGS
and MSTMSOR attained at � = 16 is 1.13 and 1.12, respectively.

6 Concluding remarks

We have established modulus-based synchronous two-stage multisplitting it-
eration methods for solving the large sparse linear complementarity prob-
lems. This class of multisplitting iteration methods includes a sequence of
modulus-based synchronous two-stage multisplitting relaxation methods as
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special cases, and is suitable for implementing on the modern high-speed
multiprocessor systems. Moreover, these modulus-based synchronous multi-
splitting iteration methods and their relaxed variants are convergent when the
system matrix of the linear complementarity problem is an H+-matrix. The
established theoretical conclusions equally hold true for linear complementar-
ity problems with strictly or irreducibly diagonally dominant system matrices
[10–12]. Numerical results have shown that in terms of computing time the
modulus-based synchronous two-stage multisplitting Gauss–Seidel and SOR
methods are more efficient than the modulus-based synchronous multisplitting
iteration method in actual implementations.

Acknowledgements The authors are very much indebted to the referees for providing very
useful comments and suggestions, which greatly improved the original manuscript of this paper.
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