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Abstract A trigonometrically fitted block Numerov type method (TBNM),
is proposed for solving y′′ = f (x, y, y′) directly without reducing it to an
equivalent first order system. This is achieved by constructing a continuous
representation of the trigonometrically fitted Numerov method (CTNM) and
using it to generate the well known trigonometrically fitted Numerov method
(TNUM) and three new additional methods, which are combined and applied
in block form as simultaneous numerical integrators. The stability property of
the TBNM is discussed and the performance of the method is demonstrated
on some numerical examples to show accuracy and efficiency advantages.

Keywords Second order · Initial value problems · Trigonometrically
fitted method · Block form

1 Introduction

The second order initial value problem (IVP) of the form

y′′ = f (x, y), y(a) = y0, y′(a) = y′
0, (1)
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in which the first derivative does not appear explicitly is encountered in several
areas of engineering and science, such as celestial mechanics, circuit theory,
control theory, chemical kinetics, and biology. Several techniques for the direct
solution of (1) have been investigated including linear multistep methods
(LMMs) [17, 27, 28], multistep collocation methods (see [1, 5]), exponentially-
fitting and trigonometrically-fitted methods [6, 8, 9, 12, 21, 26, 28], Runge-
Kutta-Nyström methods (RKN) (see [10, 11, 25]).

Despite the numerous methods available for solving (1) directly, there are
fewer methods available for directly solving the general second order IVPs of
the form

y′′ = f (x, y, y′), y(a) = y0, y′(a) = y′
0, (2)

in which the first derivative appears explicitly. In practice, (2) is solved by first
reducing it to an equivalent first order system and solved by the numerous
methods available for solving first order IVPs. Some direct methods available
for (2) are due to [2, 9, 29, 30]. Most of these methods are implemented in a
step-by-step fashion in which on the partition πN , an approximation is obtained
at xn only after an approximation at xn−1 has been computed, where

πN : a = x0 < x1 < . . . < xN = b , xn = xn−1 + h, n = 1, ..., N,

h = b−a
N is the constant step-size of the partition πN , N is a positive integer,

and n is the grid index.
Recently, Jator [13, 15] and Jator and Li [14], solved (2) directly via methods

of the linear multistep type. In this paper, a TBNM is proposed for solving (2)
in which (1) is a special case, directly without reducing it to an equivalent first
order system. This is achieved by constructing a continuous representation of
the CTNM and using it to generate the well known TNUM and three new
additional methods, which are combined and applied in block form as simulta-
neous numerical integrators for (2). We note that the concept of combining the
main and additional methods for first order systems of differential equations
is extensively discussed in [3]. We emphasize that the TBNM is applied as a
block method to simultaneously produce approximations

{yn+1, yn+2} and
{

y′
n+1, y′

n+2

}
at the points {xn+1, xn+2} to the exact solutions

{y(xn+1), y(xn+2)} and {y′(xn+1), y′(xn+2)}, n = 0, 2, . . . , N − 2.

We note that in order to apply the block method at the next block to obtain
{yn+3, yn+4}, the only necessary starting value is yn+2, and the loss of accuracy
in yn+2, does not affect subsequent points, thus the order of the algorithm
is maintained. It is unnecessary to make a function evaluation at the initial
part of the new block since at all blocks except the first, the first function
evaluation is already available from the previous block. Block methods are
due to [19, 23, 24]. It is crucial to observe that the TBNM preserves the Runge-
kutta traditional advantage of being self-starting and is more efficient, since it
requires only one function evaluation per integration step.
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The paper is organized as follows. In Section 2 we derive an approximation
U(x) for y(x), given by CTNM which is used to obtain the TNUM and three
new additional methods given in Section 3. The stability property and the
computational aspect of the TBNM are given in Section 4. Numerical examples
are given in Section 5 to show the accuracy and efficiency advantages. Finally,
the conclusion of the paper is discussed in Section 6.

2 CTNM

In this section, we develop a CTNM on the interval from xn to xn+2 = xn +
2h, where h is the chosen step-length. In particular, we assume that the exact
solution y(x) on the interval [xn, xn+2] is locally represented by U(x) given by

U(x) = α0(x)yn + α1(x)yn+1 + h2(β0(x) fn + β1(x) fn+1 + β2(x) fn+2), (3)

where α0(x), α1(x), β j(x), j = 0, 1, 2 are continuous coefficients that must
be uniquely determined. We assume that yn+ j = U(xn + jh) is the numerical
approximation to the analytical solution y(xn+ j), y′

n+ j = U ′(xn + jh) is an
approximation to y′(xn+ j), fn+ j = U ′′(xn + jh) is an approximation to y′′(xn+ j).
We note that fn+ j = f (xn+ j, yn+ j, y′

n+ j), j = 0, 1, 2.
Since the function (3) must pass through the points (xn, yn), (xn+1, yn+1),

(xn+2, yn+2), we demand that the following five equations must be satisfied.

U
(
xn+ j

) = yn+ j, j = 0, 1, U ′′ (xn+ j
) = fn+ j, j = 0, 1, 2. (4)

Equation (4) leads to a system of five equations and five unknown parameters
to be determined. In order to solve this system, we require that the method (3)
be defined by the assumed basis functions

α j(x) =
4∑

i=0

αi+1, j Pi(x), jε{0, 1}; h2β j(x) =
4∑

i=0

h2βi+1, j Pi(x), jε{0, 1, 2}, (5)

where Pi = {1, x, x2, sin wx, cos wx} and the constants αi+1, j and h2βi+1, j are
undetermined elements of the 5 × 5 matrix E, given by

E =

⎛

⎜⎜⎜⎜
⎝

α1,0 α1,1 h2β1,0 h2β1,1 h2β1,2

α2,0 α2,1 h2β2,0 h2β2,1 h2β2,2

α3,0 α3,1 h2β3,0 h2β3,1 h2β3,2

α4,0 α4,1 h2β4,0 h2β4,1 h2β4,2

α5,0 α5,1 h2β5,0 h2β5,1 h2β5,2.

⎞

⎟⎟⎟⎟
⎠

We also define the matrix W as

W =

⎛

⎜⎜⎜⎜
⎝

P0(xn) · · · P4(xn)

P0(xn+1) · · · P4(xn+1)

P′′
0(xn) · · · P′′

4(xn)

P′′
0(xn+1) · · · P′′

4(xn+1)

P′′
0(xn+2) · · · P′′

4(xn+2).

⎞

⎟⎟⎟⎟
⎠
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We consider further notations by defining the following vectors:

V = (yn, yn+1, fn, fn+1, fn+2)
T , P(x) = (P0(x), P1(x), P2(x), P3(x), P4(x))T ,

where T denotes the transpose of the vectors.

Theorem 2.1 Let U(x) satisfy conditions (4) and let W be invertible, then the
method (3) is equivalent to

U(x) = VT (
W−1

)T
P(x).

Proof The proof takes the form given in [20] with obvious notational
modifications. We begin by substituting (5) into (3) to yield

U(x) =
4∑

i=0

�i Pi(x), (6)

where �i = ∑1
j=0 αi+1, jyn+ j + ∑2

j=0 h2βi+1, j fn+ j are undetermined coefficients
that can be written in vector form as

� = (�0, �1, �2, �3, �4)
T .

Furthermore, we demand that (6) satisfies (4) to obtain the system

W� = V,

which produces

� = W−1V. (7)

We note that � can easily be expressed in terms of E as � = EV ⇒ E = W−1.
Next, we write (6) in vector form as

U(x) = �T P(x). (8)

Then substituting (7) into (8) and simplifying we obtain

U(x) = VT (
W−1

)T
P(x). (9)

The proof is complete. ��

3 TNUM and additional methods

TNUM The well known TNUM is obtained by evaluating (9) at x = xn+2.
Thus, yn+2 = U(xn + 2h) gives the following method.

yn+2 − 2yn+1 + yn = h2(β0 fn + β1 fn+1 + β2 fn+2), (10)
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where

⎧
⎪⎨

⎪⎩

β0 = (−4 csc2(u/2) + 2u2 csc2(u/2) + 4 cos u csc2(u/2)
)
/
(
8u2

)
,

β1 = (
4 csc2(u/2) − 4 cos u csc2(u/2) − 2u2 cos u csc2(u/2)

)
/
(
4u2

)
,

β2 = (−2 csc2(u/2) + 2u2 csc2(u/2) + 2 cos(3u/2) csc2(u/2) sec(u/2)
)
/
(
8u2

)
,

(11)
and u = wh.

The Taylor series is used for small values of u (see [26]). Thus, the
coefficients can be expressed as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

β0 = 1

12
+ u2

240
+ u4

6048
+ u6

172800
+ u8

5322240
,

β1 = 5

6
− u2

120
− u4

3024
− u6

86400
− u8

2661120
,

β2 = 1

12
+ u2

240
+ u4

6048
+ u6

172800
+ u8

5322240
.

(12)

It is vital to note that when u = 0, (10) is the standard Numerov method. The
discretization of (1) using (10) gives more unknowns than equations which
if solved will lead to an indeterminate. Hence, we are compelled to look for
additional methods. Fortunately, (3) is continuous and is used to provide the
needed methods via its first derivative given by (13).

U ′(x) = d
dx

⎛

⎝α0(x)yn + α1(x)yn+1 + h2
2∑

j=0

β j(x) fn+ j

⎞

⎠ (13)

Additional methods The additional methods (14), (17), and (20) are obtained
from (13) by demanding that y′

n = U ′(xn), y′
n+1 = U ′(xn + h), and y′

n+2 =
U ′(xn + 2h).

Evaluating (13) at x = xn and noting that y′
n = U ′(xn), we obtain

hy′
n = yn+1 − yn + h2

(
β0,0 fn + β1,0 fn+1 + β2,0 fn+2

)
, (14)

where

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

β0,0 = (−4 csc2(u/2)− u2 csc2(u/2)+ 4 cos u csc2(u/2)+ 2u cot u csc2(u/2)

− 2u cos(2u) csc2(u/2) csc u
)
/
(
8u2

)
,

β1,0 = (
2 csc2(u/2) − 2 cos u csc2(u/2) + u2 cos u csc2(u/2)

−2u csc2(u/2) sin u
)
/
(
4u2

)
,

β2,0 = (−u2 csc2(u/2) + 2u csc(u/2) sec(u/2)
)
/
(
8u2

)
.

(15)



18 Numer Algor (2013) 62:13–26

The Taylor series is used for small values of u. Thus, the coefficients can be
expressed as

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

β0,0 = − 7

24
− 7u2

480
− 71u4

60480
− 53u6

483840
− 23u8

2128896
,

β1,0 = −1

4
+ u2

144
+ u4

4320
+ u6

134400
+ u8

4354560
,

β2,0 = 1

24
+ 11u2

1440
+ 19u4

20160
+ 247u6

2419200
+ 1013u8

95800320
.

(16)

Evaluating (13) at x = xn+1 and noting that y′
n+1 = U ′(xn + h), we obtain

hy′
n+1 = yn+1 − yn + h2(β0,1 fn + β1,1 fn+1 + β2,1 fn+2), (17)

where
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

β0,1 =(−4 csc2(u/2)+ u2 csc2(u/2)+ 4 cos u csc2(u/2)− 2u cot u csc2(u/2)

+2u csc2(u/2) csc u
)
/
(
8u2

)
,

β1,1 = (
2 csc2(u/2) − 2 cos u csc2(u/2) − u2 cos u csc2(u/2)

)
/
(
4u2

)
,

β2,1 = (
u2 csc2(u/2) − 2u csc(u/2) sec(u/2)

)
/
(
8u2

)
.

(18)

The Taylor series is used for small values of u. Thus, the coefficients can be
expressed as

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

β0,1 = 1

8
+ 17u2

1440
+ 67u4

60480
+ 29u6

268800
+ 1031u8

95800320
,

β1,1 = 5

12
− u2

240
− u4

6048
− u6

172800
− u8

5322240
,

β2,1 = − 1

24
− 11u2

1440
− 19u4

20160
− 247u6

2419200
− 1013u8

95800320
.

(19)

Evaluating (13) at x = xn+2 and noting that y′
n+2 = U ′(xn + 2h), we obtain

hy′
n+2 = yn+1 − yn + h2(β0,2 fn + β1,2 fn+1 + β2,2 fn+2) (20)

where
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

β0,2 =(−4 csc2(u/2)+ 3u2 csc2(u/2)+ 4cos u csc2(u/2)+2u cot u csc2(u/2)

− 2u csc2(u/2) csc u
)
/
(
8u2

)
,

β1,2 = (
2 csc2(u/2) − 2 cos u csc2(u/2) − 3u2 cos u csc2(u/2)

+ 2u csc2(u/2) sin u
)
/
(
4u2

)
,

β2,2 = (
3u2 csc2(u/2) − 2u csc2(u/2) sec(u/2) sin(3u/2)

)
/
(
8u2

)
.

(21)
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The Taylor series is used for small values of u. Thus, the coefficients can be
expressed as

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

β0,2 = 1

24
− u2

288
− 47u4

60480
− 233u6

2419200
− 199u8

19160064
,

β1,2 = 13

12
− 11u2

720
− 17u4

30240
− 23u6

1209600
− 29u8

47900160
,

β2,2 = 3

8
+ 3u2

160
+ 3u4

2240
+ 31u6

268800
+ 13u8

1182720
.

(22)

Local Truncation Error The Local Truncation Errors (LTEs) for methods
(10), (14), (17), and (20); denoted as LTE(10), LTE(14), LTE(17), and
LTE(20) are given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

LT E(10) = − h6

240

(
w2 y(4)(xn) + y(6)(xn)

)
,

LT E(14) = −3h6

160

(
w2 y(4)(xn) + y(6)(xn)

)
,

LT E(17) = 5h6

288

(
w2 y(4)(xn) + y(6)(xn)

)
,

LT E(20) = −43h6

1440

(
w2 y(4)(xn) + y(6)(xn)

)
.

(23)

4 TBNM

In this section the methods (10), (14), (17), and (20) are combined to give
the TBNM, which takes form of a general linear method of Butcher [4]. We
then define the block-by-block method as a method for computing vectors
Y0, Y1, . . . in sequence (see [7]). Let the ν-vectors (ν = 2 is the number of
points within the block) Yμ, Yμ−1, Fμ, and Fμ−1 for μ = mν, m = 0, 1, . . .

be given as Yμ = (yn+1, yn+2, hy′
n+1, hy′

n+2)
T , Yμ−1 = (yn−1, yn, hy′

n−1, hy′
n)

T ,
Fμ = ( fn+1, fn+2, hf ′

n+1, hf ′
n+2)

T , and Fμ−1 = ( fn−1, fn, hf ′
n−1, hf ′

n)
T , then the

1-block 2-point method for (1) and (2) is given by

Yμ =
1∑

i=1

A(i)Yμ−i + h2
1∑

i=0

B(i)Fμ−i, (24)

where A(i), B(i), i = 0, 1 are 4 by 4 matrices whose entries are given by the
coefficients of (10), (14), (17), and (20).

Definition 4.1 The block method (24) is zero stable provided the roots R j,
j = 1, . . . , 4 of the first characteristic polynomial ρ(R) specified by

ρ(R) = det

[
1∑

i=0

A(i) R1−i

]

= 0, A(0) = −I (25)
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satisfies |R j| ≤ 1, j = 1, . . . , 4 and for those roots with |R j| = 1, the multiplicity
does not exceed 2 (see [7]).

Consistency of TBNM We note that the block method (24) is consistent
as it has order p > 1. It is easily seen from (25) and invoking Definition
4.1 that the block method (24) is zero-stable since for ρ(R) = R2(R − 1)2,
ρ(R) = 0 satisfies |R j| ≤ 1, j = 1, . . . , 4, and for those roots with |R j| = 1, the
multiplicity does not exceed 2. Hence, the block method (24) is convergent
since consistency + zero-stability = convergence.

Linear stability of the TBNM The linear-stability of the TBNM is discussed
by applying the method to the test equation y′′ = λy, where λ is expected to
run through the (negative) eigenvalues of the Jacobian matrix ∂ f

∂y (see [25]).
Letting q = λh2 and u = wh, it is easily shown that the application of (24) to
the test equation yields

Yμ = M(q; u)Yμ−1 , M(q; u) := (
A(0) − qB(0)

)−1(
A(1) + qB(1)

)
, (26)

where the matrix M(q; u) is the amplification matrix which determines the
stability of the method.

Definition 4.2 A region of stability is a region in the q − u plane, throughout
which |ρ(q; u)| ≤ 1, where ρ(q; u) is the spectral radius of M(q; u) (see [6]).

We observed that in the q − u plane the TBNM is stable for q ε [0, 12] and
u ε [−π, π ] (see Example 5.5).

Computational aspects We use the main method (10) and the additional
methods (14), (17), and (20) to simultaneously obtain the approxima-
tions (yn+1, yn+2)

T and (y′
n+1, y′

n+2)
T , n = 0, 2, . . . , N − 2 over sub-intervals

[x0, x2], . . . , [xN−2, xN]. For instance, n = 0, (y1, y2)
T and (y′

1, y′
2)

T are simul-
taneously obtained over the sub-interval [x0, x2], as y0 and y′

0 are known from
the IVP (2), for n = 2, (y3, y4)

T and (y′
3, y′

4)
T are simultaneously obtained over

the sub-interval [x2, x4], as y2 and y′
2 are known from the previous block, and

so on.
The computations were carried out using a code written in Mathematica

8.0. We note that for linear problems, the code was enhanced by the feature
NSolve[ ] and for nonlinear problems, the Newton’s method was used
enhanced by FindRoot[ ] (see [16]).

5 Numerical Examples

In this section, we give some numerical examples to illustrate the accuracy
(small errors) and efficiency (fewer number of function evaluations (FNCS))
of the TBNM. We find the absolute error of the approximate solution on the
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partition πN as |y − y(x)|. We note that the method requires only two function
evaluations per block except in the first block where three function evaluations
are used. Thus, in general, the method requires a total of (N + 1) FNCS. All
computations were carried out using our written code in Mathematica 8.0.

5.1 Problems where y′ does not appear explicitly.

In this subsection, the TBNM is compared with some existing methods in the
literature.

Example 5.1 We consider the given inhomogeneous IVP (see [26])

y′′ = −100y + 99 sin x, y(0) = 1, y′(0) = 11, xε[0, 1000],
where the analytical solution is given by y(x) = cos(10x) + sin(10x) + sin x. We
choose w = 10.

For this example, the accuracy and efficiency of the TBNM are measured
by the end-point global errors for different values of h and the corresponding
FNCs used. The TBNM is of fourth order and hence comparable with the
fourth order exponential-fitted method given in [26]. It is observed from
Table 1 that the results produced by the TBNM are better than those given
in [26]. We also compare the computational efficiency of the two methods
by considering the FNCs per integration step for each method. The TBNM
requires only one function evaluation per step compared with four function
evaluations per step for the method in [26]. Thus, for this example, the TBNM
is clearly superior.

Example 5.2 We consider the IVP (see [30])

y′′ + K2 y = K2x, y(0) = 10−5, y′(0) = 1 − K10−5 cot K, xε[0, 100],
where the analytical solution is given by y(x) = x + 10−5(cos(Kx) −
cotK sin(Kx)), K = 314.16, and we choose w = 314.16.

This problem was chosen to demonstrate the performance of the TBNM
on a highly oscillatory problem. The results obtained using the TBNM are
displayed in Table 2 and compare with the Dissipative Chebyshev exponential-
fitted method (CHEBY24) given in [30]. We note that although the CHEBY24

Table 1 A comparison of end
point global errors for
Example 5.1

N h TBNM(FNCs) Simos(FNCs)

1000 1 3.3 × 10−2(1001) 1.4 × 10−1(4000)
2000 0.5 2.1 × 10−3(2001) 3.5 × 10−2(8000)
4000 0.25 6.0 × 10−5(4001) 1.1 × 10−3(12000)
8000 0.125 2.1 × 10−5(8001) 8.4 × 10−5(32000)
16000 0.0625 1.3 × 10−6(16001) 5.5 × 10−6(64000)
32000 0.03125 7.8 × 10−8(32001) 3.5 × 10−7(128000)
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Table 2 Results for
Example 5.2

Method N FNCs Absolute error

CHEBY24 9 450 1.84 × 10−11

TBNM 256 257 9.35 × 10−12

uses fewer steps, the TBNM uses fewer number of FNCs with better accuracy.
Hence, the TBNM is very competitive with the method given in [30]. Details
of the numerical results are given in Table 2.

Example 5.3 We consider the nonlinear Duffing equation which was also
solved by Simos [26] and Ixaru and Berghe [12] on [0, 300]

y′′ + y + y3 = B cos �x, y(0) = C0, y′(0) = 0.

The analytical solution is given by

y(x) = C1 cos(�x) + C2 cos(3�x) + C3 cos(5�x) + C4 cos(7�x),

where � = 1.01, C0 = 0.200426728069, C1 = 0.200179477536, C2 = 0.246946143 ×
10−3, C3 = 0.304016 × 10−6, C4 = 0.374 × 10−9. We choose w = 1.01.

For this example, the end-point global errors for TBNM is compared with
the methods given in [12, 26], since all the methods are of fourth order. It
is observed from Table 3 that the results produced by the TBNM are better
than those given in [26] and highly competitive with the method given in [12].
The TBNM requires only one function evaluation per step compared with four
function evaluations per step for the methods in [12, 26]. Hence the TBNM is
more efficient.

Example 5.4 We consider the nonlinear system of second order IVP (see [8])

y′′
1 = (y1 − y2)

3 + 6368y1 − 6384y2 + 42 cos(10x), y1(0) = 0.5, y′
1(0) = 0,

y′′
1 = −(y1 − y2)

3 + 12768y1 − 12784y2 + 42 cos(10x), y2(0) = 0.5, y′
2(0) = 0,

xε[0, 10],
with exact solution y1(x) = y2(x) = cos(4x) − cos(4x)/2.

This problem was chosen to demonstrate the performance of the TBNM on
a nonlinear system. The accuracy and efficiency of the TBNM are measured
by the end-point global errors for the y-component and the corresponding
FNCs used. The results obtained using the TBNM are displayed in Table 4 and

Table 3 A comparison of end
point global errors for
Example 5.3

h TBNM Simos Ixaru

1 1.31 × 10−3 1.70 × 10−3 1.10 × 10−3

0.5 7.53 × 10−5 1.88 × 10−4 5.42 × 10−5

0.25 2.47 × 10−6 1.37 × 10−5 1.86 × 10−6

0.125 1.34 × 10−7 8.70 × 10−7 6.19 × 10−8

0.0625 8.10 × 10−9 5.41 × 10−8 2.40 × 10−9
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Table 4 The correct decimal digit at the endpoint for Example 5.4

TIRK3 RADAU5 EFRK43 TBNM
FNCs Err FNCs Err FNCs Err FNCs Err

907 2.5 × 10−4 853 2.2 × 10−4 2057 3.7 × 10−4 602 2.1 × 10−4

1288 6.6 × 10−6 1208 4.4 × 10−4 1715 3.0 × 10−4 1202 1.3 × 10−5

1682 7.0 × 10−6 1639 6.0 × 10−6 3079 2.7 × 10−5 1602 4.1 × 10−6

compare with those given in [8]. It is seen from Table 4 that TBNM performs
generally better than those in [8] in terms of accuracy and efficiency.

Example 5.5 We consider the stiff second order IVP (see [1])

y′′
1 = (ε − 2)y1 + (2ε − 2)y2, y′′

2 = (1 − ε)y1 + (1 − 2ε)y2,

y1(0) = 2, y′
1(0) = 0, y2(0) = −1, y′

2(0) = 0, ε = 2500, x ε [0, 10π ].
y1(x) = 2 cos x, y2(x) = − cos x, where ε is an arbitrary parameter and w = 1.

This problem was chosen to justify the stability of the TBNM. The eigenval-
ues of the matrix of coefficients of the the equations for y′′

1 and y′′
2 are −1 and

−ε, thus, the analytical solution of the system exhibit two frequencies 1 and
√

ε,
however the initial conditions eliminate the high frequency component

√
ε (see

[1]). The method is stable when q ∈ [0, 12]. In Table 5, we give the absolute
errors at selected values of x, which indicate that choosing N = 454, the
method is stable since for this value of N, q ∈ [0, 12]. However, for N = 452,
q 	 [0, 12], hence the method becomes unstable.

Example 5.6 We consider the two-body problem which was also solved by
Ozawa [21] on [0, 50π ].

y′′
1 = − y1

r3
, y′′

2 = − y2

r3
, r =

√
y2

1 + y2
2,

y1(0) = 1 − e, y′
1(0) = 0, y2(0) = 0, y′

2(0) =
√

1 + e
1 − e

.

where e (0 ≤ e < 1) is an eccentricity. The exact solution of this problem
is y1(x) = cos(κ) − e, y2(x) = √

1 − e2 sin(κ), where κ is the solution of the
Kepler’s equation κ = x + e sin(κ). We choose w = 1.

Table 5 Results for
Example 5.6

N = 454(q ∈ [0, 12]) N = 452(q 	 [0, 12])
x Err Err
5π

2
4.34 × 10−11 3.43 × 10−11

5π 4.66 × 10−12 6.93 × 10−8

15π

2
1.30 × 10−10 3.06 × 10−4

10π 1.01 × 10−11 5.41 × 100
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Table 6 The endpoint errors and steps at x = 50π with e = 0.005 for Example 5.6

TBNM FESDIRK4(3) ESDIRK4(3)
Steps Error Steps Error Steps Error

100 2.907 × 100 170 2.866 × 10−1 277 2.153 × 100

200 6.630 × 10−3 225 7.846 × 10−3 496 1.494 × 10−1

400 9.869 × 10−4 381 1.399 × 10−3 884 9.359 × 10−3

800 4.870 × 10−6 680 1.690 × 10−4 1573 6.200 × 10−4

1200 1.967 × 10−7 1207 1.846 × 10−5 2796 4.416 × 10−5

1600 2.001 × 10−8 2144 1.938 × 10−6 4970 3.412 × 10−6

2000 3.618 × 10−9 3806 1.993 × 10−7 8833 2.848 × 10−7

3200 7.284 × 10−10 6762 2.021 × 10−8 15706 2.530 × 10−8

The results obtained using the TBNM are displayed in Table 6 and compare
with the explicit singly diagonally implicit Runge-Kutta (ESDIRK) and the
functionally fitted ESDIRK (FESDIRK) methods given in [21]. It is seen from
Table 6 that TBNM performs generally better than those in [8] in terms of
accuracy(smaller steps) and efficiency (smaller FNCs).

5.2 Problems where y′ appears explicitly

In this subsection, we show that the TBNM applicable to problems where y′
appears explicitly.

Example 5.7 We consider the given Bessel’s IVP solved on [1, 8] (see [29]).

x2 y′′ + xy′ + (
x2 − 0.25

)
y = 0, y(1) =

√
2

π
sin 1 
 0.6713967071418031,

y′(1) = (2 cos 1 − sin 1)/
√

2π 
 0.0954005144474746.

Exact : y(x) = J1/2(x) =
√

2

πx
sin x

The theoretical solution at x = 8 is y(8) =
√

2
8π

sin(8) 
 0.279092789108058969.

We choose w = ‖ ∂f
∂y‖, evaluated at (x0, y0, y′

0).

This problem was chosen to demonstrate the performance of the TBNM
on a general second order IVP with variable coefficients. It was solved using

Table 7 The absolute errors
at the endpoint for
Example 5.7

RK4 TBNM
N FNCs Err FNCs Err

8 64 5.7 × 10−4 9 5.1 × 10−4

16 128 2.2 × 10−4 17 7.3 × 10−5

32 256 1.8 × 10−5 33 5.8 × 10−6

64 512 1.3 × 10−6 65 3.9 × 10−7

128 1024 8.4 × 10−8 129 2.5 × 10−8
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the fourth-order Runge-Kutta method (RK4) and TBNM. We have chosen to
compare these methods because their orders are the same. The absolute error
for the y-component at the endpoint is given in Table 7. It is obvious from
Table 7 that TBNM performs better than the RK4 method in terms of accuracy
(smaller errors) and is more efficient (smaller FNCs). We note that we did not
find any exponentially fitted method that has been used to solve this problem.

6 Conclusion

We have proposed a TBNM for y′′ = f (x, y, y′). The method has order 4, is
self-starting, provides good accuracy, and requires only one function evalua-
tion per integration step. Numerical experiments performed using the TBNM
show that the method is accurate and efficient. Our future research will be
focused on developing a strategy for calculating the optimum frequency for
the TBNM and implementing a variable step version of the method.
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