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Abstract Practical Nonlinear Programming algorithms may converge to in-
feasible points. It is sensible to detect this situation as quickly as possible, in
order to have time to change initial approximations and parameters, with the
aim of obtaining convergence to acceptable solutions in further runs. In this
paper, a recently introduced Augmented Lagrangian algorithm is modified in
such a way that the probability of quick detection of asymptotic infeasibility is
enhanced. The modified algorithm preserves the property of convergence to
stationary points of the sum of squares of infeasibilities without harming the
convergence to KKT points in feasible cases.

Keywords Augmented lagrangians · Nonlinear programming · Algorithms ·
Numerical experiments

1 Introduction

In Constrained Optimization, one aims to find the lowest possible value of an
objective function within a given domain. Global Optimization is very hard,
especially in large-scale problems: full guarantee that a given point is a global
minimizer of a continuous function can be obtained, if additional properties of
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the function are not available, only after visiting a dense set in the domain. Of
course, such a search is impossible except in low-dimensional problems.

Affordable optimization algorithms (usually called “local algorithms” in
the global optimization literature) generate sequences of iterates that, in
the limit, use to find, in the best case, Karush-Kuhn-Tucker (KKT) points.
In the worst case only (infeasible) stationary points for some infeasibility
measure are found. In the second case, one suspects that the problem is
infeasible. However, every affordable optimization algorithm can converge to
an infeasible point, even when feasible points exist. Therefore, optimization
users that wish to find feasible and optimal solutions of practical problems
usually change the initial approximation and/or the algorithmic parameters of
the algorithm when an almost infeasible point is found. The effectiveness of
this trial-and-error process is, in part, related with the ability of the algorithm
of stopping quickly when the generated sequence is faded to converge to an
infeasible point.

As a consequence, practical optimization algorithms should be effective, not
only for finding solutions of the problems (when they exist), but also for finding
infeasible points, when there is no alternative. This feature is never considered
in comparative numerical studies. Usually, convergence to an infeasible point
is computed as a failure, without taking into account that a “quick failure” gives
rise to the possibility of making better in reasonable computer time, whereas
a “slow failure” does not. Clearly, practical users that wish to solve effectively
their problems, should prefer algorithms in which failure detection is as fast as
possible.

In this paper we focus our analysis in algorithms of Augmented
Lagrangian type [1, 8, 14, 21, 22, 25]. In particular, in the algorithm introduced
in [1], whose computer implementation (called Algencan) is available in
www.ime.usp.br/∼egbirgin/tango, the iterates xk are computed as approximate
minimizers (with increasing precision) of augmented Lagrangians in which
multipliers and penalty parameters are updated. The “increasing precision”
requirement makes it very difficult to solve subproblems when the penalty
parameter goes to infinity, which is necessarily the case when a feasible point
is not found. Consequently, Algencan may employ a lot of computer time to
declare that the problem is, perhaps, infeasible. Here, we will observe that, in
that case, the same convergence results are obtained using bounded away from
zero tolerances for solving the subproblems. This fact motivates the employ-
ment of dynamic adaptive tolerances that depend on the degree of infeasibility
and complementarity at each iterate xk. Adaptive precision control for opti-
mality depending on infeasibility measures has been considered, with different
purposes or in different contexts, in [1, 14–16, 20]. In these works the main
preoccupation is to guarantee that the subproblem solution is accurate enough
if the point is almost feasible, whereas in our case we want to take advantage of
the fact that one does not need great accuracy in the absence of near-feasibility.
The problem of quick detection of infeasibility has been considered in [11] in

http://www.ime.usp.br/~egbirgin/tango
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the context of a Sequential Quadratic Programming (SQP) method. In many
other algorithms (which employ SQP, filters, or Interior Point techniques)
specific restoration procedures are responsible for the detection of minimizers
of the infeasibility. See, among others, [7, 12, 13, 17–19, 27, 28]. An interesting
result where the detection of infeasibility does not depend on restoration
procedures at all may be found in [26].

In this paper we will show that the convergence properties of [1] are
preserved by the new algorithm and that efficiency is improved in the sense
discussed in this introduction.

Notation If v ∈ IRn, v = (v1, . . . , vn), we denote v+ = (max{0, v1}, . . . ,
max{0, vn}). If K = (k1, k2, . . .) ⊆ IN (with k j < k j+1 for all j), we denote
K ⊂

∞
IN. The symbol ‖ · ‖ will denote the Euclidian norm. For all z ∈ IRn, P(z)

will denote the Euclidean projection of z on the box �. If y ∈ IRn, its i-th
component will be denoted by [y]i or by yi, if this does not lead to confusion.

2 Algorithm

The problem considered in this paper is:

Minimize f (x)

subject to h(x) = 0
g(x) ≤ 0
x ∈ �,

(1)

where h : IRn → IRm, g : IRn → IRp, f : IRn → IR are smooth and � ⊂ IRn is a
bounded n-dimensional box given by

� = {x ∈ IRn | ai ≤ xi ≤ bi ∀ i = 1, . . . , n}.

The Augmented Lagrangian function [21, 22, 25] will be defined by:

Lρ(x, λ, μ) = f (x) + ρ

2

{ m∑
i=1

[
hi(x) + λi

ρ

]2

+
p∑

i=1

[
max

(
0, gi(x) + μi

ρ

)]2}

for all x ∈ �, ρ > 0, λ ∈ IRm, μ ∈ IRp
+.

Below we describe the basic Algencan algorithm, which differs from the one
stated in [1] only in the stopping criterion for the subproblem. In the original
Algencan one imposes that the convergence tolerances for the subproblems
{εk} should tend to zero, whereas in Algorithm 2.1 this requirement is relaxed.
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Algorithm 2.1

Let λmin < λmax, μmax > 0, γ > 1, 0 < τ < 1. Let λ̄1
i ∈ [λmin, λmax], i = 1, . . . , m,

μ̄1
i ∈ [0, μmax], i = 1, . . . , p, and ρ1 > 0. Initialize k ← 1. We assume that {εk}

is a bounded sequence of positive numbers.

Step 1. Find xk ∈ � as an approximate minimizer of Lρk(x, λ̄k, μ̄k) on �. By
this we mean that, for all i = 1, . . . , n, we have:∣∣[∇Lρk(xk, λ̄k, μ̄k)

]
i

∣∣ min
{
1,
∣∣xk

i − ai
∣∣}

≤ εk if
[∇Lρk

(
xk, λ̄k, μ̄k)]

i > 0 (2)

and ∣∣[∇Lρk(xk, λ̄k, μ̄k)
]

i

∣∣ min
{
1,
∣∣xk

i − bi
∣∣}

≤ εk if
[∇Lρk

(
xk, λ̄k, μ̄k)]

i < 0. (3)

Step 2. Define

Vk
i = min

{
−gi

(
xk) , μ̄k

i

ρk

}
, i = 1, . . . , p.

If k = 1 or

max
{∥∥h

(
xk)∥∥∞ ,

∥∥Vk
∥∥∞
} ≤ τ max

{∥∥h
(
xk−1)∥∥∞ ,

∥∥Vk−1
∥∥∞
}
, (4)

define ρk+1 = ρk. Otherwise, define ρk+1 = γρk.
Step 3. Compute λ̄k+1

i ∈ [λmin, λmax], i = 1, . . . , m and μ̄k+1
i ∈ [0, μmax], i = 1,

. . . , p. Set k ← k + 1 and go to Step 1.

Let us give a natural interpretation of the criteria (2) and (3). Consider
the linear approximation of Lρk(x, λ̄k, μ̄k) at xk. Clearly, a minimizer z of this
linear approximation on � satisfies

zi = ai if
[∇Lρk

(
xk, λ̄k, μ̄k)]

i > 0

and

zi = bi if
[∇Lρk

(
xk, λ̄k, μ̄k)]

i < 0.

Therefore, the modulus of the difference between Lρk(xk, λ̄k, μ̄k) and the value
of the linear approximation at its minimizer is |∑n

i=1[∇Lρk(xk, λ̄k, μ̄k)]i (xi −
ci)|, where ci = ai if [∇Lρk(xk, λ̄k, μ̄k)]i > 0, and ci = bi if [∇Lρk(xk, λ̄k, μ̄k)]i <

0. Therefore, the condition |[∇Lρk(xk, λ̄k, μ̄k)]i (xk
i − ci)| ≤ εk (i = 1, . . . , n)

guarantees that the modulus of the difference between Lρk(xk, λ̄k, μ̄k) and the
linear approximation minimum is smaller than nεk. This interpretation shows
that the condition |[∇Lρk(xk, λ̄k, μ̄k)]i (xk

i − ci)| ≤ εk could be unnecessarily
rigid, since the bounds that define � could be very far from xk (sometimes
artificially big bounds are employed in practical optimization). This is the
reason why, in (2) and (3), |xk

i − ci| is replaced by min{1, |xk
i − ci|}.
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The solvability of the subproblem (2) and (3) is guaranteed employing
standard bound-optimization solvers. In Algencan, it is used the active-set
projected-gradient method introduced in [10]. In [1] it was assumed that
limk→∞ εk = 0. Here we wish to exploit the case in which εk does not tend
to zero. Several results follow almost exactly as in [1], only observing that the
assumption εk → 0 is not used in those cases.

If s, t ≥ 0 and st ≤ ε we have that min{s, t} ≤ √
ε. Using this obvious fact, we

note that (2) and (3) imply that

∣∣min
{[∇Lρk

(
x, λ̄k, μ̄k)]

i , 1, xk
i − ai

} ≤ √
εk if

[∇Lρk

(
x, λ̄k, μ̄k)]

i > 0 (5)

and

∣∣min
{− [∇Lρk

(
x, λ̄k, μ̄k)]

i , 1, bi − xk
i

}∣∣
≤ √

εk if
[∇Lρk

(
x, λ̄k, μ̄k)]

i < 0 (6)

By direct calculation, (5) and (6) imply that, if εk < 1,

∥∥P
(
xk − ∇Lρk

(
x, λ̄k, μ̄k)] − xk

∥∥∞ ≤ √
εk. (7)

From now on, we define

λk+1 = λ̄k + ρkh
(
xk) (8)

and

μk+1 = (
μ̄k + ρkg

(
xk))

+ (9)

for all k ∈ IN. At each subproblem solution the projected gradient of the
Lagrangian (with multipliers λk+1 and μk+1) is smaller than the prescribed
tolerance. In general, one chooses λ̄k+1 and μ̄k+1 as the projections of λk+1 and
μk+1 on [λmin, λmax]m and [0, μmax]p, respectively. The Lagrange multipliers
approximations λk+1 and μk+1 may be unbounded, unlike their safeguarded
counterparts, which are kept bounded to preserve stability.

Lemma 2.1 Assume that {xk}k∈K is a subsequence of the sequence generated by
Algorithm 2.1 and x∗ = limk∈K xk. Then, for all i = 1, . . . , p, if gi(x∗) < 0 and
k ∈ K is large enough, one has that μk+1

i = 0.

Proof If {ρk} is bounded we have that limk→∞ Vk
i = 0 for all i = 1, . . . , p.

If gi(x∗) < 0 this implies that limk∈K μ̄k
i /ρk = 0. By the boundesness of {ρk}

it turns out that limk∈K μ̄k
i = 0. Therefore, for k ∈ K large enough, (μ̄k

i +
ρkgi(xk))+ = 0. So, μk+1

i = 0 for k ∈ K large enough. If ρk tends to infinity
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and gi(x∗) < 0, by the boundedness of {μ̄k}, one has that μ̄k
i + ρkgi(xk) < 0 for

k ∈ K large enough. Therefore, μk+1
i = 0 as in the bounded case. ��

Lemma 2.2 Under the assumptions of Lemma 2.1, for all k ∈ K large enough,
if εk < 1, one has:

∥∥∥∥∥∥P

⎛
⎝xk −

⎡
⎣∇ f

(
xk)+

m∑
i=1

λk+1
i ∇hi

(
xk)+

∑
gi(x∗)≥0

μk+1
i ∇gi

(
xk)
⎤
⎦
⎞
⎠− xk

∥∥∥∥∥∥∞
≤ √

εk. (10)

Proof Use (7)–(9) and Lemma 2.1. ��

The following result shows that, under the assumptions of previous lemmas,
in the case that {ρk} is bounded and εk → 0, limit points satisfy classical
optimality conditions for local minimization. As previous ones, this result is
proved in [1] in the context of a more complete convergence theorem.

Lemma 2.3 Let us assume again that the hypotheses of Lemma 2.1 hold. Sup-
pose, further, that the sequence {ρk} is bounded. Then, x∗ is feasible. Moreover,
if limk∈K εk = 0, x∗ satisf ies the Karush-Kuhn-Tucker (KKT) conditions for
constrained local minimization

Proof By (4) and the boundedness of {ρk} we obtain that x∗ is feasible. By
the boundedness of {ρk}, {λ̄k}, {μ̄k}, {h(xk)}, and {g(xk)}, and the definitions (8)
and (9) we have that the sequences {λk+1} and {μk+1} are bounded. Therefore,
taking limits in (10) for an appropriate subsequence, we obtain the desired
result. ��

It remains to analyze the behavior of Algorithm 2.1 when ρk → ∞.
Lemma 2.4 below shows that, in that case, limit points are stationary points
of an infeasibility measure, even without the requirement that εk tends to zero.

Lemma 2.4 Under the assumptions of Lemma 2.1, if limk→∞ ρk = ∞, the limit
point x∗ is a stationary point of

Minimize ‖h(x)‖2 + ‖g(x)+‖2 subject to x ∈ �. (11)

Proof Suppose that

[
∇
[∥∥h

(
x∗)∥∥2 +

∥∥∥(g (x∗))
+
∥∥∥2
]

i
> 0. (12)
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Then, by the boundedness of {∇ f (xk)}, {λ̄k}, and {μ̄k}, and the continuity of h
and g, since ρk → ∞, we have that, for k ∈ K large enough,

[
(1/ρk) ∇ f

(
xk)+ (1/2)∇

[∥∥h
(
xk)+ λ̄k/ρk

∥∥2 +
∥∥∥(g (xk)+ μ̄k/ρk

)
+
∥∥∥2
]]

i
> 0.

Therefore, for k ∈ K large enough,

[
∇ f

(
xk)+ (ρk/2) ∇

[∥∥h
(
xk)+ λ̄k/ρk

∥∥2 +
∥∥∥(g (xk)+ μ̄k/ρk

)
+
∥∥∥2
]]

i
> 0.

Therefore, by (2),

∣∣∣∣
[
∇ f

(
xk)+ (ρk/2)∇

[∥∥h
(
xk)+ λ̄k/ρk

∥∥2 +
∥∥∥(g (xk)+ μ̄k/ρk

)
+
∥∥∥2
]]

i

× min
{
1, xk

i − ai
} ≤ εk (13)

for k ∈ K large enough. Dividing both members of (13) by ρk, using continuity
of f , h, and g, and boundedness of {λ̄k}, {μ̄k}, and {εk}, and taking limits, we
obtain:

∣∣∣∣
[
∇
[∥∥h

(
x∗)∥∥2 +

∥∥∥(g (x∗))
+
∥∥∥2
]

i
min

{
1, x∗

i − ai
} = 0.

Therefore, the inequality (12) implies that the partial derivative [∇[‖h(x∗)‖2 +
‖(g(x∗))+‖2]i is non-positive whenever x∗

i > ai.
In an analogous way, we prove that, [∇[‖h(x∗)‖2 + ‖(g(x∗))+‖2]i is non-

negative whenever x∗
i < bi. These two facts imply that x∗ is an stationary point

of (11). ��

Finally, in Lemma 2.5, we recall the result of [1] that shows that KKT
conditions hold, in the limit, if a weak constraint qualification takes place. In
[1] the Constant Positive Linear Dependence (CPLD) condition [5, 24] was
invoked in this context. However, it has been recently shown that this result
holds under even weaker constraint qualifications [3, 4].

Lemma 2.5 Assume the hypotheses of Lemma 2.4, with ρk → ∞. Suppose, fur-
ther, that a weak constraint qualif ication (CPLD or the weaker ones presented
in [3, 4]) holds at the feasible limit point x∗ and that limk∈K εk = 0. Then, the
KKT conditions hold at x∗.

Proof See [1] using (7). ��
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The lemmas above show that, discarding rounding errors, and assuming that
infinite time is available, Algorithm 2.1 only fails in the case of convergence
to infeasible points, and, in this case, one necessarily has that ρk tends to
infinity and all the limit points are probably local minimizers of the infeasibility
measure. The case in which KKT conditions do not hold at a feasible limit point
due to lack of fulfillment of a constraint qualification cannot be considered a
failure, since, even in this case, as shown by Lemma 2.2, approximate KKT
conditions remain to hold (see [2, 6]), at least when εk → 0.

In practical terms, the case in which Algencan converges to an infeasible
point is usually detected by the growth of the penalty parameter ρk. When ρk

becomes very large, Algencan stops with a message of possible infeasibility.

3 An adaptive stopping criterion for the subproblems

In Section 2 we showed that, when the limit is infeasible, the requirement
εk → 0 is not necessary at all, and, in practice, excessively small values of εk

may contribute to increase computer time for solving subproblems. Therefore,
variations of Algorithm 2.1 in which εk does not tend to zero in the case of
infeasibility are necessary. An appropriate definition of εk by means of which
this tolerance does not tend to zero unless strictly necessary, is given below. Let
us define first a continuous increasing “forcing” function ϕ : IR+ → IR, such
that ϕ(0) = 0. For all k ∈ IN we define:

εk = ϕ
[∥∥h

(
xk)∥∥+ ∥∥min

{−g
(
xk) , μ̄k/ρk

}∥∥] . (14)

Clearly, with the definition (14), we have that limk∈K εk = 0 only if
limk∈K ‖h(xk)‖ + ‖g(xk)+‖ = 0 and, in this case, the limit of xk for k ∈ K must
be feasible. If the limit of xk for k ∈ K is infeasible, the tolerances εk do not
tend to zero and, so, we expect that the corresponding subproblems will be
solved much faster than when we set εk → 0. Note that, due to the convergence
theory of the subproblem solver (see [10]), the requirements (2) and (3) can
always be fulfilled if εk > 0 is fixed.

On the other hand, since εk is not defined before the execution of the
subproblem solver, it is possible that, for all the internal iterations of this
subalgorithm, the requirements (2) and (3) remain unfulfilled when one uses
the definition (14). This means that the convergence analysis of Algorithm 2.1
with the definition (14) must consider two possibilities. In the first one, the
subproblem solver always returns satisfying (2), (3) and (14). The second
possibility is that, for some value of k, the subproblem solver is not able to
stop because the projected gradient of the Augmented Lagrangian tends to
zero slower than the feasibility-complementarity measure (14). We consider
these possibilities in the following two theorems.
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Theorem 3.1 Assume that {xk} is an inf inite sequence generated by Algo-
rithm 2.1 with εk def ined by (14). (This means that the subproblem solver is
always able to satisfy (2) and (3) with (14).) Let K ⊂

∞
IN and x∗ ∈ � be such that

limk∈K xk = x∗. Then:

• x∗ is a (feasible or infeasible) stationary point of (11).
• If {ρk} is bounded, then x∗ is feasible and satisf ies the KKT conditions.
• If {ρk} is unbounded, x∗ is feasible, and satisf ies a weak constraint

qualif ication (as CPLD or the ones introduced in [3, 4]), then x∗ satisf ies
the KKT conditions.

• If x∗ is feasible, then, independently of constraint qualif ications, we have
that

lim
k∈K

∥∥∥∥∥∥P

⎛
⎝xk −

⎡
⎣∇ f

(
xk)+

m∑
i=1

λk+1
i ∇hi

(
xk)+

∑
gi(x∗)=0

μk+1
i ∇gi

(
xk)
⎤
⎦
⎞
⎠− xk

∥∥∥∥∥∥
= 0.

Proof By the boundedness of �, {λ̄k}, and {μ̄k}, the continuity of h and g, and
the definition (14), we have that the sequence {εk} is bounded. Then, if ρk →
∞, the first part of the thesis follows from Lemma 2.4.

In the case that {ρk} is bounded, by (4) and (14), we have that limk→∞ εk = 0.
Then, the second part of the thesis follows from Lemma 2.3.

Consider now the third part of the thesis. Since h(x∗) = 0 and g(x∗) ≤ 0, we
have that

lim
k∈K

∥∥h
(
xk)∥∥+

∥∥∥g
(
xk)

+
∥∥∥ = 0. (15)

By the boundedness of {μ̄k} we have that μ̄k/ρk → 0. Therefore, by (14) and
(15), it turns out that limk∈K εk = 0. Then, the desired result follows from
Lemma 2.5.

The proof of the last part of the thesis follows from Lemma 2.2, after proving
that limk∈K εk = 0. This fact follows from (4) and (14) in the case that {ρk} is
bounded and is deduced from (14), (15), and the boundedness of λ̄k and {μ̄k}
when {ρk} tends to infinity. This completes the proof of the theorem. ��

It remains to consider the case in which Algorithm 2.1, with the definition
(14), is not able to generate an infinite sequence {xk}. This means that, for some
finite value of k, the subproblem solver cannot fulfill the requirements (2), (3),
and (14). A few words about “reasonable” subproblem solvers are necessary.
A typical subproblem solver that aims to obtain (2) and (3) addresses the box-
constrained minimization problem:

Minimize Lρk

(
x, λ̄k, μ̄k) subject to x ∈ �. (16)

Well established affordable algorithms for handling (16) exist. These algo-
rithms (as the one presented in [10], which is used in Algencan) typically
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generate a sequence {xk,	} that converges to a stationary point x ∈ �. This
implies that the sequence {xk,	} satisfies

∣∣∣∣ lim
	→∞

∣∣∣[∇Lρk

(
xk,	, λ̄k, μ̄k)]

i

(
xk,	

i − ai

)∣∣∣ = 0 if
[∇Lρk

(
xk, λ̄k, μ̄k)]

i > 0 (17)

and

∣∣∣∣ lim
	→∞

∣∣[∇Lρk

(
xk, λ̄k, μ̄k)]

i

(
xk

i − bi
)∣∣ = 0 if

[∇Lρk

(
xk, λ̄k, μ̄k)]

i < 0 (18)

Therefore, if εk > 0 is given in advance, the fulfillment of (2) and (3) is
guaranteed for 	 large enough.

The problem is that, with the definition (14), the stopping tolerance for the
subproblem solver is dependent of the current internal iterate xk,	. As a conse-
quence, in spite of going to zero, the quantities |[∇Lρk(xk,	, λ̄k, μ̄k)]i (xk,	

i − ai)|
(for [∇Lρk(xk, λ̄k, μ̄k)]i > 0) or |[∇Lρk(xk, λ̄k, μ̄k)]i (xk

i − bi)| (for [∇Lρk(xk,
λ̄k, μ̄k)]i < 0) could be always greater than ϕ[‖h(xk,	)‖ + ‖ min{−g(xk,	),
μ̄k/ρk‖]. This situation is considered in the following theorem.

Theorem 3.2 Assume that, for some k ∈ IN , the sequence generated by
Algorithm 2.1, with the def inition (14), and employing a subproblem solver with
the properties (17) and (18), cannot satisfy (2)–(3). Then, every limit point of the
sequence {xk,	}	∈IN is feasible and satisfy the KKT conditions of (1).

Proof By the hypothesis of the theorem and (14), for all 	 ∈ IN we have:

max
{∣∣∣[∇Lρk

(
xk,	, λ̄k, μ̄k)]

i

(
xk,	

i − ai

)∣∣∣∣∣∣ [∇Lρk

(
xk, λ̄k, μ̄k)]

i > 0
}

> ϕ
[∥∥h

(
xk,	

)∥∥+ ∥∥min
{−g

(
xk,	

)
, μ̄k/ρk

}∥∥]

or

max
{∣∣∣[∇Lρk

(
xk,	, λ̄k, μ̄k)]

i

(
xk,	

i − bi

)∣∣∣∣∣∣ [∇Lρk

(
xk, λ̄k, μ̄k)]

i < 0
}

> ϕ
[∥∥h

(
xk,	

)∥∥+ ∥∥min
{−g

(
xk,	

)
, μ̄k/ρk

}∥∥]

Therefore, by (17) and (18),

lim
	→∞ ϕ

[∥∥h
(
xk,	

)∥∥+ ∥∥min
{−g

(
xk,	

)
, μ̄k/ρk

}∥∥] = 0. (19)

Let x∗ ∈ � be a limit point of {xk,	}	∈IN . (Limit points necessarily exist as
� is compact.) Taking limits in (19) we see that x∗ is feasible. Moreover, if
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gi(x∗) < 0, (19) implies that μ̄k
i = 0. Therefore, by (17), (18), and the deduction

of (7),

lim
	→∞

∥∥∥∥∥P

(
xk,	 −

[
∇ f

(
xk,	

)+ (ρk/2)

m∑
i=1

∇ (hi
(
xk,	

)+ λ̄k
i /ρk

)2

+ (ρk/2)
∑

gi(x∗)=0

∇ (gi
(
xk,	

)+ μ̄k
i /ρk

)2
+

⎤
⎦
⎞
⎠− xk,	

∥∥∥∥∥∥ = 0. (20)

Taking limits in (20) for 	 → ∞, we get:

∥∥∥∥∥∥P

⎛
⎝x∗ −

⎡
⎣∇ f

(
x∗)+

m∑
i=1

λ̄k
i ∇hi

(
x∗)+

∑
gi(x∗)=0

μ̄k
i ∇gi

(
x∗)
⎤
⎦
⎞
⎠− x∗

∥∥∥∥∥∥ = 0.

Therefore, the limit point x∗ is feasible and satisfies the KKT conditions
of (1). ��

Therefore, Theorem 3.2 says that the case in which the subproblem solver
does not stop corresponds to the case in which the current approximation to
the multipliers λ̄k and μ̄k are the true multipliers for the fulfillment of KKT
conditions at a limit point of the inner sequence {xk,	}.

4 Numerical examples

In order to illustrate the reliability of our approach, we ran the original
Algencan and the modified version introduced here both with feasible and
infeasible problems. In the feasible problems, there exists a local minimizer
of the sum of squares of the infeasibilities that attracts the iterations for
most initial points. We will show that, in these cases, the modified algorithm
is more efficient than the original one and that the performance of both
algorithms is approximately the same when convergence to the solution of
the original problem occurs. In the infeasible cases the performance of the
modified algorithm is remarkably better than that of the original Algencan.

4.1 Feasible examples

We considered the family of nonlinear programming problems given by

Minimize

n
2∑

i=1

4x2
2i−1 + 2x2i−1x2i + 2x2

2i − 22x2i−1 − 2x2i (21)

subject to [(
x2i − x2

2i−1

)2 + 1
]
(x2i−1 − x2i − 18) = 0, (22)
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Table 1 Feasible problems:
Results for n = 1000

Initial Point Original Modified

(−10, 10,−10, 10, . . .) 22, 64, 0, 0.22 23, 32, 0, 0.15
(10, 10, 10, 10, . . .) 21, 62, 3, 0.26 22, 29, 0, 0.14
(−10,−10,−10,−10, . . .) 22, 62, 0, 0.20 24, 37, 0, 0.16
(10,−10, 10,−10, . . .) 2, 15, 2, 0.10 8, 9, 2, 0.10
(0, 0, 0, 0, . . .) 25, 100, 0, 0.37 26, 29, 0, 0.12

for i = 1, . . . , n/2 , and

x ∈ [−10, 10]n. (23)

The objective function is a variable-dimensioned convex quadratic and each
constraint is defined by the product of two functions, the first of which is not
smaller than 1 for all x ∈ IRn, and the second vanishes in the set x2i−1 − x2i −
18 = 0. Therefore, the feasible set is a “hidden” polytope, but, due to the pres-
ence of the factors [(x2i − x2

2i−1)
2 + 1], iterative solvers only find feasible points

when the initial approximation is close to the corner (10, −10, 10, −10, . . .).
For most initial approximations, nonlinear programming solvers tend to find
stationary infeasible points. Therefore, with the aim of getting solutions of the
hidden quadratic programming problem, it is important that, in the case of
infeasible limit, the solver should run as fast as possible. In this way, it could
be possible to change initial points with the hope of getting one leading to the
true solution.

With this in mind, we ran the ordinary version of Algencan and the
modification given in Algorithm 2.1 with (2), (3), and (14). We employed
different initial points and the dimensions n = 1000 and n = 10, 000. In (14)
we used ϕ(t) ≡ t as forcing function. For each experiment we report a 4-
uple (Outer, Inner, Newton, Time). Outer is the number of Algencan (outer)
iterations. Inner is the number of iterations executed by the subproblem solver
[10]. In some cases, when Algencan judges that the current approximation
is close to a solution, some Newton-like iterations are executed in order to
speed up the convergence [9]. Finally, Time is the computer time (in seconds)
employed by each algorithm. Note that Time should be roughly proportional
to Inner.

The results are given in Tables 1 and 2. Only in the case in which the initial
point is (10, −10, 10, −10, . . .) convergence took place to the true minimizer of

Table 2 Feasible problems:
Results for n = 10000

Initial Point Original Modified

(−10, 10,−10, 10, . . .) 20, 60, 0, 1.89 23, 32, 0, 1.16
(10, 10, 10, 10, . . .) 20, 77, 3, 2.82 22, 29, 0, 1.12
(−10,−10,−10,−10, . . .) 20, 58, 0, 1.72 24, 37, 0, 1.34
(10,−10, 10,−10, . . .) 2, 15, 1, 0.74 8, 9, 2, 0.84
(0, 0, 0, 0, . . .) 26, 110, 0, 3.48 27, 29, 0, 1.11
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Table 3 Infeasible problems:
Results for n = 1000

Initial Point Original Modified

(−5, 5,−5, 5, . . .) 20 , 72 , 3, 0.06 22 , 29, 0, 0.02
(5, 5, 5, 5, . . .) 20, 70, 2, 0.06 22, 25, 0, 0.03
(−5,−5,−5,−5, . . .) 20, 69, 2, 0.07 22, 30, 0, 0.03
(5,−5, 5,−5, . . .) 22, 88, 3, 0.11 25, 27, 0, 0.03
(0, 0, 0, 0, . . .) 25, 103, 0, 0.09 26, 27, 0, 0.03

the problem. In the other cases, both algorithms converged to stationary points
of the infeasibility, as expected. In these cases, the algorithms stopped when
the penalty parameter became greater than 1020, generally involving around
20–25 outer iterations. The performance of the modified Algorithm 2.1 was
consistently better than the one of Algencan in these cases.

4.2 Infeasible Examples

In what follows we present results for problems in which the feasible region is
empty.

The objective function is (21) and the equality constraints are given by (22).
However, the box constraints (23) are replaced by

x ∈ [−8, 8]n. (24)

The problem defined by (21), (22) and (24) has empty feasible region. At
the global minimizer of the sum of squares of equality constraints subject to
the bounds (24) is (0.5, 0.22176, . . .) and the maximal modulus of infeasibilities
is 17.356. On the other hand, the norm of the gradient of the squared norm
of infeasibility is ≈ 10−20. Using all the tested initial points, both the original
Algencan and the modified version introduced here converged to the mini-
mizer of infeasibilities. Some examples are given in Tables 3 and 4. Observe
that the modified algorithm with adaptive criterion employed much less inner
iterations per major iteration (always less than 2) than the original Algencan.
Consequently, the computer time employed for converging to the minimizer
of infeasibility was considerably reduced.

Table 4 Infeasible problems:
Results for n = 10000

Initial Point Original Modified

(−5, 5,−5, 5, . . .) 19, 416, 1, 3.70 22, 29, 0, 0.24
(5, 5, 5, 5, . . .) 20, 77, 3, 1.07 22, 25, 0, 0.20
(−5,−5,−5,−5, . . .) 20, 83, 2, 0.81 22, 30, 0, 0.24
(5,−5, 5,−5, . . .) 22, 83, 3, 0.88 26, 27, 0, 0.23
(0, 0, 0, 0, . . .) 26, 87, 0, 0.63 27, 27, 0, 0.21
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5 Conclusions

Constrained optimization algorithms must be prepared to run with different
initial points in order to enhance the chances of convergence to global min-
imizers, even without using global minimization strategies. One of the con-
ditions for the reliability of this approach is that the nonlinear programming
algorithm should detect as fast as possible the case in which convergence to an
infeasible point occurs. In the case of the Algencan version of the Augmented
Lagrangian method, we showed that, in order to converge to stationary points
of the infeasibility, the tolerance for optimality does not need to tend to zero.
Exploiting this property, we suggested a specific way to measure infeasibility
and to test optimality at each outer iteration of the Augmented Lagrangian al-
gorithm. We proved that, in this way, the convergence properties of Algencan
[1] are preserved. In particular, the algorithm converges to stationary points of
the sum of squares of infeasibilities, which are generally local minimizers of this
measure. Other alternatives for maintaining reasonable levels of optimality
tolerances in the presence of possible infeasibility have been proposed in [23].
Preliminary experience shows that computer time is considerably reduced
when one employs the new strategy in the case of convergence to infeasible
points. In the case of convergence to nonlinear programming solutions the
computer time does not change. We conjecture that strategies like this should
contribute to increase the reliability of repeated applications of affordable
algorithms for finding better local (and perhaps global) minimizers of opti-
mization problems.
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