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Abstract In this paper we propose primal-dual interior-point algorithms
for semidefinite optimization problems based on a new kernel function
with a trigonometric barrier term. We show that the iteration bounds are
O(

√
n log( n

ε
)) for small-update methods and O(n

3
4 log( n

ε
)) for large-update,

respectively. The resulting bound is better than the classical kernel function.
For small-update, the iteration complexity is the best known bound for such
methods.
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1 Introduction

In this paper we deal with primal-dual interior-point methods (IPMs) for
solving standard semidefinite optimization (SDO) problems which are the
convex optimization problems over the intersection of an affine set with cone
of the positive semidefinite matrices, i.e.;

min C • X

s.t. Ai • X = bi, i = 1, 2, . . . , m

X � 0,
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where each Ai ∈ Sn, b = (b 1, b 2, . . . , b m)T ∈ Rm and C ∈ Sn. Moreover, the
matrices Ai are linearly independent. The dual problem of (P) is given by

max b T y

s.t.
m∑

i=1

yi Ai + S = C,

S � 0,

(D)

with y ∈ Rm and S ∈ Sn. Here we use Sn to denote the set of all symmetric
n × n matrices. The operator • denotes the standard inner product in Sn, i.e.,
C • X := Tr(CX) = ∑

i, j CijXij, and X � 0 (X �) means that X is symmetric
and positive semidfinite (symmetric and positive definite).

In 1984, Karmarkar [12] proposed a polynomial-time algorithm the so-called
IPMs for solving linear optimization (LO) problems. This method is extended
to SDO, which an important contribution in this field was made by Nesterov
and Todd [15, 22]. For a comprehensive study, the reader is referred to [7, 10,
17, 25]. We assume that a strictly feasible pair (X0 � 0, S0 � 0) exists, i.e., there
exists (X0, y0, S0) such that

Ai • X0 = bi, i = 1, 2, . . . , m,

m∑

i=1

y0
i Ai + S0 = C, X0 � 0, S0 � 0.

This assumption is called the interior-point condition (IPC). The IPC ensures
the existence of an optimal primal-dual pair (X∗, S∗) with zero duality gap:

C • X∗ − b T y∗ = X∗ • S∗ = 0.

Here, y∗ is uniquely determined by S∗ due to the assumption that the matrices
Ai are linearly independent. Thus, we can write the optimality conditions for
(P) and (D) as follows:

Ai • X = bi, i = 1, 2, . . . , m
m∑

i=1

yi Ai + S = C

XS = 0, X, S � 0.

(1)

The basic idea of primal-dual IPMs is to replace the third equation in (1), the
so-called complementarity condition for (P) and (D), by the parameterized
equation XS = μE with μ > 0; where E denotes the n × n identity matrix.
Thus, one may consider

Ai • X = bi, i = 1, 2, . . . , m
m∑

i=1

yi Ai + S = C

XS = μE, X, S � 0.

(2)
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For each μ > 0, the parameterized system (2) has a unique solution
(X(μ), y(μ), S(μ)) (see [13, 16]), which is called a μ-center of (P) and (D).
The set of μ-centers is said to be the central path of (P) and (D). The central
path converges to the solution pair of (P) and (D) as μ reduces to zero [16].

The natural way to define a search direction is to follow the Newton
approach and to linearize the third equation in (2) by replacing X, y and S
with X+ = X + �X, y+ = y + �y and S+ = S + �S respectively. This leads
to the following system:

Ai • �X = 0, i = 1, 2, . . . , m,

m∑

i=1

�yi Ai + �S = 0,

�XS + X�S = μE − XS.

(3)

The system (3) can be rewritten as

Ai • �X = 0, i = 1, 2, . . . , m,

m∑

i=1

�yi Ai + �S = 0,

�X + X�SS−1 = μS−1 − X.

(4)

It is clear that �S is symmetric due to the second equation in (4). However, a
crucial observation is that �X is not necessarily symmetric because X�SS−1

may be not symmetric. Many researchers have proposed methods for sym-
metrizing the third equation in the Newton system (4) such that the resulting
new system has a unique symmetric solution. In this paper, we consider the
symmetrization scheme that yields NT-direction [22]. Let us define the matrix

P := X
1
2 (X

1
2 SX

1
2 )

−1
2 X

1
2

[
= S

−1
2 (S

1
2 XS

1
2 )

1
2 S

−1
2

]
, (5)

and also define D = P
1
2 , where for any symmetric positive definite matrix G,

the exponent G
1
2 denotes its symmetric square root. The matrix D can be used

to scale X and S to the same matrix V defined by [18]

V := 1√
μ

D−1 X D−1 = 1√
μ

DSD = 1√
μ

(D−1 XSD)
1
2 . (6)

Note that the matrices D and V are symmetric and positive definite. In the
NT-scheme, we can get

Ai • �X = 0, i = 1, 2, . . . , m,

m∑

i=1

�yi Ai + �S = 0,

�X + P�SPT = μS−1 − X.

(7)
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Let us further define

Āi := 1√
μ

DAi D, i = 1, 2, . . . , m,

DX := 1√
μ

D−1�X D−1, (8)

DS := 1√
μ

D�SD,

then the NT search directions can be written as the solution of the following
system:

Āi • DX = 0, i = 1, 2, . . . , m,

m∑

i=1

�yi Āi + DS = 0, (9)

DX + DS = V−1 − V.

The solution of this system is unique, and we can get the original directions
via (8).

1.1 The matrix functions

Using the concept of a matrix function [11], the definition of kernel function
ψ can be extended to any diagonalizable matrix with positive eigenvalues. In
particular, for a given eigen-decomposition

V = Q−1
V diag (λ1(V), . . . , λn(V))QV,

of V with a nonsingular matrix QV , the matrix function ψ(V) is defined by

ψ(V) = Q−1
V diag (ψ(λ1(V)), . . . , ψ(λn(V)))QV . (10)

Then we can define a matrix barrier function �(V) : Sn++ → R by

�(V) := Tr(ψ(V)) =
n∑

i=1

ψ(λi(V)), (11)

where Sn++ denotes the set of all symmetric positive definite n × n matrices.
As in the linear case, we can call ψ(t) the kernel function for the matrix

function ψ(V) and �(V). Since the derivatives ψ ′(t) and ψ ′′(t) are well defined,
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we can obtain the matrix functions ψ ′(V) and ψ ′′(V) if ψ(λi(V)) in (10) is
replaced by ψ ′(λi(V)) and ψ ′′(λi(V)) for each i, respectively.

Definition 1 A matrix M(t) is said to be a matrix of functions (or a matrix-
valued function) if each entry of M(t) is a function of t, that is, M(t) = [Mij(t)].

The usual concepts of continuity, differentiability and integrability can
be naturally extended to matrix-valued functions, by interpreting them
component-wise. Let M(t) and N(t) be two matrices of functions. Then,
we have

d
dt

M(t) = M′(t) (12)

d
dt

Tr(M(t)) = Tr(M′(t)) (13)

d
dt

Tr(ψ(M(t))) = Tr(ψ(M′(t))M′(t)) (14)

d
dt

(M(t)N(t)) = M′(t)N(t) + M(t)N′(t). (15)

In fact, the right-hand side of the third equation in (9) is the negative gradient
of the matrix barrier function �c(V) with the classical kernel function ψc(t) =
t2−1

2 − log(t), while ψc(t) satisfies

ψ ′
c(1) = ψc(1) = 0,

ψ ′′
c (t) > 0, t > 0, (16)

lim
t→0+

ψc(t) = lim
t→+∞ ψc(t) = +∞.

We replace the right-hand-side of the third equation in (9) by −∇�(V), where
−∇�(V) is the negative gradient of the matrix barrier function �(V) with the
kernel function (18). Thus this system can be rewritten as

Āi • DX = 0, i = 1, 2, . . . , m,

m∑

i=1

�yi Āi + DS = 0, (17)

DX + DS = −∇�(V).
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The new search direction (DX, �y, DS) is obtained by solving (17) so that
(�X, �y, �S) is computed via (8).

Now, we explain our algorithm for the primal-dual IPM for the SDO.
Assuming that a starting point in a certain neighborhood of the central path is
available, we can set out from this point. Then, we will go to the outer iteration.
If μ satisfies nμ ≥ ε, then it is reduced by factor 1 − θ , where θ ∈ (0, 1). Then,
we make use of inner iteration, and we repeat the procedure until we find
iterates that are close to (X(μ), y(μ), S(μ)), that is, the proximity �(V) ≤ τ .
Indeed, each outer iteration performs an update of the barrier parameter and
a sequence of inner iterations. It is agreed that the total number of inner
iterations required by algorithm is an appropriate measure for the efficiency
of the algorithm. This number is called as the iteration complexity of the
algorithm; it is usually described as a function of the dimension n of the
problem and the accuracy parameter ε. The iteration complexity is bounded by
multiplying the number of inner iteration bound K by the number of barrier
parameter updates, which is bounded above by 1

θ
log n

ε
(Lemma II-17 in [21]).

A crucial question is that how to choose the parameters τ, θ and the step size α,
that minimizes the iteration complexity of the algorithm. Figure 1 gives some
examples of the kernel functions that have been analyzed already as well as
the complexity results for the corresponding algorithms.

Kernel functions play an important role in the design and analysis of
interior-point algorithms. They are not only used for determining the search
directions but also for measuring the distance between the given iterate and
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Fig. 1 Iteration bounds for large- and small-update methods

the corresponding μ-center for the algorithms. Bai et al. [1] presented the
approach of using kernel function to determine the search directions and to
design primal-dual IPMs for solving LO problems. El Ghami et al. [6] extended
the approach presented in [1] for LO, which is based on so-called eligible
kernel functions, to SDO which yields a wide class of new methods for SDO.
Some kernel functions introduced in Fig. 1, so-called self-regular kernel func-
tions [17, 18] and some non-self-regular kernel functions [1, 3, 5, 24]. Recently,
El Ghami et al. [8] introduced a new kernel function with a trigonometric
barrier term, which is not logarithmic and not self-regular, and analyzed large-
and small-update methods of the primal-dual interior-point algorithm for LO.
Motivated by their work, in this paper we present a primal-dual interior-point
algorithm for SDO based on the kernel function:

ψ(t) = t2 − 1
2

+ 4
π

cot(h(t)), where h(t) = π t
1 + t

, t > 0, (18)

and derive the complexity analysis for algorithms with large- and small-update
methods.

The paper is organized as follows: In Section 2, we derive some properties of
ψ(t) and �(V) based on the new kernel function (18). In Section 3, we propose
an expression for the decrease of the proximity during an inner iteration, and
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derive a default value for the step size. The analysis is completed in Section 4
by deriving the iteration complexity. Finally, in the last section we conclude
with some remarks.

2 Properties of the new proximity function

In this section, we study some properties of the kernel function (18). We start
with three technically lemmas.

2.1 Some technical results

For ψ we have the first three derivatives as follows:

ψ ′(t) = t − 4
π

h′(t)
(
1 + cot2(h(t))

)
, (19)

ψ ′′(t) = 1 − 4
π

(
1 + cot2(h(t))

) (
h′′(t) − 2h′(t)2 cot(h(t))

)
, (20)

ψ ′′′(t) = − 4
π

(
1 + cot2(h(t))

)
g(t), (21)

where

g(t) = −6h′(t)h′′(t) cot(h(t)) + h′′′(t) + 2h′(t)3 (
1 + 3 cot2(h(t))

)
.

Lemma 2 For the function ψ(t) def ined in (18), we have

lim
t→+∞ ψ(t) = +∞.

Proof Let t = 1
x . Then,

lim
t→+∞ ψ(t) = lim

t→+∞

(
t2 − 1

2
+ 4

π
cot(h(t))

)

= lim
x→+0

1 − x2

2x2 + 4
π

cot
(

π

1 + x

)

= lim
x→+0

π(1 − x2) sin
(

π
1+x

) + 8x2 cos
(

π
1+x

)

2πx2 sin
(

π
1+x

) .

Since

lim
x→+0

π(1 − x2) sin
(

π

1 + x

)
+ 8x2 cos

(
π

1 + x

)
= 0,

and

lim
x→+0

2πx2 sin
(

π

1 + x

)
= 0,
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we can apply L’Hospital’s role:

lim
t→+∞ ψ(t)

= lim
x→+0

−2πx sin
(

π
1+x

) − π2(1−x2)

(1+x)2 cos
(

π
1+x

) + 16x cos
(

π
1+x

) + 8πx2

(1+x)2 sin
(

π
1+x

)

4πx sin
(

π
1+x

) − 2π2x2

(1+x)2 cos
(

π
1+x

)

= +∞.

��

Lemma 3 For the function h(t) def ined in (18), we have

1 + t + π cot(h(t)) > 0, t > 1.

Proof For t > 1, π
2 < h(t) ≤ π . Define f (t) := 1 + t + π cot(h(t)). Since sin(x)

x >
π−x

x , for 0 ≤ x ≤ π [14], we have

f ′(t) = 1 − πh′(t)
(
1 + cot2(h(t))

) = sin2(h(t)) − πh′(t)
sin2(h(t))

= (1 + t)2 sin2(h(t)) − π2

(1 + t)2 sin2(h(t))
=

(1 + t)2
(

sin(h(t))
h(t)

)2

−
(

π

h(t)

)2

(1 + t)2

(
sin(h(t))

h(t)

)2

>

(1 + t)2
(

π − h(t)
h(t)

)2

−
(

π

h(t)

)2

(1 + t)2

(
sin(h(t))

h(t)

)2 =
(1 + t)2

(
1
t

)2

−
(

1 + t
t

)2

(1 + t)2

(
sin(h(t))

h(t)

)2 = 0.

Thus f (t) is increasing for t > 1, and hence f (t) ≥ f (1) = 2 > 0. This implies
the lemma. ��

Lemma 4 For the function h(t) def ined in (18), one has

h′′(t) − 2h′(t)2 cot(h(t)) < 0, t > 0. (22)

Proof Since h(t) is increasing, we have 0 < h(t) ≤ π , for t > 0. Now, we
consider two cases:

Case 1 Assume that t ∈ (0, 1]. Then 0 < h(t) ≤ π
2 and so cot(h(t)) ≥ 0. Since

h′′(t) = −2π
(1+t)3 < 0 for t > 0, we obtain

h′′(t) − 2h′(t)2 cot(h(t)) < 0,

which shows that (22) holds for all t ∈ (0, 1].
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Case 2 Assume that t ∈ (1, ∞). By Lemma 3, we have 1+t
π

> − cot(h(t)). Using
the first two derivatives h(t) for all t ≥ 1, we get

h′′(t) − 2h′(t)2 cot(h(t)) < h′′(t) + 2h′(t)2 1 + t
π

= − 2π

(1 + t)3 + 2π2(1 + t)
π(1 + t)4 = 0.

This completes the proof. ��

The next lemma shows that the new kernel function (18) is eligible.

Lemma 5 Let ψ(t) be as def ined in (18) and t > 0. Then

ψ ′′(t) > 1, (23)

tψ ′′(t) + ψ ′(t) > 0, (24)

tψ ′′(t) − ψ ′(t) > 0, (25)

ψ ′′′(t) < 0. (26)

Proof Clearly, Lemma 4 and the second derivative of ψ(t) follow (23).
By using (19), (20) and h′(t) and h′′(t) the first two derivatives of h(t),

we have

tψ ′′(t) + ψ ′(t)

= 2t − 4
π

(
1 + cot2(h(t))

) (
th′′(t) − 2th′(t)2 cot(h(t)) + h′(t)

)

= 2t − 4
π

(
1 + cot2(h(t))

) ( −2π t
(1 + t)3 − 2π2t

(1 + t)4 cot(h(t)) + π

(1 + t)2

)

= 2t +
(

2
(1 + t)2 sin(h(t))

)2 (
t2 − 1 + 2π t cot(h(t))

)
. (27)

Consider two cases:

Case 1 Assume that 0 < t < 1.
Define

k(t) = t2 − 1 + 2π t cot(h(t)) = 2π t
(

cot(h(t)) + t
2π

− 1
2π t

)

and

f (t) = cot(h(t)) + t
2π

− 1
2π t

.
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We have

f ′(t) = −h′(t)
(
1 + cot2(h(t))

) + 1
2π

+ 1
2π t2

= −h′(t)
sin2(h(t))

+ 1
2π

+ 1
2π t2

= −π

(1 + t)2 sin2(h(t))
+ 1

2π
+ 1

2π t2

≤ −π

(1 + t)2h(t)2 + 1
2π

+ 1
2π t2

= −1
π t2 + 1

2π
+ 1

2π t2 = t2 − 1
2π t2 < 0.

This implies that f (t) is strictly decreasing and hence f (t) > f (1) = 0. Since
2π t > 0 for each t ∈ (0, 1), we obtain k(t) > 0 for each t ∈ (0, 1). Thus the right-
hand-side of (27) is positive which proves (24), for all t ∈ (0, 1).

Case 2 Assume that t ≥ 1.
Then ψ ′(1) = 0 and using (23), we see that ψ ′(t) is strictly increasing. Hence

tψ ′′(t) + ψ ′(t) > 1 + ψ ′(t) > 1 + ψ ′(1) = 1.

The two cases together prove (24).
To prove (25), considering the first two derivatives of ψ(t) we have

tψ ′′(t) − ψ ′(t) = − 4
π

(
1 + cot2(h(t))

) (
th′′(t) − 2th′(t)2 cot(h(t)) − h′(t)

)

= − 4
π

(
1 + cot2(h(t))

) (
t
(
h′′(t) − 2h′(t)2 cot(h(t))

) − h′(t)
)
. (28)

From Lemma 4 and −h′(t) = − π
(1+t)2 < 0, we have t

(
h′′(t) − 2h′(t)2 cot(h(t))

) −
h′(t) < 0. Therefore, the right-hand-side of (28) is positive, which proves (25).

The third derivative of ψ(t) is given in (21). Since − 4
π

(
1 + cot2(h(t))

)
< 0,

for all t > 0, thus for prove (26) suffers that g(t) > 0. By substitution of h′(t)
and h′′(t) in g(t), we obtain

g(t) = −6
(

π

(1 + t)2

) ( −2π

(1 + t)3

)
cot(h(t))

+ 6π

(1 + t)4 + 2
(

π

(1 + t)2

)3 (
1 + 3 cot2(h(t))

)

= 6π

(1 + t)5 (t + 1 + 2π cot(h(t))) + 2π3

(1 + t)6

(
1 + 3 cot2(h(t))

)

= 6π

(1 + t)6

(
π2

3
+ ((t + 1) + (π cot(h(t))))2

)
> 0. (29)

This completes the proof. ��
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Lemma 2 shows that the new kernel function (18) satisfies

lim
t→0+

ψ(t) = lim
t→+∞ ψ(t) = +∞.

Note that ψ ′(1) = ψ(1) = 0. Then ψ(t) is determined by

ψ(t) =
∫ t

1

∫ ξ

1
ψ ′′(ζ )dζdξ. (30)

The next lemma is very useful in the analysis of interior-point algorithms based
on the kernel functions (see for example [1, 17]).

Lemma 6 (Lemma 2.1.2 in [18]) Let ψ(t) be a twice dif ferentiable function for
t > 0. Then the following three properties are equivalent:

(i) ψ(
√

t1t2) ≤ 1
2 (ψ(t1) + ψ(t2)) for t1, t2 > 0.

(ii) ψ ′(t) + tψ ′′(t) ≥ 0, t > 0.
(iii) ψ(eξ ) is convex.

Following [18], the property described in Lemma 6 is called exponential
convexity, or shortly e-convexity. Therefore, Lemma 6 and (24) show that the
our new kernel function (18) is e-convex for t > 0.

Lemma 7 If t ≥ 1, then

ψ ′(t)
2

(t − 1) ≤ ψ(t) ≤ (t − 1)2.

Proof If f (t) = 2ψ(t) − (t − 1)ψ ′(t), then f ′(t) = ψ ′(t) − (t − 1)ψ ′′(t), f ′′(t) =
−(t − 1)ψ ′′′(t) and f (1) = f ′(1) = 0. Since ψ ′′′(t) < 0, we deduce that f ′′(t) ≥ 0
which implies that f ′ is increasing. Thus f ′(t) ≥ 0 for t ≥ 1. Similarly, f (t) ≥ 0
for t ≥ 0. This proves left inequality.

To prove right inequality, by Taylor’s expansion and the fact ψ(1) = ψ ′(1) =
0, we obtain

ψ(t) = ψ(1) + ψ ′(1)(t − 1) + 1
2
ψ ′′(1)(t − 1)2 + 1

6
ψ ′′′(η)(t − 1)3,

= 1
2
ψ ′′(1)(t − 1)2 + 1

6
ψ ′′′(η)(t − 1)3,

where 1 < η < t. Since ψ ′′′(t) < 0 and ψ ′′(1) = 2, we have

ψ(t) ≤ (t − 1)2.

This completes the proof. ��

The proof of next lemma is essentially similar to the proof of Lemma 4.2
in [9].
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Lemma 8 For t ≥ 1, one has

ψ ′(t) ≥ ψ(t)
t

.

Proof We define f (t) = tψ ′(t) − ψ(t). It is clear f (1) = 0 and f ′(t) = tψ ′′(t) ≥
1 > 0. That is, f (t) is monotone increasing function, f (t) ≥ f (1) = 0, and this
completes the proof. ��

The proof of following lemma is identical to the proof of Lemma 2.1 in [5].

Lemma 9 For ψ(t), as def ined in (18), we have

1
2
(t − 1)2 ≤ ψ(t) ≤ 1

2
ψ ′(t)2.

Proof Using ψ ′′(t) ≥ 1 and (30), we have

ψ(t) =
∫ t

1

∫ ξ

1
ψ ′′(ζ )dζdξ

≥
∫ t

1

∫ ξ

1
dζdξ

=
∫ t

1
(ξ − 1)dξ = 1

2
(t − 1)2,

this proves the first inequality. The second inequality is obtained as follows:

ψ(t) =
∫ t

1

∫ ξ

1
ψ ′′(ζ )dζdξ ≤

∫ t

1

∫ ξ

1
ψ ′′(ζ )ψ ′′(ξ)dζdξ

=
∫ t

1
ψ ′′(ξ)ψ ′(ξ)dξ =

∫ t

1
ψ ′(ξ)d(ψ ′(ξ)) = 1

2
ψ ′(t)2.

This complete the proof. ��

Lemma 10 Let � : [0, ∞) → [1, ∞) be the inverse function of ψ(t) for t ≥ 1.
Then

(a) �(s) ≥ √
1 + 2s,

(b) �(s) ≤ 3
√

s, s ≥ 1.

Proof The inverse function of ψ(t) for t ≥ 1 is obtained by solving t from

ψ(t) = t2 − 1
2

+ 4
π

cot
(

π t
1 + t

)
= s, t ≥ 1.

Defining w(t) = 4
π

cot
(

π t
1+t

)
, one has

w′(t) = −
(

2
(1 + t) sin(h(t))

)2

< 0.
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Therefore, w(t) is decreasing for t ≥ 1 and since w(1) = 0, we get

t2 − 1
2

≥ s,

this implies that t = �(s) ≥ √
1 + 2s. This proves the first inequality. For the

proof of second inequality, by s ≥ 1 and Lemma 9, we have

s = ψ(t) ≥ 1
2
(t − 1)2,

whence

t = �(s) ≤ 1 + √
2s,

and therefore, by s ≥ 1, we get

t = �(s) ≤ √
s + √

2s ≤ 3
√

s.

This completes the proof. ��

In the analysis of the algorithm, we also use the norm-based proximity
measure defined by

δ := δ(V) = 1
2
‖∇�(V)‖ = 1

2

√
Tr(ψ ′(V)2). (31)

The next theorem gives a lower bound on the norm-based proximity measure
δ(V), as defined by (31), in terms of �(V), which is an extension of Theorem
4.9 in [1] to positive definite matrices.

Theorem 11 (Theorem 3.2 in [6]) Let � be the inverse function of ψ(t) for
t ≥ 1. Then

δ(V) ≥ 1
2
ψ ′ (�(�(V))) .

Lemma 12 If V ∈ Sn++ and �(V) ≥ τ ≥ 1, then

δ(V) ≥ 1
6

√
�(V).

Proof By using Theorem 11 and Lemma 8, we obtain

δ(V) ≥ 1
2
ψ ′ (�(�(V))) ≥ 1

2
ψ (�(�(V)))

�(�(V))
= �(V)

2�(�(V))
.

Now, by the second inequality of the Lemma 10, we have

�(�(V)) ≤ 3
√

�(V).
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Therefore,

δ(V) ≥ �(V)

6
√

�(V)
= 1

6

√
�(V).

This completes the proof of the lemma. ��

At the start of each outer iteration, just before the update of μ with the
factor 1 − θ , we have �(V) ≤ τ . Due to the update of μ the matrix V, defined
by (6), is divided by the factor

√
1 − θ , with 0 < θ < 1, which leads to an

increasing in the value of �(V). Then, during the inner iterations, �(V)

decreases until it passes the threshold τ again. Hence, during the course of
the algorithm the largest values of �(V) occur just after the updates of μ. In
the rest this section, we derive an estimate for the effect of a μ-update on the
value of �(V).

The next theorem is an extension of Theorem 3.2 in [1] to positive definite
matrices.

Theorem 13 (Theorem 3.1 in [6]) Let � be the inverse function of ψ(t) for t ≥ 1.
Then for any positive def inite matrix V, and any β ≥ 1,

�(βV) ≤ nψ

(
β�

(
�(V)

n

))
.

Corollary 14 Let 0 ≤ θ < 1 and V+ = V√
1−θ

. If �(V) ≤ τ , then

�(V+) ≤ nψ

(
�

(
τ
n

)
√

1 − θ

)
≤ n

(
�

(
τ
n

)
√

1 − θ
− 1

)2

.

Proof Since 1√
1−θ

≥ 1 and �
(

�(V)

n

)
≥ 1, we have 1√

1−θ
�

(
�(V)

n

)
≥ 1. Using

Theorem 13 with β = 1√
1−θ

and the function � is monotonically increasing since
ψ(t) for t ≥ 1 is monotonically increasing because of its definition, we have

�(V+) ≤ nψ

(
1√

1 − θ
�

(
�(V)

n

))
≤ nψ

(
�

(
τ
n

)
√

1 − θ

)
.

This proves the first inequality. The second inequality follows from
Lemma 7. ��

3 Analysis of the algorithm

In this section, we determine a default step size and obtain an upper bound to
the decrease of the barrier function �(V) during an inner iteration.
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3.1 Decrease the value of ψ(V) and choose a default step size α

In each iteration the search directions �X, �y and �S are obtained by solving
the system (17) and via (8). After a step with size α, the new iterate is given by

X+ = X + α�X, y+ = y + α�y, S+ = S + α�S.

Due to (8), we may write

pX+ = X + α�X = X + α
√

μDDX D = √
μD(V + αDX)D,

and

S+ = S + α�S = S + α
√

μD−1 DS D−1 = √
μD−1(V + αDS)D−1.

According to (6), we have

V+ = 1√
μ

[
D−1 X+S+ D

] 1
2 .

Therefore, V2+ is similar to the matrix 1
μ

X+S+ = 1
μ

X
1
2+S+ X

1
2+ and thus to (V +

αDX)
1
2 (V + αDS)(V + αDX)

1
2 . Consequently, the eigenvalues of the matrix

V+ are the same as those of
[
(V + αDX)

1
2 (V + αDS)(V + αDX)

1
2

] 1
2
. Since the

proximity after one step is defined by �(V+), it follows from (11) that

�(V+) = �

([
(V + αDX)

1
2 (V + αDS)(V + αDX)

1
2

] 1
2

)
.

Hence, by Lemma 5,

�(V+) ≤ 1
2

(�(V + αDX) + �(V + αDS)) .

Let us denote the difference between the proximity before and after one step
by a function of the step size, that is,

f (α) := �(V+) − �(V).

Then f (α) ≤ f1(α), where

f1(α) := 1
2

(�(V + αDX) + �(V + αDS)) − �(V).

Obviously

f (0) = f1(0) = 0.

Taking the derivative with respect to α, by using (12)–(15), we obtain

f ′
1(α) = 1

2
Tr

(
ψ ′(V + αDX)DX + ψ ′(V + αDS)DS

)
, (32)

and

f ′′
1 (α) = 1

2
Tr

(
ψ ′′(V + αDX)D2

X + ψ ′′(V + αDS)D2
S

)
. (33)
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Hence, using (31) and the third equation of (17), we obtain

f ′
1(0) = 1

2
Tr

(
ψ ′(V)DX + ψ ′(V)DS

)

= 1
2

Tr
(
ψ ′(V)(DX + DS)

)

= 1
2

Tr
(
ψ ′(V)(−ψ ′(V))

)

= 1
2

Tr
(−ψ ′(V)2)

= −2δ(V)2. (34)

In what follows, we use the short notation δ := δ(V) and state some impor-
tant results without proofs.

Lemma 15 (Lemma 4.2 in [23]) One has

f ′′
1 (α) ≤ 2δ2ψ ′′ (λmin(V) − 2αδ) .

Lemma 16 (Lemma 4.2 in [1]) If the step size α satisf ies

− ψ ′ (λmin(V) − 2αδ) + ψ ′ (λmin(V)) ≤ 2δ, (35)

then f ′
1(α) ≤ 0.

Lemma 17 (Lemma 4.3 in [1]) Let ρ : [0, ∞) → (0, 1] denote the inverse func-
tion of the restriction of − 1

2ψ ′(t) on the interval (0, 1], then the largest possible
value of the step size of α satisfying (35) is given by

ᾱ := 1
2δ

(ρ(δ) − ρ(2δ)).

Lemma 18 (Lemma 4.4 in [1]) Let ρ and ᾱ be the same as def ined in Lemma
17. Then

ᾱ ≥ 1
ψ ′′(ρ(2δ))

.

For the purpose of finding an upper bound for f (α), we need a default step
size α̃ that is the lower bound of the ᾱ and consists of δ.

Lemma 19 Let ρ : [0, ∞) → (0, 1] denote the inverse function of the restriction
of − 1

2ψ ′(t) on the interval (0, 1] and �(V) ≥ τ ≥ 1. Then

1
ψ ′′(ρ(2δ))

≥ 1(
6

3
2 + 80(2π + √

6)
)

δ
3
2

.
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Proof To obtain the inverse function t = ρ(s) of − 1
2ψ ′(t) for t ∈ (0, 1], we need

to solve the equation

−ψ ′(t) = −t + 4
π

h′(t)
(
1 + cot2(h(t))

) = 2s.

But this is hard to solve, so we should derive a lower bound for ρ(s). To do
this, the above equation implies

1 + cot2(h(t)) = π

4h′(t)
(2s + t) = (1 + t)2

4
(2s + t) ≤ 2s + 1. (36)

Letting −ψ ′(t) = 2s, we can say that t = ρ(s). By setting t = ρ(2δ), we have

−ψ ′(t) = 4δ.

Hence,

cot(h(t)) ≤ 2
√

δ. (37)

Since h′(t) = π
(1+t)2 ≤ π and h′′(t) = −2π

(1+t)3 ≥ −2π for all 0 ≤ t ≤ 1, it follows
from (20) and (37) that

1
ψ ′′(ρ(2δ))

= 1

1 − 4
π

(
1 + cot2(h(t))

) (
h′′(t) − 2h′(t)2 cot(h(t))

)

≥ 1

1 − 4
π

(4δ + 1)
(

h′′(t) − 4h′(t)2
√

δ
)

≥ 1

1 + 4
π

(4δ + 1)(4π2
√

δ + 2π)

= 1

1 + 8(4δ + 1)(2π
√

δ + 1)
.

By Lemma 12, we get

1
ψ ′′(ρ(2δ))

≥ 1

(6δ)
3
2 + 8(4δ + 6δ)

(
2π

√
δ + √

6δ
) = 1(

6
3
2 + 80

(
2π + √

6
))

δ
3
2

.

��

In the sequel, we use the notation

α̃ = 1(
6

3
2 + 80(2π + √

6)
)

δ
3
2

, (38)

and we will use α̃ as the default step size. By Lemma 18, ᾱ ≥ α̃.
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Lemma 20 (Lemma 4.5 in [1]) If the step size α is such that α ≤ α̃, then

f (α) ≤ −αδ2.

Theorem 21 If α̃ is the default step size as given by (38), then

f (α̃) ≤ − �(V)
1
4

√
6

(
6

3
2 + 80

(
2π + √

6
)) .

Proof Using Lemma 20 with α = α̃ and (38), we have

f (α̃) ≤ −α̃δ2 ≤ − δ2
(

6
3
2 + 80

(
2π + √

6
))

δ
3
2

= − δ
1
2

6
3
2 + 80

(
2π + √

6
) .

Using Lemma 12, we obtain

f (α̃) ≤ − �(V)
1
4

√
6

(
6

3
2 + 80

(
2π + √

6
)) .

This proves the theorem. ��

4 Iteration bound

In this section, we derive the complexity bounds for large and small-update
methods.

4.1 Upper bound for the total number of inner iterations

By the assumption �(V) ≤ τ , after the update of μ to (1 − θ)μ, by Corollary
14, we have

�(V+) := L ≤ nψ

(
�

(
τ
n

)
√

1 − θ

)
.

We need to count how many inner iterations are required to return to the
situation where �(V) ≤ τ after a μ-update. We denote the value of �(V)

after the μ-update by �0; the subsequent values in the same outer iteration
are denoted as �k, k = 1, 2, . . . , K, where K denotes the total number of inner
iterations in the outer iteration.

According to decrease of f (α̃), for k = 1, 2, . . . , K − 1, we obtain

�k+1 ≤ �k − �
1
4

k√
6

(
6

3
2 + 80

(
2π + √

6
)) . (39)



678 Numer Algor (2012) 61:659–680

Lemma 22 (Lemma 14 in [17]) Suppose t0, t1, . . . , tk be a sequence of positive
numbers such that

tk+1 ≤ tk − βt1−γ

k , k = 0, 1, . . . , K − 1,

where β > 0 and 0 < γ ≤ 1. Then K ≤ � tγ0
βγ

�.

Letting tk = �k, β = 1√
6
(

6
3
2 +80(2π+√

6)
) and γ = 3

4 , we can get the following

theorem from Lemma 22.

Theorem 23 Let K be the total number of inner iterations in the outer iteration.
Then

K ≤
4
√

6
(

6
3
2 + 80

(
2π + √

6
))

3
�

3
4

0 ,

where, �0 is the value of �(V) after the μ-update in outer iteration.

4.2 Large-update methods

It is clear that ψ(t) ≤ t2

2 when t ≥ 1. Applying Corollary 14 and Lemma 10, we
obtain

�0 ≤ nψ

(
�

(
τ
n

)
√

1 − θ

)
≤ nψ

⎛

⎝ 3
(

τ
n

) 1
2

√
1 − θ

⎞

⎠ ≤ n
(3)2 τ

n

2(1 − θ)
.

The number of outer iterations is bounded above by
1
θ

log( n
ε
) (Lemma II.17 in

[21]). By multiplying the number of outer iterations and the number of inner
iterations we get an upper bound for the total number of iterations, namely,

K
θ

log
(n

ε

)
≤

4
√

6
(

6
3
2 +80(2π+√

6)
)

3 �
3
4

0

θ
log

(n
ε

)

≤
4
√

6
(

6
3
2 + 80

(
2π + √

6
))

9
3
4

3θ(2(1 − θ))
3
4

τ
3
4 log

(n
ε

)
.

Large-update methods use θ = �(1) and τ = O(n). The iteration bound then
becomes

O
(

n
3
4 log

(n
ε

))
.

4.3 Small-update methods

It is not hard to show that if the aforementioned analysis were used for small-
update methods the iteration bound would not be as good as it can be for these
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types of methods. For small-update methods one has θ = �( 1√
n ) and τ = O(1).

For get the improved iteration bound, we use Corollary 14 and obtain

�0 ≤ n

(
�

(
τ
n

)
√

1 − θ
− 1

)2

. (40)

For estimate this, we need an upper bound for the inverse function � of ψ for
t ≥ 1. Hence, from the proof Lemma 10 we have

t = �(s) ≤ 1 + √
2s. (41)

Therefore, (40) and (41) follow that

�0 ≤ n

⎛

⎝
1 +

√
2τ
n√

1 − θ
− 1

⎞

⎠

2

. (42)

Using 1 − √
1 − θ = θ

1+√
1−θ

≤ θ , the above inequality can be simplified to

�0 ≤ 1
1 − θ

(
θ
√

n + √
2τ

)2
. (43)

Theorem 23 implies that the total number of iterations is bounded above by

K
θ

log
(n

ε

)
≤

4
√

6
(

6
3
2 + 80

(
2π + √

6
))

3θ(1 − θ)
3
4

(
θ
√

n + √
2τ

) 3
2

log
(n

ε

)
.

Small-update methods use θ = �( 1√
n ) and τ = O(1). Therefore, the iteration

bound becomes

O
(√

n log
(n

ε

))
.

5 Conclusion

In this paper we have analyzed large and small-update methods of primal-dual
interior-point algorithm based on a new kernel function with trigonometric
barrier term. We proved that the iteration bound of a large-update interior-
point method is O(n

3
4 log( n

ε
)), which improves the classical iteration complex-

ity with a factor n
1
4 . For small-update methods coincides to the best know

iteration bound.
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