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Abstract In the present paper, we have considered three methods with which
to control the error in the homotopy analysis of elliptic differential equations
and related boundary value problems, namely, control of residual errors,
minimization of error functionals, and optimal homotopy selection through
appropriate choice of auxiliary function H(x). After outlining the methods in
general, we consider three applications. First, we apply the method of mini-
mized residual error in order to determine optimal values of the convergence
control parameter to obtain solutions exhibiting central symmetry for the
Yamabe equation in three or more spatial dimensions. Secondly, we apply the
method of minimizing error functionals in order to obtain optimal values of
the convergnce control parameter for the homotopy analysis solutions to the
Brinkman–Forchheimer equation. Finally, we carefully selected the auxiliary
function H(x) in order to obtain an optimal homotopy solution for Liouville’s
equation.

Keywords Elliptic boundary value problem · Yamabe equation ·
Brinkman–Forchheimer equation · Liouville’s equation ·
Homotopy analysis method · Error analysis and control

1 Introduction

Consider the semi-linear elliptic boundary value problem
− �u = F(u) , x ∈ � ⊂ R

m (1.1)
u|∂� = g(y) , y ∈ ∂� . (1.2)

For our interests, we shall restrict � to a compact subset of R
m.
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Such boundary value problems arise in many areas of mathematics and
science. In the two possible linear cases, when F(u) = 0 (1.1) corresponds to
the Laplace equation whereas when F(u) = C �= 0 (where C is a constant in
u but may depend on x) (1.1) corresponds to the Poisson equation. When
F(u) = u (1.1) corresponds to the Helmholtz equation. When F(u) = Au2 +
Bu + C (where A, B, C are constants) (1.1) corresponds to the Brinkman–
Forchheimer equation. When F(u) = eλu, (1.1) is Liouville’s equation. When
F(u) takes on the power law term F(u) = h1(x)u − λh2(x)u(m+2)/(m−2) (m �= 2)
then (1.1) is the Yamabe equation.

While (1.1) does admit exact solutions for a number of forms of F(u), for
highly nonlinear F(u) solutions can become very challenging to obtain. For
this reason, we are interested in applying the method of homotopy analysis to
such equations, with the hope of obtaining approximate solutions to within a
tolerable level of error. For many physical application, approximate solutions,
while clearly less informative than exact solutions, are sufficient to describe
the true solutions (assuming that the error is sufficiently small). The method of
homotopy analysis [1–8] has recently been applied to the study of a number of
non-trivial and traditionally hard to solve nonlinear differential equations, for
instance nonlinear equations arising in heat transfer [9–12], fluid mechanics
[13–20], solitons and integrable models [21–24], nanofluids [25, 26] and the
Lane–Emden equation which appears in stellar astrophysics [27–30], to name
a few areas.

While the homotopy analysis method provides a near algorithmic way to
obtain approximate solutions in an iterative manner, often the biggest question
is on the convergence of the method. Hence, in the present paper we devote
considerable attention to the manner in which approximate solutions converge
to give appropriate errors. As the problem (1.1) and (1.2) is elliptic, we shall
be able to phrase the question of an optimal homotopy solution in terms of the
minimization of an energy functional.

2 Iterative homotopy formulation of the boundary value problem

As is standard in the method of homotopy analysis, we construct a homotopy

H[φ(x, q)] = (1 − q)L[φ(x, q) − u0(z)] − qhH(x)N[φ(x, q)] , (2.1)

where H denotes the homotopy between a nonlinear operator N (which is
the operator describing the nonlinear differential equation we wish to solve,
namely N[u] = �u + F(u)) and an auxiliary linear operator L. Here q ∈ [0, 1]
is the embedding parameter (when q = 0, H = L while when q = 1, H = N), h
is the convergence control parameter, and H(x) is the auxiliary function. See,
for instance, [1–8]. The linear operator should be chosen in order to permit
the initial approximation taken. Note that when q = 0 we have the initial
approximation, i.e. φ(x, 0) = u0(x), whereas when q = 1 we see that φ(z, 1) is
a solution to the nonlinear differential equation of interest, i.e. N[φ(x, 1)] = 0.
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It shall make sense to consider initial approximations u0 satisfying the bound-
ary conditions, i.e.

u|∂� = g(y) implies u0(x) = G(x) on �, (2.2)

where G = g on the boundary of the domain �. Then, when selecting the
auxiliary linear operator L, we need to ensure that, L[G] = 0. The linear
operator L has often been seen to give the best convergence when properly
related to the nonlinear operator N. To this end, we may take L = � and select
G(x) as the solution to the linear boundary value problem{

�G = 0 ,

G(y) = g(y) for y ∈ ∂� .
(2.3)

Note that (2.3) is the Laplace equation held subject to the boundary conditions
relevant to the initial boundary value problem (1.1) and (1.2). Then, setting
u0(x) = G(x) we obtain the order zero approximation (or, the initial guess to
the true solution). We should remark that the choice of L = � is only one
possible choice. For brevity, we shall employ this choice through the remainder
of the present section, as well as in Section 3. In the examples we consider,
we will sometimes deviate from this choice of L, in order to obtain better
approximations.

Considering a series expansion in q (treating q as a “small parameter”),
we have

u(x) = u0(x) +
∞∑

n=1

un(x)qn (2.4)

where

un(x) = 1
n!

∂nφ(x, q)

∂qn
|q=0 (2.5)

is the solution to (1.1) provided that the series for φ(x, q) converges at q = 1.
A more useful recursive formula for the wn’s is given by the nth order
deformation equations

L[un(x) − χnun−1(x)] = hH(x)Rn(x, h) (2.6)

where

Rn(x, h) = �un−1(x) +
[

∂n−1

∂qn−1 f

(
u0(x) +

∞∑
n=1

un(x)qn

)]
q=0

, (2.7)

and

χn =
{

0, n = 0, 1,

1, n ≥ 2.
(2.8)
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The first few terms for Rn(x, h) are

R1(x, h) = �u0(x) + F(u0) , (2.9)

R2(x, h) = �u1(x) + F ′(u0)u1 , (2.10)

R3(x, h) = �u2(x) + F ′(u0)u2 + 1
2

F ′′(u0)u2
1 , (2.11)

R4(x, h) = �u3(x) + F ′(u0)u3 + F ′′(u0)u1u2 + 1
6

F ′′′(u0)u2
1 , (2.12)

etcetera. From here,

�un(x) = χn�un−1(x) + hH(x)Rn(x, h) . (2.13)

The terms in the expansion (2.4) governed by (2.13) should be solved subject
to homogeneous boundary conditions

un|∂� = 0 for all n ≥ 1 , (2.14)

as the initial approximation u0(x) already holds the relevant inhomogeneous
boundary data.

In practice, we will truncate the series (2.4) to some desired number of
terms. Thus, we shall be concerned with an approximate solution ũ(x) with
n∗ + 1 terms:

ũ(x) = u0(x) +
n∗∑

n=1

un(x) . (2.15)

With this we have outlined the general method of applying homotopy analysis
to the boundary value problem (1.1) and (1.2). Up to this point the choice
of the convergence control parameter h and the auxiliary function H(x)

have both been kept arbitrary. We shall now discuss the process of selecting
these unknowns in the case of Gaussian initial approximations. Once H(x) is
selected, we can compute approximations of the form (2.15) for fixed n∗. We
will then attempt to minimize the error in such an approximation by way of
choosing the convergence control parameter, h, in an appropriate manner.

Note that we may proceed by inverting (2.13), viz.,

un(x) = χnun−1(x) + h�−1(H(x)Rn(x, h))

= χnun−1(x) + h�−1(H(x)�un−1(x))

+ h�−1(H(x)Fn−1(u0(x), u1(x), . . . , un−1(x))) , (2.16)

where

Fn−1(u0(x), u1(x), . . . , un−1(x)) =
[

∂n−1

∂qn−1 f

(
u0(x) +

∞∑
n=1

un(x)qn

)]
q=0

.

(2.17)
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For such complicated expressions, a good plan of action is the minimize the
error in the first order term u1(x), so that as few higher order terms as possible
are needed. Note that

u1(x) = h�−1(H(x)�u0(x)) + h�−1(H(x)F(u0(x)))

= h�−1(H(x)(�u0(x) + F(u0(x)))) . (2.18)

Recall that, for a general equation of the form �U(x) = a(x), the solution
(subject to homogeneous boundary conditions on ∂�) will read

U(x) = −
∫

�

a(y)G(x, y)dy (2.19)

where the Green’s function G(x, y) is defined by the boundary. Then, for u1(x),
we obtain the relation

u1(x) = −h
∫

y∈�

H(y)N[u0(y)]G(x, y)dy . (2.20)

Continuing in this manner, we may obtain relations for the un(x)’s for n ≥ 2.
However, we still have h and H(x) free to choose, and we shall choose these
quantities so that the error in the homotopy analysis approximation is minimal.
Such control of the error will be the focus of the next section.

3 Control of error and an energy functional approach

When applying analytical approximation methods for PDEs and related
boundary value problems such as (1.1) and (1.2), a method to control the
convergence and error of such solutions is essential. One benefit of applying
the homotopy analysis method is that it gives us a way to adjust and control
the convergence of solutions. However, it is at times difficult to determine
error minimizing control parameters or auxiliary functions directly. Hence,
in order to minimize the error of such approximate solutions, we shall need
to discuss the relationship between such choices and the observed error from
such approximate solutions.

3.1 Primitive control of error via residuals

Let us assume that û is a homotopy solution to (1.1) and (1.2). In the
absence of an exact solution, there is no way to directly compute error in
terms of deviation from a solution. However, we can compute how poorly an
approximate solution deviates from a solution in terms of residuals. Hence,
one measure of the error in such an approximation is given by computing the
residual errors at each point. That is, for x0 ∈ �, we compute

Res(x0) = |�u(x0) + F(u(x0))| , (3.1)

and we may maximize over all x0 ∈ � in order to determine the maximum
extent of deviation from the true solution (in terms of the nonlinear PDE). Of
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course, we can attempt to relate the two measures of error. Let us assume that
û = u + εu∗, where u is the true solution, ε is the magnitude of the maximum
absolute error, and u∗ is a function bounded like −1 ≤ u∗ ≤ 1. Feeding this
into the residual error we obtain

Res(x) = ∣∣�u + ε�u∗ + F(u + εu∗)
∣∣ , (3.2)

and, expanding F(u + εu∗) as

F(u + εu∗) = F(u) + εF ′(u)u∗ + O(ε2) , (3.3)

we have that

Res(x) = ∣∣�u + F(u) + ε�u∗ + εF ′(u)u∗ + O(ε2)
∣∣

= ∣∣ε�u∗ + εF ′(u)u∗ + O(ε2)
∣∣

≤ ε
∣∣�u∗ + F ′(u)u∗∣∣ + O(ε2) . (3.4)

Then, for sufficiently smooth F(u), the residual error for this problem is
expected to scale as the absolute error ε.

3.2 The energy functional approach

Note that the energy functional corresponding to (1.1) is given by

J[u] =
∫

�

(|∇u|2 − 2 f (u)
)

d� =
∫

�

(
N∑

n=1

(
∂u
∂xn

)2

− 2 f (u)

)
d�, (3.5)

where

f (u) =
∫ u

a
F(w)dw (3.6)

and a is a root of F(u), i.e. F(a) = 0. (The the cases we consider, such a root will
exist. For other cases, we shall simply retain a constant of integration, which is
set to zero.)

Now, it is well-known that an optimal solution will minimize the functional
J. For a HAM approximation û, we define the function J (h) = J(û), as clearly
the value of the functional will change depending on the value of h. Thus, an
optimal HAM solution will correspond to a value of the convergence control
parameter, h, so that J (h) = J(û) is minimal. In the following section, we
apply this line of thinking in order to obtain accurate HAM solutions to the
Brinkman–Forchheimer equation in a duct.

3.3 Optimal first order expansion

In the previous two methods for controlling error, note that the function H(x)

plays a passive role in the control of error, whereas the parameter h plays
the dominant role. Indeed, in the former two cases, we were able to select
h in such a way to minimize the respective measure of error. In the present
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subsection, we shall demonstrate one method for using the auxiliary function
H(x) to control the residual error.

Recall that a two-term homotopy analysis solution take the form û =
u0 + u1. Then, the residual at any point in the domain � is given by

N[û(x)] = N[u0(x) + u1(x)]
= �(u0(x) + u1(x)) + F(u0(x) + u1(x))

= �u0(x) − hH(x)(N[u0(x)])

+ F
(

u0(x) − h
∫

y∈�

H(y)N[u0(y)]G(x, y)dy
)

, (3.7)

where we have used the representation (2.20) for u1(x). This is a nonlinear
relation for the residuals in terms of h and H(x). In order to minimize the
absolute values of the residuals, it is sufficient (and rather strong) to assume
that the right hand side of (3.7) is zero. Under such an assumption,

�u0(x) − hH(x)(N[u0(x)]) + F
(

u0(x) − h
∫

y∈�

H(y)N[u0(y)]G(x, y)dy
)

= 0 ,

(3.8)
or, rewriting terms by adding and subtracting F(u0(x)), we have

N[u0(x)](1 − hH(x)) + F
(

u0(x) − h
∫

y∈�

H(y)N[u0(y)]G(x, y)dy
)

−F(u0(x)) = 0 . (3.9)

Note that (3.9) is a nonlinear integral equation for the unknown function
Ĥ(x) = hH(x). As both u0(x) and F(u) are assumed known by this point in the
problem, it only remains to solve Ĥ(x). The existence of a solution Ĥ(x) will
depend on the properties of F(u) and such questions are best left to the theory
of integral equations for each individual case of F(u). If, indeed, a solution
Ĥ(x) to (3.9) exists, then û = u0 + u1, where u1 is defined as in (2.20), is the
optimal first order expansion obtained via the homotopy analysis method.

Utilizing (3.3) to expand the nonlinearity, and assuming sufficiently well-
behaved and smooth F(u), we have

F
(

u0(x) − h
∫

y∈�

H(y)N[u0(y)]G(x, y)dy
)

= F(u0(x)) − hF ′(u0(x))

∫
y∈�

H(y)N[u0(y)]G(x, y)dy, (3.10)

we obtain the following approximation to the residual error:

N[û(x)] = N[u0(x)](1 − hH(x)) − hF ′(u0(x))

×
∫

y∈�

H(y)N[u0(y)]G(x, y)dy + O(h2) . (3.11)
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In the case where h can be taken to be small (subject to a scaling of H(x)),
minimization of the residuals is attained when H(x) satisfies the integral
equation

hH(x) + h
F ′(u0(x))

N[u0(x)]
∫

y∈�

H(y)N[u0(y)]G(x, y)dy = 1 , (3.12)

or, introducing a new function Ĥ(x) = hH(x) (which is a scaling of H(x)),

Ĥ(x) + F ′(u0(x))

N[u0(x)]
∫

y∈�

Ĥ(y)N[u0(y)]G(x, y)dy = 1 . (3.13)

Assuming h could be taken sufficiently small, the existence of a solution Ĥ(x)

to the integral (3.13) implies the existence of a two-term optimal homotopy
solution, in an approximate sense.

4 Applications

In order to illustrate the more theoretical results of the previous sections, we
shall now consider applications of homotopy analysis to various semi-linear
differential equations.

4.1 A Yamabe equation on � = Bm ⊂ R
m

The Yamabe equation is a nonlinear differential equation arising in geometry
and related areas of physics [31–33]. In the present section, we apply the
method of homotopy analysis to a Yamabe equation on the unit ball in R

m

for m ≥ 3. (That is, we take the domain � = Bm ⊂ R
m, where Bm is the m-

ball. Then, note that the boundary of � is ∂� = Sm−1, where Sm−1 is the m − 1
-sphere.) To this end, consider the boundary value problem

− �u = u − λu(m+2)/(m−2) = u − λu1+ 4
m−2 (4.1)

u(y) = 1 for y ∈ Sm−1 . (4.2)

Let us consider a solution with central symmetry about the origin. Then, we
assume a solution of the form

u(x) = v(r) where r =
√√√√ m∑

j=1

x2
j . (4.3)

The Yamabe (4.1) is then reduced to

v′′ + 1
r
v′ − v + λvα = 0 , (4.4)

where α = 1 + 4
m−2 ∈ (1, 5] for m = 3, 4, 5, . . . . The relevant boundary condi-

tions then become

v′(0) = 0 and v(1) = 1 . (4.5)
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Equations (4.4) and (4.5) specify a nonlinear singular boundary value problem.
Note that this boundary value problem is quite similar in form to Lane–Emden
equations (see, for instance, [34–39]), which have previously been solved by the
method of homotopy analysis [29].

In order to apply the method of homotopy analysis to the boundary value
problem (4.4) and (4.5), we first specify the linear operator. Let us select

L = d2

dr2 + 1
r

d
dr

− 1 , (4.6)

so that L[v] = v′′ + 1
r v

′ − v. Assuming that the zeroth order approximation,
v0(r), satisfies L[v0(r)] = 0, we find that v0(r) must take the form

v0(r) = I0(r)
I0(1)

, (4.7)

where I0 denotes the modified Bessel function of the first kind. From here, we
may obtain the higher order terms in the HAM expansion which are governed
by the higher order deformation equations. We take N[v] = v′′ + 1

r v
′ − v +

λvα and set H(r) = 1. From the higher order deformation equations, we find
that v1(r) satisfies

L[v1] = hλ(v0(r))α subject to v′
1(0) = 0 and v1(1) = 0 . (4.8)

Solving this equation for v1(r), we find that

v1(r) = hλ

(I0(1))α

∫ r

0
ρ (K0(ρ)I0(r) − K0(r)I0(ρ)) (I0(ρ))α dρ

− hλI0(r)

(I0(1))α−1

∫ 1

0
ρ (K0(ρ)I0(1) − K0(1)I0(ρ)) (I0(ρ))α dρ ,

(4.9)

Fig. 1 We fix λ = 0.1 and
give solutions to the Yamabe
equation with central
symmetry when m = 3, 4, 6
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Fig. 2 We fix λ = 0.5 and
give solutions to the Yamabe
equation with central
symmetry when m = 3, 4, 6

where K0 denotes the modified Bessel function of the second kind. Continuing
in this way, we obtain the higher order approximations.

In Fig. 1, we fix λ = 0.1 give solutions to the Yamabe equation with central
symmetry when m = 3, 4, 6 in order to demonstrate the method. In Fig. 2, we
do the same for λ = 0.5. For each value of m, we select a sufficient number
of terms in the HAM expansion in order to obtain residual errors of less than
10−4. In Table 1, we list the number of terms required for each value of m,
as well as the optimal value of h, the convergence control parameter, taken
in each case. We expect that, due to similarities between the transformed
Yamabe equation and the Lane–Emden equation of the first kind, we should
see similar rates of convergence in the HAM solutions for each.

Table 1 Number of terms required for the HAM expansion for the Yamabe equation to have an
error within 10−4

λ m Required number of h value
terms in the HAM expansion

0.1 3 4 −0.15
0.1 4 4 −0.15
0.1 6 6 −0.15
0.5 3 5 −0.18
0.5 4 6 −0.18
0.5 6 8 −0.25

Optimal values of h, the convergence control parameter, are also given. Note that optimal values
of h are similar to those found in [29] for Lane–Emden equations of first kind, which are closely
related to the form of the Yamabe equation we’ve considered here
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4.2 Brinkman–Forchheimer equation for a rectangular duct

Hooman [40] considered the analog to the Brinkman–Forchheimer equation
over only one variable and obtained a perturbation solution for forced convec-
tion in a saturated porous duct. Hooman and Merrikh [41] studied a linear
form of the partial differential equation. Recently, in [42], the Brinkman-
Forchheimer equation for the unidirectional flow in the x3 direction of a
rectangular duct was studied via a variational approximation method. The
physical equation reads

∂2u

∂x2
1

+ ∂2u

∂x2
2

− C f ρ

μ̃
√

K
u2 − μ

μ̃K
u + G

μ̃
= 0 , (4.10)

where u is the velocity in the x3 direction, C f is the inertial coefficient, ρ

is the density, μ is the viscosity of the fluid, μ̃ is the effective viscosity, K
is the permeability, and G is the adverse applied pressure gradient. Natural
boundary conditions for the problem are

u(0, x2) = u(1, x2) = u(x1, 0) = u(x1, 1) = 0 . (4.11)

For simplicity, we define constants A, B, C as in CITE:

A = C f ρ

μ̃
√

K
, B = μ

μ̃K
, C = G

μ̃
. (4.12)

Then, we have the equation

−�u = −Au2 − Bu + C (4.13)

defined on the square (x1, x2) ∈ � = [0, 1] × [0, 1]. The associated energy
functional for this equation is given by

J[u] =
∫

�

((
∂u
∂x1

)2

+
(

∂u
∂x2

)2

+ 2A
3

u3 + Bu2 − 2Cu

)
dx1dx2 . (4.14)

Pursuant to this choice of energy functional, we seek approximate solutions
which minimize J. Such minimizing solutions will naturally depend on h, the
convergence control parameter. Hence, for a family of approximate solutions
û(x1, x2, h), note that J[û(x1, x2, h)] = J (h), a function of h. Then, selecting h
in order to minimize J , we have an error minimizing choice of h. This follows
from the fact that J[u] is one possible representation for the aggregate residual
error over the problem domain.

In order to better demonstrate the method, let us consider the cross-
section where one variable is fixed, say x2 = constant. Dropping the remaining
subscript, we have x1 = x, and then uxx = Au2 + Bu − C. We take u0 = 0,
L = uxx and N[u] = uxx − Au2 − Bu + C = uxx + F(u). We then apply the
higher order deformation equations. The first approximation is governed by
the equation

u1,xx = hC subject to u1(0) = 0 and u1(1) = 0 , (4.15)
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and hence

u1(x) = −hC
2

x(1 − x) . (4.16)

The second order term is governed by the equation

u2,xx = (1 + h)hC + hF ′(0)u1 subject to u1(0) = 0 and u1(1) = 0 ,

(4.17)
and hence

u2(x) = h2 BC
24

(2 − x)x3 + (1 + h)hC
2

x2 − hC
24

(Bh + 12(1 + h)) x . (4.18)

Continuing in this manner, we may successively obtain the higher order terms
in the HAM expansion.

For sake of demonstration, we take a four term approximation of the form
û(x) = u1(x) + u2(x) + u3(x) + u4(x). In Fig. 3, we plot the function J (h) in
order to demonstrate the existence of an error minimizing value of h. We list
values of h which minimize J (h) in Table 2, for various values of the model
parameters A, B, and C. In Fig. 4, we plot the residual errors for the optimal
choices of h obtained from minimizing the function J (h). In the residual plots,
we see that we have been able to control the residual error to within 10−3 using
only a four term approximation.

4.3 Liouville’s equation in one variable

As our last application, we consider the Liouville’s equation (which plays a
prominent role in differential geometry) in one variable. While the method we
outline here is applicable in m variables, computations are most straightfor-

Fig. 3 Plot of the function
J (h) in order to demonstrate
the existence of an error
minimizing value of h
in the case of a
Brinkman–Forchheimer
equation when
(A, B, C) = (1, 1, 1)
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Fig. 4 Plot of the residual
errors for the
Brinkman–Forchheimer
equation given various
values of A, B, C. We
see that, using only the
first four terms in the
HAM expansion, the
error can be controlled
to within 10−3 to even
as low as 10−4 in
some cases

ward in one variable, and this simplicity will help us to illustrate the methods
more clearly.

The Liouville equation in one variable reads

−uxx = eλu , (4.19)

where λ is a parameter. In order to construct solutions, we prescribe the
boundary conditions

u(0) = 0 and u(1) = 1 . (4.20)

Taking the nonlinear operator to be N[u] = uxx + eλu and the linear operator
to be L[u] = uxx, we have that u0(x) = x is the first approximation to the

Table 2 Table of error minimizing values of the convergence control parameter h for various
parameter values (A, B, C) for the Brinkman–Forchheimer equation

(A, B, C) h value

(1, 1, 1) −0.8568
(1, 1,−1) −0.9076
(1,−1, 1) −1.0325
(1,−1,−1) −1.1133
(−1, 1, 1) −0.9076
(−1, 1,−1) −0.8568
(−1,−1, 1) −1.1133
(−1,−1,−1) −1.0325

Certain values repeat due to symmetries between the A = 1 or A = −1 and the C = 1 or C = −1
possibilities. Here we have always taken the four term HAM expansion
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solution. The second term in the homotopy approximation, u1(x), is governed
by the boundary value problem

L[u1] = Ĥ(x)eλx , subject to u1(0) = u1(1) = 0 . (4.21)

Here we have again taken Ĥ(x) = hH(x). Solving for u1(x), we find that

u1(x) = −
∫ 1

0
G(x, ξ)Ĥ(ξ)eλξ dξ , (4.22)

where the Green’s function G(x, ξ) is defined by

G(x, ξ) =
{

ξ(1 − x) , ξ < x ,

x(1 − ξ) , ξ > x .
(4.23)

Employing the formula for the residuals given by (3.7), we have that

N[u0 + u1] = Ĥ(x)eλx + exp
[
λx − λ

∫ 1

0
G(x, ξ)Ĥ(ξ)eλξ dξ

]
. (4.24)

Now, let us assume that we may pick Ĥ(x) in order to minimize the residuals.
A sufficient condition for the minimization of residuals is simply N[u0 + u1] = 0
(although in some cases this exact satisfaction of the residual condition is
not possible). Assuming that such a condition is indeed possible, after some
simplifications we obtain the relation

Ĥ(x) + exp
[
−λ

∫ 1

0
G(x, ξ)Ĥ(ξ)eλξ dξ

]
= 0 , (4.25)

which is a nonlinear integral equation for Ĥ(x). Such an equation is very
hard to solve under the standard ansatz. Hence, we are left to attempt an
approximation method in order to determine Ĥ(x). Consider the iterative
process

In(x) = − exp
[
−λ

∫ 1

0
G(x, ξ)In−1(ξ)eλξ dξ

]
, (4.26)

I0(x) = 1 , (4.27)

for n ≥ 1. Clearly, if the iterative process converges as n → +∞, then Ĥ(x) =
limn→+∞ In(x). We compute

I1(x) = − exp
[

eλ − 1
λ

(1 − x)

]
, (4.28)

I2(x) = − exp
[
−eλ − 1

λ
(1 − x)

]
, (4.29)

I3(x) = − exp
[
−eλ − 1

λ
(1 − x)

]
, (4.30)
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and hence, as I3(x) = I2(x), we have found a fixed point of the map (4.26).
Therefore, we conclude that

Ĥ(x) = − exp
[
−eλ − 1

λ
(1 − x)

]
(4.31)

is an error minimizing choice for Ĥ(x). Placing this choice of Ĥ(x) back into
(4.22), we have that the optimal second term is given by

u1(x) =
∫ 1

0
G(x, ξ) exp

(
λξ −

(
eλ − 1

λ

)
(1 − ξ)

)
dξ . (4.32)

The optimal two-term homotopy solution is then given by

û(x) = x +
∫ 1

0
G(x, ξ) exp

(
λξ −

(
eλ − 1

λ

)
(1 − ξ)

)
dξ . (4.33)

Note that, while we were able to obtain an accurate solution to the present
problem by use of the two-term homotopy solution, in most cases we will not
be able to solve the integral equation governing H(x). In such cases, approx-
imate solutions to H(x) can still be obtained, and such auxiliary functions
can still be used to decreases the residual errors. The results in this section
demonstrate yet again that the auxiliary function H(x) can prove to be a useful
tool when applying the homotopy analysis method.

In Fig. 5, we plot the optimal first order HAM solution for various values of λ.

Fig. 5 Plot of the optimal
homotopy solutions to
Liouville’s equation for
various λ. In the limit λ → 0,
the solution form we have
selected becomes singular.
So, at λ = 0, we have simply
plotted the exact solution
for comparison purposes.
We see that both this exact
solution and the HAM
solutions agree nicely
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5 Conclusions

In the present paper, we have considered three methods with which to control
the error in the homotopy analysis of elliptic differential equations, namely,
control of residual errors, minimization of error functionals, and optimal
homotopy selection through appropriate choice of auxiliary function H(x).
After outlining the methods in general, we consider three applications. First,
we apply the method of minimized residual error in order to determine
optimal values of the convergence control parameter to obtain solutions
exhibiting central symmetry for the Yamabe equation in three or more spatial
dimensions. Secondly, we apply the method of minimizing error functionals
in order to obtain optimal values of the convergnce control parameter for the
homotopy analysis solutions to the Brinkman–Forchheimer equation. Finally,
we carefully selected the auxiliary function H(x) in order to obtain an optimal
homotopy solution for Liouville’s equation.
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