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Abstract We consider geometrically continuous polynomial splines defined
on a given knot-vector by lower triangular connection matrices with positive
diagonals. In order to find out which connection matrices make them suitable
for design, we regard them as examples of geometrically continuous piecewise
Chebyshevian splines. Indeed, in this larger context we recently achieved a
simple characterisation of all suitable splines for design. Applying it to our
initial polynomial splines will require us to treat polynomial spaces on given
closed bounded intervals as instances of Extended Chebyshev spaces, so as
to determine all possible systems of generalised derivatives which can be
associated with them.
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1 Introduction

The polynomial splines we are concerned with are geometrically continuous: at
each knot, a number of left/right derivatives are linked by a connection matrix,
supposed to be lower triangular and to have a positive diagonal. A classical
sufficient condition for such splines to be suitable for either approximation or
geometric design is the total positivity of all the connection matrices [3]. Their
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entries can then serve as shape parameters. As an example, the parameters
in question can be efficiently used in spline interpolation to make up for the
Gibbs phenomenon.

For cubic splines, going beyond total positivity has proved to usefully
increase the possibilities of shape effects [5]. This is why we are interested
here in determining all sequences of connection matrices leading to suitable
polynomial spline spaces of any degree. Even more interesting than the results
themselves is the way we achieve them. They follow from considering geomet-
rically continuous polynomial splines as examples of geometrically continuous
piecewise Chebyshevian splines. This enables us to enjoy the use of results
recently obtained for this more general class of splines. In particular it will
require us to treat polynomial spaces on closed bounded intervals as special
instances of Extended Chebyshev spaces and to associate with them tools
specific to the Chebyshevian context.

We explain our exact problematic in Section 2 after a brief reminder
about geometric continuity. In Section 3 we move to the Chebyshevian world,
presenting only the main tools which this work relies on. We more specially
insist on two crucial recent results concerning the generalised derivatives
associated with a given Extended Chebyshev space [10] and their use to build
all suitable geometrically continuous piecewise Chebyshevian splines [11]. We
then apply the two results in question to build all sequences of connection
matrices leading to convenient geometrically continuous polynomial splines.
The general theoretical arguments are described in Section 4 and the problem
is then completely solved for cubic and quartic splines in Section 5. In the first
case, it gives a further proof of the conditions previously obtained in [5] via
a geometrical approach. The quartic case gives a good understanding of the
general method on which we comment in the final section.

2 Geometrically continuous polynomial splines

2.1 A brief reminder on geometric continuity

Geometric continuity has been a fashionable subject in geometric design in
the 80’s: it was then realised that, when building piecewise parametric curves
in Rd, d > 1, joining the given parameterisations of two consecutive pieces up
to some order had no special meaning for the curves in question. It has since
become natural to directly integrate the presence of connection matrices in
general settings, in order to give users the possibility of replacing parametric
continuity by geometric continuity if needed. It is useful to give a brief
reminder on this subject to explain our choice for the polynomial splines we
will consider.

Let us start with two (n + 1)-dimensional spaces Ei ⊂ Cn([ti, ti+1]), i = 0, 1,
with t0 < t1 < t2, both assumed to contain constants. We additionally assume
that, at the point t1, any Taylor interpolation problem in (n + 1) data is
unisolvent in either space. Given a fixed integer p, 1 ≤ p ≤ n, and a fixed
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regular connection matrix M of order p, it is then meaningful to build a
parametric curve by joining two given F0 ∈ E0

d and F1 ∈ E1
d via the relations

F0(t1) = F1(t1),
(

F1
′(t1), . . . , F1

(p)(t1)
)T = M.

(
F0

′(t1), . . . , F0
(p)(t1)

)T
.

Compared to parametric continuity of order p (obtained when M is the
identity matrix of order p) the entries of M play the rôle of shape parameters
which permit more flexibility for the resulting parametric curve defined by
the continuous function S : [t0, t2] → Rd whose restriction to [ti, ti+1] coincides
with Fi for i = 0, 1. However, for the latter curve to be considered geomet-
rically continuous of order p it is necessary to assume M to satisfy some
properties, which we list below from the weakest to the strongest requirements.

• Frenet continuity of order p: We can assume that, for i = 0, 1, Fi is a
mother function in Ei, in the sense that Ei is the set of all affine images
of Fi. The Frenet frames of order p at t1 of both functions (obtained
by applying the Gram-Schmidt process to their first p derivatives at t1)
are then well-defined. Requiring them to coincide is the weakest possible
sense of geometric continuity of order p. It is obtained if and only if the
connection matrix M is lower triangular with positive diagonal entries. We
then have at our disposal p(p + 1)/2 free shape parameters.

• Visual continuity of order p: this corresponds to continuity both of the
Frenet frames of order p and of the first (p − 1) curvatures at t1. It
is obtained by additionally requiring the positive diagonal of M to be
of the form (a, a2, . . . , ap). The total number of free parameters is then
1 + p(p − 1)/2.

• Arc-length continuity of order p: this corresponds to Cp joint at t1 up to
reparameterisation, or, equivalently, to Cp joint of the arc-length parame-
terisations of the two pieces. In that case, only the p entries of the first
column of M are free parameters, all others being deduced from them via
the chain rule.

We would like to call the reader’s attention on the fact that the expressions
used to refer to the various kinds of geometric continuity are not universally
fixed. For instance, the expression “Frenet continuity” is quite often used
in the sense of what we call “visual continuity”, while “visual continuity”
sometimes has the meaning of “arc-length continuity”, which in turn is often
ambiguously referred to as “geometric continuity”. We use the expression
“visual continuity” with the idea that if the human eye were able to “see” in any
dimension p, it would not distinguish between two curves having at a common
point the same Frenet frames of order p along with the same corresponding
meaningful curvatures.

In general, no specific name is allocated to what we most logically call
“Frenet continuity”, the other two geometric kinds of connection being more
popular. Nevertheless, this is the type of connection we will work with, because
it is the most general geometrical one, and also because we consider it essential
to allow jumps in the curvatures for specific design purposes.
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2.2 Splines

Throughout the rest of the paper, we consider a fixed positive integer n, a fixed
bi-infinite sequence of knots tk, k ∈ ZZ, with tk < tk+1 for all k, and a fixed bi-
infinite sequence of associated multiplicities mk, k ∈ ZZ, with

0 ≤ mk ≤ n for all k ∈ ZZ,
∑
i≤0

mi =
∑
i≥0

mi = +∞. (1)

The extended knot-vector K := (
tk[mk])

k∈ZZ formed by the knots repeated with
their multiplicities can then be written as a bi-infinite sequence

K = (
ξ�

)
�∈ZZ, with ξ� ≤ ξ�+1 and ξ� < ξ�+n for all � ∈ ZZ.

Assuming K to be bi-infinite is not real limitation since it permits to treat the
usual case of splines based on a finite partition of a closed bounded interval.

For each k ∈ ZZ, let Mk be a lower triangular matrix of order (n − mk),
with positive diagonal entries. Based on the bi-infinite sequence of connection
matrices Mk, k ∈ ZZ, a geometrically continuous polynomial spline (Frenet
continuity) is a continuous function S :] infk tk, supk tk[→ R which satisfies the
following two properties:

1. for each k ∈ ZZ, there exists a polynomial Fk ∈ Pn which coincides with S
on the interval [tk, tk+1];

2. S satisfies the connection conditions:
(
S′(tk+), . . . , S(n−mk)(tk+)

)T = Mk .
(
S′(tk−), . . . , S(n−mk)(tk−)

)T
, k ∈ ZZ.

(2)

For the space S of all such splines to be considered suitable for design we
expect it to offer the same possibilities as the ordinary polynomial spline space
[2, 13]. In particular it must possess a B-spline basis, in the usual sense recalled
below.

Definition 2.1 A sequence of splines N� ∈ S, � ∈ ZZ, is said to be a B-spline
basis of S if it meets the following requirements:

� Support property: for each � ∈ ZZ, N� has support [ξ�, ξ�+n+1];
� Positivity property: for each � ∈ ZZ, N� is positive on ]ξ�, ξ�+n+1[;
� Normalisation property:

∑
�∈ZZ N�(x) = 1 for all x ∈] infk tk, supk tk[;

� Endpoint property: for each � ∈ ZZ, N� vanishes exactly (n − s + 1) times at
ξ� and exactly (n − s′ + 1) at ξ�+n+1, where s := �{ j ≥ � | ξ j = ξ�} and s′ :=
�{ j ≤ � + n + 1 | ξ j = ξ�+n+1}.

In such a B-spline basis, one can expand a spline S ∈ S
d as

S(x) =
∑
�∈ZZ

N�(x)P�, x ∈] inf
k

tk, sup
k

tk[,

where the points P� ∈ Rd, � ∈ ZZ, are called the poles of S. The parametric
curve defined by S is then located in the convex hull of its control polygon,
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with vertices the poles. For the curve to be considered a smooth version of
the control polygon, it is essential to guarantee shape preserving properties.
This is why a B-spline basis should also be totally positive like the ordinary
polynomial B-spline basis, in the sense that, for any strictly increasing sequence
(x1, . . . , xm) all minors of the collocation matrix

(
Ni(x j)

)
i∈ZZ,1≤ j≤m should be

non-negative. The last crucial property expected from S is that it should
permit the development of all the classical design algorithms (knot insertion,
subdivision, . . . ).

In the general setting presented here, geometrically continuous polynomial
splines were investigated by Dyn and Micchelli in [3]. They proved the
following result:

Theorem 2.2 Let us assume that each connection matrix Mk is totally positive
(i.e., all its minors are non-negative). Then the spline space S possesses a totally
positive B-spline basis.

Prior to [3], the same result had been achieved by Goodman [4] in the
special case of one-banded connection matrices. Later on, Seidel [14] used
Theorem 2.2 to point out the existence of blossoms in the spline space S as soon
as all matrices were totally positive. He then initiated a blossoming approach of
design algorithms in S (conversion from poles to Bézier points, knot insertion,
de Boor evaluation).

In spite of their crucial importance, the works mentioned above [3, 4, 14]
all present the same inconvenience: they give only sufficient conditions for the
space S to satisfy the properties commonly expected for design. We would like
to try and determine all possible connection matrices ensuring the same results.
This will be made possible by embedding the class of geometrically continuous
polynomial splines in the much larger class of geometrically continuous piece-
wise Chebyshevian splines, and therefore, by considering polynomial spaces as
special instances of Extended Chebyshev spaces. This justifies the next section.

3 Incursion into the Chebyshevian world

Extended Chebyshev spaces, Bernstein-type bases, generalised derivatives,
and of course, geometrically continuous piecewise Chebyshevian splines are
the tools which our approach of geometrically continuous polynomial splines
relies on. We present them here as briefly as possible.

3.1 Extended Chebyshev spaces and Bernstein bases

Let I be a real interval with a non-empty interior and let E ⊂ Cn(I) be an
(n + 1)-dimensional linear space. Then, E is a W-space on I if the Wronskian
of any basis of E does not vanish on I. It is an Extended Chebyshev space (for
short, EC-space) on I if any non-zero function F ∈ E vanishes at most n times
in I, multiplicities included up to (n + 1) [12, 15].
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As classical examples, all null spaces of linear differential operators of order
(n + 1) with constant coefficients of which the characteristic polynomials have
only real roots are (n + 1)-dimensional EC-space on I = R. Of course, the
polynomial space Pn of degree n falls into this category. It is well known that
when the characteristic polynomial has at least one non-real root, then the null
space—which is a W-space on R—is not an EC-space on the whole of R, but
only on sufficiently small intervals (at least on any interval of length less than
π/a, where a denotes the greatest imaginary part of all non-real roots of the
characteristic polynomial).

As recalled in the two propositions below, EC-spaces possess remarkable
bases which generalise the classical Bernstein polynomials. Given any c, d ∈ I,
c < d, we say that a sequence (V0, . . . , Vn) of functions in Cn(I) is a Bernstein-
like basis relative to (c, d) if it meets the following two requirements:

1. for k = 0, . . . , n, Vk vanishes exactly k times at c, and exactly (n − k) times
at d;

2. for k = 0, . . . , n, Vk is positive on ]c, d[.

Proposition 3.1 [8] An (n + 1)-dimensional space E ⊂ Cn(I) is an EC-space on
I if and only if it possesses a Bernstein-like basis relative to any (c, d) ∈ I2, c < d.

For geometric design, Bernstein-like bases are not sufficient, we need to
have at our disposal Bernstein bases, given that (B0, . . . , Bn) is a Bernstein
basis relative to (c, d) if it is a Bernstein-like basis relative to (c, d) which is nor-
malised, i.e., the functions B0, . . . , Bn sum to the constant function I(x) := 1
for all x ∈ I. Given points P0, . . . , Pn ∈ Rd, the parametric curve defined on
[c, d] by F(x) = ∑n

i=0 Bi(x)Pi, is then automatically contained in the convex
hull of the control polygon with vertices P0, . . . , Pn. Unlike Bernstein-like
bases, if a space E ⊂ Cn(I) possesses a Bernstein basis relative to (c, d), it is
unique. The following characterisations are essential for geometric design:

Theorem 3.2 [8] Given any (n + 1)-dimensional space E ⊂ Cn(I), supposed
to be a W-space on I and to contain constants, the following properties are
equivalent:

1. E possesses a Bernstein basis relative to any (c, d) ∈ I2, c < d;
2. the space DE := {DF := F ′ | F ∈ E} is an (n-dimensional) EC-space on I;
3. E possesses blossoms.

We will not give the precise definition of blossoms, limiting ourselves to
mentioning that, in the present context, it is now classical to introduce them
as geometrical objects defined by means of intersections of osculating flats
[8, 12]. When E possesses blossoms, each function F ∈ E is associated with
a function f : In → R (its blossom) satisfying three fundamental properties:
it is symmetric on In; it gives F by restriction to the diagonal of In; it is
pseudoaf f ine in each variable, in the sense that, for any x1, . . . , xn−1, c, d ∈ I,
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with c < d, there exists a strictly increasing function β(x1, . . . , xn−1; c, d; .) :
I → R (independent of F) such that

f (x1, . . . , xn−1, x) = [
1 − β(x1, . . . , xn−1; c, d; x)

]
f (x1, . . . , xn−1, c)

+ β(x1, . . . , xn−1; c, d; x) f (x1, . . . , xn−1, d), x ∈ I.
(3)

The latter three properties permit the development of all the classical geomet-
ric design algorithms. In particular, there exists a de Casteljau-type evaluation
algorithm with respect to any given (c, d) ∈ I2, c < d. Due to the pseudoaffinity
property (3), this algorithm is corner cutting on [c, d], which guarantees the
total positivity on [c, d] of the corresponding Bernstein basis. Let us mention
that it is even the optimal normalised totally positive basis in the restriction of
E to [c, d], this resulting from the number of zeroes at its endpoints [6]. This
brief reminder highly justifies the following terminology:

Definition 3.3 When the W-space E contains constants and when any of the
three properties (1), (2), or (3) of Theorem 3.2 holds, we say that the space E

is good for design.

Due to (2) ⇔ (3) in Theorem 3.2 we can state:

Corollary 3.4 A W-space which is good for design on I is an EC-space on I.

3.2 EC-spaces and generalised derivatives

As is well known, it is possible to build as many instances of EC-spaces as we
want by means of weight functions. We recall this essential fact below.

A sequence (w0, . . . , wn) is said to be a system of weight functions on I if, for
i = 0, . . . , n, the function wi is positive and Cn−i on the interval I. With such
a system it is classical to associate a sequence L0, . . . , Ln of linear differential
operators on Cn(I) obtained by alternating division by a weight function and
ordinary differentiation as follows:

L0 F := F
w0

, Li F := DLi−1 F
wi

, i = 1, . . . , n. (4)

For each i ≤ n, the operator Li is of order i. These operators L0, . . . , Ln

are often referred to as the generalised derivatives associated with the system
(w0, . . . , wn). The space E composed of all functions F ∈ Cn(I) for which the
last generalised derivative Ln F is constant on I is an (n + 1)-dimensional EC-
space on I. Let us briefly remind the two reasons explaining this classical result:

– Multiplication of an (n + 1)-dimensional EC-space on I by a non-vanishing
Cn function transforms it into another EC-space on I.

– By application of Rolle’s theorem, integration of an (n + 1)-dimensional
EC-space on I gives an (n + 2)-dimensional EC-space on I which contains
constants.
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The (n + 1)-dimensional EC-space E in question is called the EC-space associ-
ated with the system (w0, . . . , wn). We denote it as E = EC(w0, . . . , wn). Take
I = R, and wi = I for i = 0, . . . , n. Then, the associated generalised derivatives
L0, . . . , Ln are simply the ordinary derivatives D0 = Id, D, D2, . . . , Dn, and
the space EC(w0, . . . , wn) is thus the polynomial space Pn.

Without any requirement on the interval I it is not at all guaranteed that a
given (n + 1)-dimensional EC-space on I can be associated with a system of
weight functions on I.

Theorem 3.5 [8, 12] Suppose that the interval I is closed and bounded. Then, if
E is an (n + 1)-dimensional EC-space on I, there exist systems (w0, . . . , wn) of
weight functions on I such that E = EC(w0, . . . , wn).

As a consequence of Definition 3.3 and of Theorems 3.2 and 3.5, we
can state:

Corollary 3.6 Suppose that the interval I is closed and bounded. Then, an
(n + 1)-dimensional W-space E on I is good for design if and only if there exist
systems (w1, . . . , wn) of weight functions on I such that E = EC(I, w1, . . . , wn).

We recently showed that all systems of Theorem 3.5 are obtained by
iteration of the theorem below. This result is one of the two key results on
which the present work relies.

Theorem 3.7 [10] Let E be an (n + 1)-dimensional EC-space on a given closed
bounded interval I = [a, b ]. Then, given any w0 ∈ E, the following properties
are equivalent

1. the coordinates of w0 in a given Bernstein-like basis relative to (a, b) are all
positive;

2. w0 is positive on [a, b ] and, setting L0V := V/w0 for all functions V def ined
on I, the space DL0E is an EC-space on I.

3.3 Geometrically continuous piecewise Chebyshevian splines

Along with the earlier sequence of connection matrices Mk, k ∈ ZZ, we now
additionally consider a bi-infinite sequence of section spaces Ek, k ∈ ZZ: each
Ek is an (n + 1)-dimensional EC-space on [tk, tk+1] which is good for design
(see Theorem 3.2). Based on these data, a geometrically continuous piecewise
Chebyshevian spline is a continuous function S : R → R such that:

1. for each k ∈ ZZ, there exists a function Fk ∈ Ek which coincides with S on
the interval [tk, tk+1];

2. S satisfies the connection conditions (2).
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The expression “piecewise Chebyshevian splines” is used to stress the fact that
the pieces are taken from different EC-spaces. Subsequently we denote by S

the set all such splines.
Let k be any integer. The space Ek being good for design, we can

choose a system (wk
1 , . . . , wk

n) of weight functions on [tk, tk+1] such that Ek =
EC(Ik, w

k
1 , . . . , wk

n) (see Corollary 3.6). Let Lk
0 = Id, Lk

1, . . . , Lk
n denote the

generalised derivatives associated with (Ik, w
k
1 , . . . , wk

n) via (4). For functions
F ∈ Cn([tk, tk+1]), ordinary and generalised derivatives are linked by

(
F ′(x), . . . , F(n)(x)

)T= �k
n

(
wk

1 , . . . , wk
n; x

)
.
(
Lk

1 F(x), . . . , Lk
n F(x)

)T
,

x ∈ [
tk, tk+1

]
,

where �k
n(wk

1 , . . . , wk
n; x) is a lower triangular matrix depending on the values

at x of the system (wk
1 , . . . , wk

n) and of its derivatives. For instance, the entries
on the diagonal are the numbers

∏p
i=1 wi(x), 1 ≤ p ≤ n, while, in its first

column we find w1
(p−1)(x), 1 ≤ p ≤ n. One can then replace the connection

conditions (2) by the equivalent ones

(
Lk

1 S
(
t+k

)
, . . . , Lk

n−mk
S

(
t+k

))T = Rk .
(
Lk−1

1 S
(
t−k

)
, . . . , Lk−1

n−mk
S

(
t−k

))T
, k∈ZZ,

where the matrices Rk’s, of the same nature as the Mk’s (that is, lower
triangular with positive diagonal entries), are given by

Rk = �k
n−mk

(
wk

1 , . . . , wk
n−mk

; tk
)−1

. Mk . �k−1
n−mk

(
wk−1

1 , . . . , wk−1
n ; tk

)
, k ∈ ZZ,

(5)

the matrix �k
p(w

k
1 , . . . , wk

p; x) being obtained for p < n by deletion of the last
(n − p) rows and columns in �k

n(wk
1 , . . . , wk

n; x).
In this general framework, when they exist, blossoms are defined by means

of intersections osculating flats as in the non-spline case. However, the major
difference is that their natural domain of definition is a restricted set An(K)

of n-tuples, said to be admissible (with respect to the extended knot-vector
K): given x1, . . . , xn ∈] infk tk, supk tk[, the n-tuple (x1, . . . , xn) is admissible if,
whenever a knot tk satisfies min(x1, . . . , xn) < tk < max(x1, . . . , xn), at least mk

copies of tk are present in the sequence (x1, . . . , xn). When blossoms exist,
they satisfy the same three fundamental properties as earlier, but of course
only on An(K). As a matter of fact, existence of blossoms is the proper
theoretical requirement for considering a space S of geometrically continuous
piecewise Chebyshevian splines to be good for design. We can give three main
justifications for this statement:

• existence of blossoms is equivalent to existence a B-spline basis both in S

and in any spline space derived from it by knot insertion [7, 9];
• under existence of blossoms, all the classical design algorithms for splines

(evaluation, knot insertion, subdivision, . . . ) can be developed in S and
they all are corner-cutting [7, 9];
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• as a consequence of the evaluation algorithms being corner-cutting, exis-
tence of blossoms guarantees that the B-spline basis of S is totally posi-
tive [6].

The following recent practical characterisation of existence of blossoms is the
second key result for the present work:

Theorem 3.8 [11] The following two properties are equivalent:

1. the piecewise Chebyshevian spline space S is good for design (i.e., it pos-
sesses blossoms);

2. among all bi-inf inite sequences (wk
1 , . . . , wk

n), k ∈ ZZ,—where, for each k,
(wk

1 , . . . , wk
n) is a system of weight functions on [tk, tk+1] ensuring that

DEk = EC(wk
1 , . . . , wk

n),– one can f ind one such that

for each k ∈ ZZ, the matrix Rk def ined in (5) is the identity matrix

of order (n − mk).

Remark 3.9 In [1], P.J. Barry considered splines with section-spaces defined
by fixed weight functions. Under the additional condition that wk

i ∈
Ci−1([tk, tk+1]), 1 ≤ i ≤ n, k ∈ ZZ, and that all matrices Rk were totally positive,
he proved the existence of a B-spline basis. He also showed that it was then
possible to develop some classical algorithms such as knot insertion. His
approach was based on de Boor-Fix-type dual linear functionals. This was
a crucial step in the study of piecewise Chebyshevian splines. However, in
comparison, it should be observed that, when varying the systems of weight
functions, Theorem 3.8 now yields exactly the same class of spline spaces using
only identity matrices, and no extra differentiabily requirement.

4 Back to geometrically continuous polynomial splines

We now consider the space S of geometrically continuous piecewise
Chebyshevian splines obtained when the section spaces are the restrictions of
Pn to the intervals [tk, tk+1], i.e.,

Ek := Pn|[tk,tk+1], k ∈ ZZ.

The space S is then simply the space of geometrically continuous polynomial
splines presented in Section 2.2. By application of Theorem 3.8 we will try
to determine when it is good for design. The theoretical principles will be
addressed in the present section and illustrated in the next one.

4.1 Weight functions for polynomial spaces

A preliminary task consists in determining all systems of weight functions on
a given closed bounded interval I associated with the restriction of Pn to I. To
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simplify, we take I := [0, 1] and we set E := Pn|[0,1]. Let (Vn
0 , . . . , Vn

n) stand for
a polynomial Bernstein-like basis relative to (0, 1), e.g.,

Vn
i (x) := xi(1 − x)n−i, x ∈ [0, 1], i = 0, . . . , n. (6)

In accordance with Theorem 3.5, select any positive numbers αn,0, . . . , αn,n,
and set

w0 :=
n∑

i=0

αn,iVn
i . (7)

This function is positive on [0, 1]. Division of both sides of (7) by w0 yields
I = ∑n

i=0 Bn
i , where the functions Bn

0, . . . , Bn
n are defined on [0, 1] by

Bn
i (x) := αn,iVn

i (x)

w0(x)
, x ∈ [0, 1], 0 ≤ i ≤ n.

Clearly, (Bn
0, . . . , Bn

n) is the Bernstein basis relative to (0, 1) in the (n + 1)-
dimensional space L0E := {L0 F := F/w0 | F ∈ E} which is an EC-space on
[0, 1] and which contains constants. We want to draw the reader’s attention on
the fact that, in general, the space L0E is not a polynomial space, but a space of
rational functions, and it is a priori defined only on the interval [0, 1]. The space
E

{1} := DL0E ⊂ Cn−1([0, 1]) obtained by differentiation is an n-dimensional
space. According to Theorem 3.7, it is an EC-space on [0, 1], in which we can
consider the functions

Vn−1
i :=

n∑
k=i+1

DBn
i = −

i∑
k=0

DBn
i , 0 ≤ i ≤ n − 1.

For 0 ≤ i ≤ n − 1, Vn−1
i vanishes exactly i times at 0 and exactly (n − 1 − i)

times at 1 and its ith derivative at 0 is positive due to the positivity property
satisfied by the Bernstein basis (Bn

0, . . . , Bn
n). Accordingly, we can say that

(Vn−1
0 . . . , Vn−1

n−1) is a Bernstein-like basis relative to (0, 1) in the space E
{1}

(see [10]).
We can thus iterate the process. Selecting any positive numbers αn−1,0, . . . ,

αn−1,n−1, and setting

w1 :=
n−1∑
i=0

αn−1,iVn−1
i , (8)

we obtain a positive function on [0, 1], which permits division by w1, thus
leading to

I =
n−1∑
i=0

Bn−1
i , with Bn−1

i := αn−1,iV
n−1
i

w1
for 0 ≤ i ≤ n − 1. (9)

The functions

Vn−2
i :=

n−1∑
k=i+1

DBn−1
i = −

i∑
k=0

DBn−1
i , 0 ≤ i ≤ n − 2,
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form a Bernstein-like basis relative to (0, 1) in the space E
{2} := DL1E ⊂

Cn−2([0, 1]) (with L1V := (DL0V)/w1) which is an (n − 1)-dimensional EC-
space on [0, 1]. Continuing the same way provides us with all systems
(w0, . . . , wn) of weight functions on [0, 1] such that E = EC(w0, . . . , wn), and
therefore, all sequences of generalised derivatives which can be associated with
Pn|[0,1].

Remark 4.1 The process we have described is the same for any (n + 1)-
dimensional EC-space E on any closed bounded interval I. Two observations
will be essential for the next subsection.

1. At each step p, 1 ≤ p ≤ n, the weight function wp is defined by means of
positive coefficients αn−p,0, . . . , αn−p,n−p as wp := ∑n−p

i=0 αn−p,iV
n−p
i , where

the Bernstein-like basis (Vn−p
0 , . . . , Vn−p

n−p) relative to (0, 1) is completely
determined by the coefficients α j,q, 0 ≤ q ≤ j, n − p + 1 ≤ j ≤ n, and by
the initial selected Bernstein-like basis (Vn

0 , . . . , Vn
n). As a consequence,

for any j ≤ n − p, wp
( j)(0) and wp

( j)(1) are completely determined by the
latter coefficients and the derivatives at 0 (resp. 1) of Vn

0 , . . . , Vn
n of order

less than or equal to j + p.
2. Once the initial Bernstein-like basis (Vn

0 , . . . , Vn
n) selected, a system of

weight functions on I such that E = EC(w0, . . . , wn) is thus completely
determined by a sequence α = (

αp,q
)

0≤q≤p≤n of (n + 1)(n + 2)/2 positive
numbers.

4.2 Geometrically continuous polynomial splines for design

For each k ∈ ZZ, we assume that a Bernstein-like basis (Vn−1
k,0 , . . . , Vn−1

k,n−1)

relative to (tk, tk+1) has been chosen once and for all in the space DEk =
Pn−1|[tk,tk+1]. Theorem 3.8 can then be applied in two directions.

4.2.1 Determining all “good” spaces of geometrically continuous polynomial
splines

We actually have to determine all suitable sequences of connection matrices
Mk, k ∈ ZZ. According to Theorem 3.8, this consists in the following steps.

• Select any bi-infinite sequence αk, k ∈ ZZ, where, for each k, αk =(
αk

p,q

)
0≤q≤p≤n−1 is any sequence of n(n + 1)/2 positive numbers.

• For each k ∈ ZZ, apply to Pn−1 the procedure explained in the previous
section using the selected sequence αk and the selected Bernstein-like basis
(Vn−1

k,0 , . . . , Vn−1
k,n−1). This yields a system (wk

1 , . . . , wk
n) of weight functions

on [tk, tk+1] such that

Pn−1|[tk,tk+1] = EC
(
wk

1 , . . . , wk
n

)
, i.e., Ek = EC

(
Ik, w

k
1 , . . . , wk

n

)
. (10)



Numer Algor (2012) 60:241–262 253

• Take the connection matrices

Mk := �k
n−mk

(
wk

1 , . . . , wk
n−mk

; tk
)

. �k−1
n−mk

(
wk−1

1 , . . . , wk−1
n ; tk

)−1
, k ∈ ZZ.

(11)

This provides us with all sequences of connection matrices Mk, k ∈ ZZ, for
which the corresponding space S of geometrically continuous polynomial
splines is good for design.

4.2.2 Is a given spline space good for design?

A space S of geometrically continuous polynomial splines being given, that is,
a sequence Mk, k ∈ ZZ, of connection matrices being given, can we answer the
question: is S good for design? From Theorem 3.8 we know that this amounts
to answering the following one: is it possible to find sequences (wk

1 , . . . , wk
n),

k ∈ ZZ, where (wk
1 , . . . , wk

n) is a system of weight functions on [tk, tk+1] ensuring
both (10) and (11) for all k? In other words, can we determine positive numbers
αk

p,q, 0 ≤ q ≤ p ≤ n − 1, k ∈ ZZ, such that the associated bi-infinite sequence
(wk

1 , . . . , wk
n), k ∈ ZZ, of systems of weight functions determined as previously

satisfy

�k
n−mk

(
wk

1 , . . . , wk
n−mk

; tk
) = Mk . �k−1

n−mk

(
wk−1

1 , . . . , wk−1
n ; tk

)
, k ∈ ZZ, (12)

Let an integer k ∈ ZZ be given. Assume that we know the sequence αk − 1 =(
αk−1

p,q

)
0≤q≤p≤n−1 of positive numbers determining the system (wk−1

1 , . . . , wk−1
n )

of weight functions on [tk−1, tk]. The first question to address is: is it possible
to find a sequence αk = (

αk
p,q

)
0≤q≤p≤n−1 of positive numbers such that the

associated system (wk
1 , . . . , wk

n) of weight functions on [tk, tk+1] will satisfy the
corresponding equality (12)? Due to the zeroes of the successive Bernstein-like
bases involved in the construction of the weight functions, only the numbers
αk

n− j,q, 0 ≤ q ≤ n − j − mk, 1 ≤ j ≤ n − mk are involved in (12). Therefore,
we should regard (12) as a (non-linear) system of (n − mk)(n − mk + 1)/2
equations in the (n − mk)(n − mk + 1)/2 unknowns αk

n− j,q, 0 ≤ q ≤ n − j − mk,
1 ≤ j ≤ n − mk. The problem consists in proving the existence of a positive
solution, in the sense that all concerned αk

j,q should be positive. The second
crucial issue is the compatibility between the conditions making all such
systems “positively” solvable. The two issues will clearly appear in the example
of degree four splines investigated in next section.

5 Examples

The problem we address here is the one treated in Section 4.2.2 in special cases
with n = 3 and n = 4. Let us first observe that any affine change of variable on
either side of a knot tk results in multiplication of the connection matrix Mk by
a diagonal matrix of the form (a, a2, . . . , an−mk), where a is a positive number.
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Accordingly, with no loss of generality we can assume the knots to be equally
spaced with

tk = k for all k ∈ ZZ.

In that case, everything in the restriction of Pn−1 to [tk, tk+1] can be obtained
by translation from the restriction of Pn−1 to [t0, t1] = [0, 1]. For instance,
(wk

1 , . . . , wk
n) is a system of weight functions on [tk, tk+1] if and only if(

wk
1 (. − k), . . . , wk

n(. − k)
)

is a system of weight functions on [0, 1], and

�k
n

(
wk

1 , . . . , wk
n; x

) = �0
n

(
wk

1 (. − k), . . . , wk
n(. − k); x − k

)
, x ∈ [

tk, tk+1
]
.

Moreover, the initial bases in the restrictions of Pn−1 to all intervals
[k, k + 1] will systematically be the integer shifts of the Bernstein-like ba-
sis (Vn−1

0 , . . . , Vn−1
n−1) relative to (0, 1) defined in accordance with (6). As a

consequence, for x = tk or x = tk+1 all these matrices will be expressed as
functions of the sequence αk, independent of k. These functions are completely
determined by the values of the initial Bernstein-like basis (Vn−1

0 , . . . , Vn−1
n−1) and

its derivatives at 0 and 1.

5.1 Geometrically continuous cubic splines

Let us first observe that any system (w1, w2, w3) of weight functions on any
interval I and the generalised derivatives L0 = Id, L1, L2, L3 associated with
(I, w1, w2, w3) satisfy

⎡
⎣

F ′
F ′′
F ′′′

⎤
⎦ =

⎡
⎣

w1 0 0
w1

′ w1w2 0
w1

′′ 2w1
′w2 + w1w2

′ w1w2w3

⎤
⎦

⎡
⎣

L1 F
L2 F
L3 F

⎤
⎦ , (13)

for any sufficiently differentiable function F on I.
Here, we assume that n = 3, that all knots are simple (i.e., mk = 1 for all

k ∈ ZZ), and that the connection matrices are defined by

Mk =
[

ak 0
b k ck

]
, with ak, ck > 0 for all k ∈ ZZ. (14)

For the sake of simplicity we will now call αk
0 , αk

1 , αk
2 , βk

0 , βk
1 , γ k

0 , the six positive
coefficients producing wk

1 , wk
2 , wk

3 , respectively, starting from the integer shifts
of the Bernstein-like basis

V2
0(x) = (1 − x)2, V2

1(x) = x(1 − x), V2
2(x) = x2, x ∈ [0, 1],
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via the procedure explained in Section 4.1. Taking account of the values of the
latter basis and of its derivatives at 0, 1, this leads to

�k
3

(
wk

1 , wk
2 , wk

3 ; tk
) =

⎡
⎢⎣

αk
0 0 0

αk
1 − αk

0 αk
1 βk

0 0

2αk
0 − αk

1 + αk
2 2βk

0 (αk
2 − αk

1 ) + 2βk
1 αk

2 2αk
2 βk

1 γ k
0

⎤
⎥⎦ ,

�k−1
3

(
wk−1

1 , wk−1
2 , wk−1

3 ; tk
)

=
⎡
⎢⎣

αk−1
2 0 0

2αk−1
2 − αk−1

1 αk−1
1 βk−1

1 0

2αk−1
2 −αk−1

1 +2αk−1
0 2βk−1

1 (αk−1
1 − αk−1

0 )−βk−1
0 αk−1

0 2αk−1
0 βk−1

0 γ k−1
0

⎤
⎥⎦.

In particular, for any given k ∈ ZZ, supposing that the positive coefficients
producing the system (wk−1

1 , wk−1
2 , wk−1

3 ) are known, the corresponding system
(12) we have to consider is

[
αk

0 0
αk

1 − αk
0 αk

1 βk
0

]
=

[
ak 0
b k ck

] [
αk−1

2 0
2αk−1

2 − αk−1
1 αk−1

1 βk−1
1

]
.

Under which conditions on the entries ak, b k, ck of the connection matrix Mk

can we guarantee the existence of a positive solution? As a matter of fact, this
amounts to finding conditions to guarantee the positivity of the number αk

1
defined by:

αk
1 := αk−1

2 (b k + 2ak + 2ck) − ckα
k−1
1 .

Clearly, if αk
1 > 0, then

b k + 2ak + 2ck = αk
1 + ckα

k−1
1

αk−1
2

> 0.

Conversely, assume that b k + 2ak + 2ck > 0. The number αk−1
2 is not involved

in the connection at any knot t j with j < k. Accordingly, the positivity of the
quantity b k + 2ak + 2ck enables us to choose αk−1

2 so as to satisfy αk−1
2 (b k +

2ak + 2ck) − ckα
k−1
1 > 0, that is, αk

1 > 0. We can thus state:

Theorem 5.1 The space of all geometrically continuous cubic splines with
regularly spaced simple knots and connection matrices (14) is good for design if
and only if

b k + 2ak + 2ck > 0 for all k ∈ ZZ. (15)

Remark 5.2 Condition (15) was already achieved in [5] via intersection of
osculating flats. However we would to stress that the proof of Theorem 5.1
is of remarkable simplicity compared to [5].
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5.2 Geometrically continuous quartic splines

Here, n = 4, the knots are simple, and the connection matrices are given by

Mk =
⎡
⎣

ak 0 0
b k ck 0
dk ek fk

⎤
⎦ , with ak, ck, fk > 0 for all k ∈ ZZ. (16)

We shall achieve the following result.

Theorem 5.3 The space of all geometrically continuous quartic splines with
regularly spaced simple knots and connection matrices (16) is good for design if
and only if the connection matrices satisfy the following conditions:

Bk >0, Dk >0, 4Bk Bk+1 fk+1 < Dk(Ek+1 Bk+1−ck+1 Dk+1) for all k ∈ ZZ,

(17)

where, for each k ∈ ZZ, the numbers Bk, Ek, Dk are def ined by

Bk := b k + 3ak + 3ck, Ek := ek + 4ck + 4 fk,

Dk := dk + 3ek + 4b k + 6(ak + 2ck + fk). (18)

Proof We have to find conditions on the sequence Mk, k ∈ ZZ, of connection
matrices making it possible to find, for each k ∈ ZZ, a system (wk

1 , wk
2 , wk

3 ) of
weight functions on [tk, tk+1], so that

P3|[tk,tk+1] = EC
(
wk

1 , wk
2 , wk

3

)
,

�k
3

(
wk

1 , wk
2 , wk

3 ; tk
) = Mk . �k−1

3

(
wk−1

1 , wk−1
2 , wk−1

3 ; tk
)

, k ∈ ZZ. (19)

As suggested earlier we will use the integer shifts of the Bernstein-like basis

V0(x) = (1 − x)3, V1(x) = x(1 − x)2, V2(x) = x2(1 − x), V3(x) = x3,

(20)

to apply the procedure explained in Section 4.1 for determining all systems
(wk

1 , wk
2 , wk

3 ) ensuring the first line in (19). In the kth section this involves
nine coefficients which we now denote by αk

0 , αk
1 , αk

2 , αk
3 , βk

0 , βk
1 , βk

2 , γ k
0 , γ k

1 . On
account of the values of the basis (20) and of its derivatives at 0, 1, formula (13)
now leads to

�k
3

(
wk

1 , wk
2 , wk

3 ; tk
) =

⎡
⎣

αk
0 0 0

αk
1 − 3αk

0 αk
1 βk

0 0
6αk

0 − 4αk
1 + 2αk

2 2βk
0 (αk

2 − αk
1 ) + 2βk

1 αk
2 2αk

2 βk
1 γ k

0

⎤
⎦ ,

�k−1
3

(
wk−1

1 , wk−1
2 , wk−1

3 ; tk
)

=
⎡
⎣

αk−1
3 0 0

3αk−1
3 − αk−1

2 αk−1
2 βk−1

2 0
6αk−1

3 − 4αk−1
2 +2αk−1

1 2βk−1
2 (2αk−1

2 − αk−1
1 )− βk−1

1 αk−1
1 2αk−1

1 βk−1
1 γ k−1

1

⎤
⎦ .
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Accordingly, the matricial relation in (19) will be satisfied if and only if the two
consecutive families of coefficients are linked by the six relations

αk
0 = akα

k−1
3 , (21)

αk
1 βk

0 = ckα
k−1
2 βk−1

2 , (22)

αk
2 βk

1 γ k
0 = fkα

k−1
1 βk−1

1 γ k−1
1 , (23)

αk
1 − 3αk

0 = b kα
k−1
3 + ck(3αk−1

3 − αk−1
2 ), (24)

6αk
0 − 4αk

1 + 2αk
2 = dkα

k−1
3 + ek(3αk−1

3 − αk−1
2 )

+ fk(6αk−1
3 − 4αk−1

2 + 2αk−1
1 ), (25)

2βk
0 (αk

2 − αk
1 ) + 2βk

1 αk
2 = ekα

k−1
2 βk−1

2

+ fk
[
2βk−1

2 (2αk−1
2 − αk−1

1 ) − βk−1
1 αk−1

1

]
. (26)

Propositions 5.4 and 5.5 below investigate the previous six equalities as a
system in the six unknowns αk

0 , αk
1 , αk

2 , βk
0 , βk

1 , γ k
0 . They are preliminary results

towards the proof of the present theorem which will be concluded later on. 
�

Proposition 5.4 Given k ∈ ZZ, let αk−1
1 , αk−1

2 , αk−1
3 , βk−1

1 , βk−1
2 , γ k−1

1 be any
positive numbers. Then, there exist (unique) positive numbers αk

0 , αk
1 , αk

2 , βk
0 , βk

1 ,
γ k

0 satisfying all six conditions (21) to (26) if and only if all properties below
hold:

1. the connection matrix Mk satisf ies, with the notations introduced in
Theorem 5.3,

Bk > 0, Dk > 0, Ek Bk − ck Dk > 0; (27)

2. the coef f icients αk−1
1 , αk−1

2 , αk−1
3 , βk−1

2 are chosen so that

αk−1
2 >

2αk−1
1 Bk fk

Bk Ek − ck Dk
, αk−1

3 >
Ekα

k−1
2 − 2 fkα

k−1
1

Dk
,

βk−1
2 >

2 fkα
k−1
1 βk−1

1 (Bkα
k
3 − ckα

k−1
2 )

αk−1
3

[
αk−1

2 (Bk Ek − ck Dk) − 2Bk fkα
k−1
1

] . (28)

Proof Clearly, if the previous system has a solution αk
0 , αk

1 , αk
2 , βk

0 , βk
1 , γ k

0 ,
then it is unique. Moreover, αk

0 is automatically positive, and the positivity
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of αk
1 , αk

2 , βk
1 automatically implies that of βk

0 , γ k
0 . Therefore, we are only

concerned with the positivity of the three coefficients αk
1 , αk

2 , βk
1 .

On account of relations (21) and (22) we can respectively replace (24), (25),
(26) by

αk
1 = αk−1

3 Bk − ckα
k−1
2 , (29)

2αk
2 = αk−1

3 Dk − αk−1
2 Ek + 2 fkα

k−1
1 , (30)

2αk
2 βk

1 = βk−1
2 (αk−1

2 Ek − 2 fkα
k−1
1 ) − 2 fkα

k−1
1 βk−1

1 − 2αk
2 βk

0 . (31)

Due to (22), (29) and (30), equality (31) can also equivalently be written as
follows

2αk
1 αk

2 βk
1 = αk−1

2 βk−1
2

(
αk

1 Ek − 2ckα
k
2

) − 2 fkα
k−1
1 αk

1

(
βk−1

1 + βk−1
2

)
,

= αk−1
3 βk−1

2

[
αk−1

2 (Bk Ek − ck Dk) − 2Bk fkα
k−1
1

]

−2 fkα
k−1
1 βk−1

1

[
Bkα

k−1
3 − ckα

k−1
2

]
. (32)

Assume that αk
1 , αk

2 , βk
1 are positive. Then, from (31) we can deduce that

the quantity αk−1
2 Ek − 2 fkα

k−1
1 is positive, and accordingly, due to (30), Dk is

positive too. From (29) we can see that Bk > 0. Moreover, the positivity of αk
1

and αk
2 also clearly implies that

αk−1
3 > max

(
ckα

k−1
2

Bk
,

Ekα
k−1
2 − 2 fkα

k−1
1

Dk

)
. (33)

Via (32), the positivity of Bkα
k−1
3 − ckα

k−1
2 proves the positivity of the quanti-

ties Ek Bk − ck Dk and αk−1
2 (Bk Ek − ck Dk) − 2Bk fkα

k−1
1 , along with the last two

missing inequalities in (28).
Conversely, assume all inequalities in (27) and (28) to hold. The positivity

of αk
2 , βk

1 readily follows from (30) and (32). That αk
1 > 0 results from (29) after

observing that the positivity of Ek Bk − ck Dk and the first inequality in (28)
guarantee that ckα

k−1
2 /Bk < (Ekα

k−1
2 − 2 fkα

k−1
1 )/Dk. 
�

Proposition 5.5 The data and notations are the same as in Proposition 5.4,
and we assume that both (27) and (28) hold. Then the positive numbers αk

1 , αk
2

produced by the system (21)–(26) satisfy

αk
2 > Aαk

1 , (34)

where A is a given positive number, if and only if we have both

2ABk < Dk and αk−1
3 > L := αk−1

2 (Ek − 2ck A) − 2αk−1
1 fk

Dk − 2ABk
. (35)
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Proof On account of (29) and (30), condition (34) is satisfied if and only if

αk−1
3 (Dk − 2ABk) > αk−1

2 (Ek − 2ck A) − 2 fkα
k−1
1 . (36)

Let us consider the various possible situations.

1. Assume that Dk − 2ABk < 0. Then (36) holds if and only αk−1
3 < L. The

first inequality in (28) implies that

L <
ckα

k−1
2

Bk
<

Ekα
k−1
2 − 2 fkα

k−1
1

Dk
.

Accordingly, the condition αk−1
3 < L is not compatible with (28).

2. Assume that Dk = 2ABk. Then, (36) yields

αk−1
2 (Ek − 2ck A)Bk = αk−1

2 (Ek Bk − ck Dk) < 2αk−1
1 Bk fk,

which contradicts (28).
3. Assume that Dk − 2ABk > 0. Then, (36) holds if and only αk−1

3 > L. In
that case, due to the first inequality in (28),

L >
Ekα

k−1
2 − 2 fkα

k−1
1

Dk
>

ckα
k−1
2

Bk
. (37)

This completes the proof. 
�

Back to proof of Theorem 5.3

First note that, in (17), on account of the other two requirements, condi-
tion “Dk > 0 for all k” can equivalently be replaced by “Bk Ek − ck Dk > 0
for all k”.

The space S is good for design if and only if we are able to determine
bi-infinite positive sequences αk := (αk

0 , αk
1 , αk

2 , αk
3 ), βk := (βk

0 , βk
1 , βk

2 ), γ k :=
(γ k

0 , γ k
1 ), k ∈ ZZ, satisfying the equalities (21) to (26) for all k. The crucial point

is that, given k ∈ ZZ, the three numbers αk−1
3 , βk−1

2 , γ k−1
1 are not involved in the

connections at knots preceding tk. We are therefore searching for conditions on
the connection matrix Mk enabling us to choose the free parameters αk−1

3 , βk−1
2 ,

γ k−1
1 so as to ensure the existence of a positive solution to the system (21)–(26).

Such conditions are provided by Proposition 5.4. However, we also have to be
able to propagate (28) to the next interval. There is no problem for last two
inequalities in (28) since the parameters αk−1

3 , βk−1
2 are free. In contrast, the

first inequality in (28) concerns the non-free parameter αk−1
2 . Accordingly, we

do have to see if it is possible to achieve convenient necessary and sufficient
conditions ensuring that the obtained positive numbers αk

1 , αk
2 will satisfy the

similar inequality, that is

αk
2 (Bk+1 Ek+1 − ck+1 Dk+1) > 2αk

1 Bk+1 fk+1. (38)
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This will be achieved via Proposition 5.5. Indeed, with A := 2Bk+1 fk+1/

(Bk+1 Ek+1 − ck+1 Dk+1), the latter proposition yields the additional requirement

4Bk Bk+1 fk+1 < Dk(Ek+1 Bk+1 − ck+1 Dk+1)

on the two consecutive matrices Mk, Mk+1. Under it, there is no problem
ensuring condition (38): it suffices to choose the free parameter αk−1

3 > L,
where L is the corresponding limit defined in (35). Due to (37) the latter
inequality automatically ensures the previous weaker requirement αk−1

3 >

(αk−1
2 Ek − 2αk−1

1 )/Dk provided by (28). There is no difficulty propagating these
results to greater integers. 
�

Remark 5.3 The total positivity sufficient condition of [3] corresponds to
b k, ek ≥ 0, 0 ≤ ckdk ≤ b kek for all k ∈ ZZ. One can check that this implies (17).
To compare the two situations, consider the elementary example ak = ck =
fk = 1, b k = ek = 0, for all k. We thus obtain a class of C2 quartic splines
depending on the sequence dk, k ∈ ZZ, of shape parameters. By contrast, in
that case, total positivity requires dk = 0 for all k, that is, we have no shape
parameter. To prove the efficiency of our shape parameters, let us assume
that dk = 0 for all k �= k0. Then, our condition (17) says that we can choose
any dk0 ∈] − 18, 18[. This is illustrated in Fig. 1 for k0 = 4: we show the four
B-splines which change with d4 (i.e., N0, N1, N2, N3) for various values of d4.
Opposite values give symmetric graphs, which is consistent with the fact that,
here, taking the inverse of M4, simply consists in changing d4 into −d4. The two
B-splines which are most affected by d4 are N1 (which goes to 0 when d4 → 18)
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Fig. 1 Geometrically continuous quartic splines with, for each k, ak = ck = fk = 1, bk = ek = 0,
and dk = 0 for each k �= 4. Top (from left to right): d4 = −17.5; −15; −10. Bottom (from left to
right): d4 = 0; 10; 17.5
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and N2 (which goes to 0 when d4 → −18). One can compare with the ordinary
quartic B-splines (d4 = 0).

6 Final comments

Due to page limitation we will not produce more illustrations, preferring to
conclude with a few comments. Readers who would like to check the interest
of going “beyond total positivity” are referred to [5].

1. Obviously, the greater n is (and the lower multiplicities are), the more
difficult solving “positively” (12) is. As an instance, for n = 3, condition
(15) concerns each matrix Mk separately, while for n = 4, part of (17) links
two consecutive matrices. This is consistent with the blossoming approach.
Indeed, for simple knots, existence of blossoms in S involves consecutive
intervals two by two if n = 3, three by three if n = 4, four by four if n = 5,
. . . For n = 5, the condition ensuring that the spline space is good for design
should thus concern any three consecutive connection matrices,. . .

2. EC-spaces being natural generalisations of polynomial spaces, a logical
approach consists in going from the polynomial world to the larger Cheby-
shevian world to try and extend to the latter results known in the former.
Such extensions require the development of specific difficult techniques
which are a priori unjustified in the “easy” polynomial world: why should
we worry about generalised derivatives when we have at our disposal the so
easy-to-handle ordinary ones to decrease the dimension? The complicated
techniques in question enabled us to achieve results a priori specific to
the Chebyshevian world. This is why the approach used in this work goes
the reverse way: starting from the Chebyshevian world we come back to
the polynomial world, thus deducing new results in the latter from results
recently obtained in the former. This is not the least interest of this article.
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