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Abstract The purpose of this paper is to visit a class of nonlinear reactive
transport model in the case including advective and diffusive transport with
the Michaelis-Menten reaction term. We apply the method so-called predictor
homotopy analysis method (PHAM) which has been recently proposed to
predict multiplicity of solutions of nonlinear BVPs. Consequently two con-
sequential matters are indicated which confirms the authority of PHAM to
identify multiple solutions: (i) The Talylor series solutions are improved by the
so-called convergence-controller parameter (ii) The possibility of existence of
multiple solutions is discovered in some cases for the model.

Keywords Predictor homotopy analysis method · Rule of multiplicity
of solutions · Prescribed parameter · Reactive transport model

1 Introduction and problem formulation

Consider dimensionless steady state reactive transport model which is gov-
erned by [1]

d2u
dx2

− P
du
dx

− αu
β + u

= 0, 0 ≤ x ≤ 1, (1)
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with boundary conditions

du
dx

(0) = 0, u(1) = 1, (2)

where u(x) is dimensionless reactant concentration at x, P advective transport
(Péclet number) and αu

β+u so-called Michaelis-Menten reaction term with α as
characteristic reaction rate and β as half saturation concentration.

The problem (1)–(2), recently introduced by Ellery and Simpson [1], is a
kind of modification of the primer model so-called nonlinear reaction-diffusion
model in porous catalysts which has been used to study porous catalyst pellets
and more, it has been analyzed by different methods [7–9]. The model (1)–(2)
involves advective and diffusive transport with the Michaelis-Menten reaction
model that is routinely used to represent biochemical processes [2–4]. This
model encodes a number of important engineering processes including several
applications in chemical engineering [5, 6] and environmental engineering
[3, 4]. The boundary value problem (1)–(2) contains nonlinear fractional term
which makes it somewhat difficult to treat even by numerical methods. Ellery
and Simpson [1] presented Taylor series solution for this model which truly
is convergent on the condition that the Michaelis-Menten reaction term has
bounded derivatives as they mentioned.

The aim of this paper is to go advance with this model by applying predictor
homotopy analysis method (PHAM) [9–11] which is more general than HAM
in some sense and can be applied to predict and calculate multiple solutions
of BVPs simultaneously. The homotopy analysis method [12] has been suc-
cessfully applied to several nonlinear problems such as the viscous flows of
non- Newtonian fluids [13–19], the KdV-type equations [20], nano boundary
layer flows [21], nonlinear heat transfer [22], finance problems [23], Riemann
problems related to nonlinear shallow water equations [24], projectile motion
[25], Glauert-jet flow [26], nonlinear water waves [27], ground water flows [28],
BurgersHuxley equation [29], time-dependent Emden Fowler type equations
[30], differential difference equation [31], Laplace equation with Dirichlet and
Neumann boundary conditions [32], thermalhydraulic networks [33] and also
readers are referred to see [34–43]. It is not unknown to anyone familiar
with the analytical methods that HAM series is general Taylor series [12, 44]
which uses the convergence-controller parameter to make convergence fast,
so we use PHAM to get series solution more accurate than usual Taylor series
solution. We consider nonlinear fractional term in equations (1)–(2) in some
cases which have unbounded derivatives then it is revealed by PHAM that
the problem admits multiple (dual) solutions in these cases, while the exact
solution of this problem is unknown. we conclude that, for practical use in
science and engineering, predictor homotopy analysis method might give new
unfamiliar class of solutions which is of fundamental interest and furthermore,
the proposed approach convinces to apply it on nonlinear equations by todays
powerful software programs so that it does not need tedious stages of evalua-
tion and can be used without studying the whole theory.
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2 PHAM-unique solution of the model

The predictor homotopy analysis method (PHAM) has been fully discussed by
Abbasbandy and Shivanain in [10]. Let us rewrite the (1)–(2) as follows:

(β + u)
d2u
dx2

− (β + u)P
du
dx

− αu = 0, 0 ≤ x ≤ 1, (3)

or equivalently

βu′′ − Pβu′ + uu′′ − Puu′ − αu = 0, 0 ≤ x ≤ 1. (4)

The boundary conditions by prescribed parameter γ , as it is straightforward
in PHAM, become

u(0) = γ, u′(0) = 0, (5)

with the additional forcing condition

u(1) = 1 (6)

which plays essential role in determining multiplicity of solutions as it is
described in PHAM. Now, we apply predictor homotopy analysis method
on (4)–(5) where prescribed parameter γ , which is played important role to
realize about multiplicity of solutions, will be obtained with the help of rule of
multiplicity of solutions.

It is straightforward to use the set of base functions
{

xn, n = 0, 1, 2, ...
}
. (7)

Under the rule of solution expression and according to the initial condi-
tions (5), it is easy to choose

u0(x, γ ) = γ + x2, (8)

as initial guess of solution u(x), H(x) = 1 as auxiliary function, and to choose
auxiliary linear operator

L
[
φ(x, γ ; p)

] = ∂2φ(x, γ ; p)

∂x2
, (9)

with the property

L [c1 + c2x] = 0. (10)

Therefore, after two subsequent integrations, the M-th order deformation
equation of PHAM yields for M ≥ 1

um(x, γ ) = χmum−1(x, γ ) + �

∫ x

0

∫ η

0
Rm(�um−1, τ, γ )dτdη + c1 + c2x, (11)
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where from (4)

Rm(�um−1, τ, γ ) = βu′′
m−1(τ, γ ) − Pβu′

m−1(τ, γ ) +
m−1∑

j=0

u j(τ, γ )u′′
m−1− j(τ, γ )

− P
m−1∑

j=0

u j(τ, γ )u′
m−1− j(τ, γ ) − αum−1(τ ), (12)

and integration constants c1 and c2 are obtained by the conditions

um(0, γ ) = u′
m(0, γ ) = 0. (13)

In this way we obtain the functions um(x, γ ) for m = 1, 2, 3, ... from (11)
successively. Finally, we can obtain M-th order approximate solution

UM(x, γ, �) =
M∑

m=0

um(x, γ ), (14)

we give below the PHAM series solution (14) from the order M = 1 until the
order M = 2 in its form valid for any α, β and Péclet number:

U1(x, γ, �) = − 1

10
�Px5 − 1

3
�Px3β − 1

3
hPx3γ − 1

12
�x4α + �x4

6
− 1

2
�x2αγ

+ �x2β + �x2γ + x2 + γ (15)

U2(x, γ, �) = 1
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Fig. 1 Prescribed parameter γ via convergence-controller parameter � in according to (17) for
different β: a M = 25, P = 0, α = 2 b M = 20, P = 1, α = 2

So additional forcing condition (6), becomes

UM(1, γ, �) ≈ 1. (17)

Now, to be specific, we consider two cases consist of (P = 0, α = 2) and (P =
1, α = 2) for different positive β. In Fig. 1, according to the above equation
γ (prescribed parameter) as a function of convergence-controller parameter
�, has been plotted implicitly. One γ -plateau (horizontal line) for each case
can be identified in these figures, namely γ = 0.23581 for [−0.15,−0.05] of
�, γ = 0.47568 for [−0.45,−0.1] of �, γ = 0.60154 for [−0.65, −0.1] of �, γ =
0.72284 for [−0.85, −0.15] of � in Fig. 1a for β = 0.1, 0.5, 1, 2, respectively
and γ = 0.10355 for [−0.22,−0.1] of �, γ = 0.34880 for [−0.65,−0.15] of �,
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Fig. 2 Dimensionless reactant concentration profiles a M = 25, P = 0, α = 2 by � = −0.1
(brown), � = −0.3 (green), � = −0.4 (blue), � = −0.5 (red) b M = 20, P = 1, α = 2 by � = −0.15
(brown), � = −0.4 (green), � = −0.6 (blue), � = −0.8 (red)
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Fig. 3 Residual error defined by (4) a M = 25, P = 0, α = 2 by � = −0.1 (brown), � = −0.3
(green), � = −0.4 (blue), � = −0.5 (red) b M = 20, P = 1, α = 2 by � = −0.15 (brown), � = −0.4
(green), � = −0.6 (blue), � = −0.8 (red)

γ = 0.49169 for [−0.9, −0.2] of �, γ = 0.63616 for [−1.2, −0.25] of � in Fig. 1b
for β = 0.1, 0.5, 1, 2, respectively. Consequently, we conclude that the PHAM
furnishes unique solution in these cases which are shown in Fig. 2, in a
full agreement with those obtained in [1]. To show the accuracy of those
approximate solutions plotted in Fig. 2, we have shown the residual error for
these solution in Fig. 3 i.e. following function which is obtained from (4).

ResUM(x, γ, �) = βU ′′
M(x, γ, �) − PβU ′

M(x, γ, �) + UM(x, γ, �)U ′′
M(x, γ, �)

−PUM(x, γ, �)U ′
M(x, γ, �) − αUM(x, γ, �) (18)

Fig. 4 Prescribed parameter
γ via convergence-controller
parameter � in according
to (17) with M = 25
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Fig. 5 The residual of (17)
i.e. UM (1, γ, �) − 1 with
different values of � when
M = 25 for P = 0, α = 0.5
and β = −0.2; brown color:
� = 0.1; red color: � = 0.15;
blue color: � = 0.2
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3 PHAM-multiple solutions of the model

Ellery and Simpson [1] showed that Taylor series solution of the problem
(1)–(2) is convergent when αu

β+u has bounded derivatives by applying the
ratio test to this series. So, if we consider negative value for β then it is
possible the Taylor series solution be divergent. In this section, not only we
get convergent PHAM series solution but also we discover that the existence
of multiple solutions are possible. To be specific, assume the case consist
of (P = 0, α = 0.5 and β = −0.2) then according to the equation (17) γ as
a function of convergence-controller parameter � has been plotted in the
�-range [0, 0.5] implicitly in Fig. 4. Two γ -plateaus can be identified in this
figure, namely γ = 0.23147 in the range [0.1,0.36] of � and γ = 0.65029 in the

Fig. 6 Dual approximate
PHAM solutions with
M = 25: U25(x, 0.23147, 0.2)

for the first branch (red color)
and U25(x, 0.65029, 0.2)

for the second branch
(blue color)
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Fig. 7 The residual error (18)
with M = 25; red color:
� = 0.30 and γ = 0.23147;
blue color: � = 0.18 and
γ = 0.65029
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range [0.1,0.22] of �. Consequently, we conclude that the PHAM furnishes
dual solutions. It is worth mentioning here that Fig. 4 indicates existence of
two solutions, u(0) = γ = 0.23147 for the first branch solution and u(0) = γ =
0.65029 for the second branch solution. In predictor homotoy analysis method,
another technique to find out that how many solutions the nonlinear problem
(1)–(2) admits is to count the number of cross points by horizontal axis which
do not change with the variation of � in the graph of Residual error i.e.
UM (1, γ, �) − 1 as function of γ . Figure 5 shows that there are two crosses
with horizontal axis which dose not vary with change of � so we turn out that
there exist dual solutions again.

We remark here that both the first branch and second branch of solutions
are calculated at the same time only by (14) with different γ and � which are
specified from Fig. 4 or Fig. 5. Furthermore, we emphasize that there is no need
to use more than one initial approximation guess, one auxiliary linear operator,
and one auxiliary function that is in a sharp contrast to all approximation
methods which are used to converge to one solution. In the plot shown in Fig. 6,
correspond to γ = 0.23147 and γ = 0.65029, the approximate dual PHAM
solutions U25(x, 0.23147, 0.2) and U25(x, 0.65029, 0.2) given by (14) have been
plotted. To show the accuracy of these dual approximate solutions, we have
shown the residual error (18) for these solution in Fig. 7.

4 Conclusions

It is very important not to lose any solution of nonlinear differential equations
with boundary conditions in engineering and physical sciences. In this regard,
the present paper has revisited the nonlinear reactive transport model and
applied predictor homotopy analysis method (PHAM) to this problem. we
have shown that not only we can get convergent series solution but also we
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can talk about multiplicity of solutions. In specific case, the dual approximate
solutions have been obtained and also the accuracy of these solutions by
showing the residual error of original equation has been observed.
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Islamic Azad University.

References

1. Ellery, A.J., Simpson, M.J.: An analytical method to solve a general class of nonlinear reactive
transport models. Chem. Eng. J. 169, 313–318 (2011)

2. Bailey, J.E., Ollis, D.E.: Biochemical Engineering Fundamentals, 2nd edn. McGrawHill (1986)
3. Clement, T.P., Sun, Y., Hooker, B.S., Peterson, J.N.: Modeling multispecies reactive transport

in ground water. Ground Water Monit. Remediat. 18, 79–92 (1998)
4. Zheng, C., Bennett, G.D.: Applied Contaminant Transport Modelling, 2nd edn. Wiley Inter-

science, New York (2002)
5. Aris, A.: The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts, vol. 1.

The Theory of Steady State, Oxford (1975)
6. Henley, E.J., Rosen, E.M.: Material and Energy Balance Computations. John Wiley and Sons,

New York (1969)
7. Sun, Y.P., Liu, S.B., Scott, K.: Approximate solution for the nonlinear model of diffusion and

reaction in porous catalysts by the decomposition method. Chem. Eng. J. 102, 1–10 (2004)
8. Abbasbandy, S.: Approximate solution for the nonlinear model of diffusion and reaction in

porous catalysts by means of the homotopy analysis method. Chem. Eng. J. 136, 144–150 (2008)
9. Abbasbandy, S., Magyari, E., Shivanian, E.: The homotopy analysis method for multiple

solutions of nonlinear boundary value problems. Commun. Nonlinear Sci. Numer. Simul. 14,
3530–3536 (2009)

10. Abbasbandy, S., Shivanian, E.: Predictor homotopy analysis method and its application to
some nonlinear problems. Commun. Nonlinear Sci. Numer. Simul. 16, 2456–2468 (2011)

11. Abbasbandy, S., Shivanian, E.: Prediction of multiplicity of solutions of nonlinear boundary
value problems: novel application of homotopy analysis method. Commun. Nonlinear Sci.
Numer. Simul. 15, 3830–3846 (2010)

12. Liao, S.J.: Beyond Perturbation: Introduction to the Homotopy Analysis Method. Chapman
Hall CRC/Press, Boca Raton (2003)

13. Hayat, T., Javed, T., Sajid, M.: Analytic solution for rotating flow and heat transfer analysis of
a third-grade fluid. Acta Mech. 191, 219–229 (2007)

14. Hayat, T., Khan, M., Sajid, M., Asghar, S.: Rotating flow of a third-grade fluid in a porous
space with hall current. Nonlinear Dyn. 49, 83–91 (2007)

15. Hayat, T., Abbas, Z., Sajid, M., Asghar, S.: The influence of thermal radiation on MHD flow
of a second grade fluid. Int. J. Heat Mass Transfer 50, 931–941 (2007)

16. Hayat, T., Ahmed, N., Sajid, M., Asghar, S.: On the MHD flow of a second grade fluid in a
porous channel. Comput. Math. Appl. 54, 14–40 (2007)

17. Hayat, T., Khan, M., Ayub, M.: The effect of the slip condition on flows of an Oldroyd 6
constant fluid. J. Comput. Appl. 202, 402–413 (2007)

18. Sajid, M., Siddiqui, A., Hayat, T.: Wire coating analysis using MHD Oldroyd 8-constant fluid.
Int. J. Eng. Sci. 45, 381–392 (2007)

19. Sajid, M., Hayat, T., Asghar, S.: Non-similar analytic solution for MHD flow and heat transfer
in a third-order fluid over a stretching sheet. Int. J. Heat Mass Transfer 50, 1723–1736 (2007)

20. Song, L., Zhang, H.Q.: Application of homotopy analysis method to fractional KdV-Burgers-
Kuramoto equation. Phys. Lett., A 367, 88–94 (2007)

21. Cheng, J., Liao, S.J., Mohapatra, R.N., Vajravelu, K.: Series solutions of nano boundary layer
flows by means of the homotopy analysis method. J. Math. Anal. Appl. 343, 233–245 (2008)

22. Abbasbandy, S.: The application of the homotopy analysis method to nonlinear equations
arising in heat transfer. Phys. Lett., A 360, 109–113 (2006)



Numer Algor

23. Zhu, S.P.: An exact and explicit solution for the valuation of American put options. Quant.
Finance 6, 229–242 (2006)

24. Wu, Y., Cheung, K.F.: Explicit solution to the exact Riemann problem and application in
nonlinear shallow-water equations. Int. J. Numer. Methods Fluids 57, 1649–1668 (2008)

25. Yamashita, M., Yabushita, K., Tsuboi, K.: An analytic solution of projectile motion with the
quadratic resistance law using the homotopy analysis method. J. Phys. A 40, 8403–8416 (2007)

26. Bouremel Y.: Explicit series solution for the Glauert-jet problem by means of the homotopy
analysis method. Commun. Nonlinear Sci. Numer. Simul. 12(5), 714–724 (2007)

27. Tao, L., Song, H., Chakrabarti, S.: Nonlinear progressive waves in water of finite depth-an
analytic approximation. Coastal Eng. 54, 825–834 (2007)

28. Song, H., Tao, L.: Homotopy analysis of 1D unsteady, nonlinear groundwater flow through
porous media. J. Coast. Res. 50, 292–295 (2007)

29. Molabahrami, A., Khani, F.: The homotopy analysis method to solve the Burgers-Huxley
equation. Nonlinear Anal. B: Real World Appl. 10, 589–600 (2009)

30. Bataineh, A.S., Noorani, M.S.: Hashim, I.: Solutions of time-dependent EmdenFowler type
equations by homotopy analysis method. Phys. Lett., A 371, 72–82 (2007)

31. Wang, Z., Zou, L., Zhang, H.: Applying homotopy analysis method for solving differential-
difference equation. Phys. Lett., A 369, 77–84 (2007)

32. Inc, M.: On exact solution of Laplace equation with Dirichlet and Neumann boundary condi-
tions by the homotopy analysis method. Phys. Lett., A 365, 412–415 (2007)

33. Cai, W.H.: Nonlinear dynamics of thermal-hydraulic networks. Ph.D. thesis, University of
Notre Dame (2006)

34. Zhang, T.T., Jia, L., Wang, Z.C., Li, X.: The application of homotopy analysis method for
2-dimensional steady slip flow in microchannels. Phys. Lett., A 372, 3223–3227 (2008)

35. Alomari, A.K., Noorani, M.S., Nazar, R.: Adaptation of homotopy analysis method for the
numeric-analytic solution of Chen system. Commun. Nonlinear Sci. Numer. Simul. 4, 2336–
2346 (2009)

36. Rashidi, M.M., Dinarvand, S.: Purely analytic approximate solutions for steady three-
dimensional problem of condensation film on inclined rotating disk by homotopy analysis
method. Nonlinear Anal. B: Real World Appl. 10, 2346–2356 (2009)

37. Odibat, Z., Momani, S., Xu, H.: A reliable algorithm of homotopy analysis method for solving
nonlinear fractional differential equations. Appl. Math. Model. 34, 593–600 (2010)

38. Xinhui, S., Liancun, Z., Xinxin, Z., Jianhong, Y.: Homotopy analysis method for the heat
transfer in a asymmetric porous channel with an expanding or contracting wall. Appl. Math.
Model. 35, 4321–4329 (2011)

39. Van Gorder, R.A., Vajravelu, K.: Analytic and numerical solutions to the Lane-Emden equa-
tion. Phys. Lett., A 372, 6060–6065 (2008)

40. Wang, Q.: The optimal homotopy analysis method for Kawahara equation. Nonlinear Anal.
B: Real World Appl. 12(3), 1555–1561 (2011)

41. Ghotbi, A.R., Bararni, A., Domairry, G., Barari, A.: Investigation of a powerful analytical
method into natural convection boundary layer flow. Commun. Nonlinear Sci. Numer. Simul.
14, 2222–2228 (2009)

42. Ayub, M., Zaman, H., Ahmad, M.: Series solution of hydromagnetic flow and heat transfer
with Hall effect in a second grade fluid over a stretching sheet. Cent. Eur. J. Phys. 8, 135–149
(2010)

43. Vosughi, H., Shivanian, E., Abbasbandy, S.: A new analytical technique to solve Volterra’s
integral equations. Math. Methods Appl. Sci. 10(34), 1243–1253 (2011)

44. Abbasbandy, S., Shivanian, E., Vajravelu, K.: Mathematical properties of �-curve in the frame
work of the homotopy analysis method. Commun. Nonlinear Sci. Numer. Simul. 16, 4268–4275
(2011)


	Unique and multiple PHAM series solutions of a class of nonlinear reactive transport model
	Abstract
	Introduction and problem formulation
	PHAM-unique solution of the model
	PHAM-multiple solutions of the model
	Conclusions
	References



