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Abstract In this paper we design a class of general split-step balanced methods
for solving Itô stochastic differential systems with m-dimensional multiplica-
tive noise, in which the drift or deterministic increment function can be taken
from any chosen one-step ODE solver. We then give an analysis of their order
of strong convergence in a general setting, but for the mean-square stability
analysis, we confine our investigation to a special case in which the drift
increment function of the methods is replaced by the one from the well known
Rosenbrock method. The resulting class of stochastic differential equation
(SDE) solvers will have more appropriate and useful mean-square stability
properties for SDEs with stiffness in their drift and diffusion parts, compared
to some other already reported split-step balanced methods. Finally, numerical
results show the effectiveness of these methods.

Keywords Stochastic differential equations · split-step balanced methods ·
Mean-square stability · Stiff equations

1 Introduction

As we know, many models in physics, economics yield stochastic differential
equations with multiplicative noise. Numerical methods are important tools
for calculating approximation solutions of stochastic differential equations.
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In the recent years many numerical methods for SDEs have been designed,
for example see [10, 14, 16]. One of the important subjects that should be
investigated for numerical methods, consists of inspecting their ability to
preserve qualitative behavior of the solution of the original system that is going
to be approximated. Like the drift coefficient, the diffusion coefficient also
contributes to stiffness of SDEs. We can find several examples of this kind of
equations in physics, for example, hydrology models, the Langevin equations
of chemical physics and the models for laser emission [2, 12, 14]. It is often
necessary to use some implicit methods to overcome this difficulty in the simu-
lation of solution of stochastic stiff differential equations see [14, 17, 18, 20].
But as we know a straightforward formulation of a fully implicit method
faces the problem of being stochastically unstable and divergent [14]. Some
methods were constructed for solving this kind of equations, for example, Tian
and Burrage [20] construct some implicit Taylor methods and Platen [7, 14]
introduced some kind of predictor-corrector methods for solving SDEs in the
weak sense.

In this paper we consider numerical methods for strong solution of Itô
stochastic differential equation

dXt = f (t, Xt)dt +
m∑

j=1

g j(t, Xt)dW j
t , Xt0 = x0, t ∈ [t0, T], (1.1)

where f : [t0, T] × R
d → R

d is drift and g : [t0, T] × R
d → R

d×m with g =
[g1, ..., gm] is the diffusion and W = {Wt : t ≥ 0} is an m-dimensional Wiener
process.

Assume that for some r ∈ N all of the initial moments E(|Xt0 |2r) < ∞.
We also assume that SDE (1.1) satisfies the required conditions of the exis-
tence and uniqueness theorem [14]. For simplicity in this paper we consider
equation (1.1) in autonomous case and numerical methods on the given time
interval [0, T] will be employed with equidistant time discretization points
tn = t0 + nh, n = 0, 1, ..., N with step-size h = T−t0

N , N = 1, 2, ... . Here we shall
use the notation yn to denote the value of the approximation of the exact
solution X at time tn.

Definition 1.1 ([14]) We say a discrete approximation y0, y1, ..., yn (based on
step-size h) converges strongly with order γ > 0 to the solution X = Xt as h →
0 at time tn if there exist constants δ0 > 0 and K > 0 (independent of h), such
that for each h ∈ (0, δ0) we have a mean global error,

E(|Xtn − yn|) ≤ Khγ . (1.2)

In this paper we design and analyze the strong convergence of a class
of general split-step balanced methods for solving Itô stochastic differential
systems with m-dimensional multiplicative noise, in which the drift increment
function can be taken from any classic ODE solver of order of at least one. In
Section 2, first we give an overview on numerical methods for solving ordinary
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differential systems with initial conditions, then a brief review of some previous
split-step balanced methods and some assumptions that must be considered,
will be brought and based on these information we propose this class of split-
step balanced methods. In Section 3 we analyze convergence properties of this
class of methods under Lipschitz conditions and after that in the Section 4 the
mean-square stability properties of them will be investigated along with some
useful illustrations. Finally, in Section 5 numerical experiments are given to
complete our numerical investigation of the proposed methods.

2 A class of general split-step balanced methods

2.1 One-step methods for solving ordinary differential equations

Consider ODE system X ′
t = f (t, Xt) with initial condition Xt0 = X0. The

general form of a one-step method for solving this system with step-size h is
as follows:

Yn+1 = Yn + h�(tn, h, Yn), n = 0, 1, ..., N − 1, (2.1)

with initial value given by Y0 = X0. The function � is called the increment
function of the approximation method (2.1). This method has order p > 0 if
for sufficiently smooth function f ∈ Fp(x0, +∞)

X(tn + h) = X(tn) + h�(tn, h, X(tn)) + O(hp+1), (2.2)

where X(t) represents the exact solution of given ODE [19].

2.2 Balanced implicit methods

As mentioned before, it is often necessary to use some implicit methods in the
simulation of solution of stochastic stiff differential equations. But as we know
a straightforward formulation of a fully implicit method faces the drawback
of being stochastically unstable and divergent [14]. Some research have been
done in this direction, for example, some high-order explicit methods consid-
ered and tried to introduce implicitness there that contains deterministic terms
[17]. Here, we review the significant developments in some implicit methods
for numerically integrating SDEs that have stiffness in both drift and diffusion
parts:

1. Platen et al. in [17] proposed a balanced implicit method on a uniform
mesh over the simulation interval [t0, T] by adding the term Cn(yn −
yn+1) to the simple Euler method, where Cn = c0(tn, yn)h +∑m

j=1 c j(tn, yn)|
�W( j)

n |, �W( j)
n = W( j)

tn+1
− W( j)

tn , c0 and c j, j = 1, ..., m represent d × d matrix
valued functions.
In this method the functions c0 and c j, j = 1, ..., m are called control
functions.
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The control functions must satisfy some conditions that we express them
here as Assumption 1.

Assumption 1 For any sequence of real numbers αi, i = 1, ..., m with α0 ∈
[0, ᾱ], α1 ≥ 0 ,..., αm ≥ 0 and ᾱ ≥ h for all time

M(t, x) := I + α0c0(t, x) +
m∑

j=1

α jc j(t, x),

where I is the d × d identity matrix, has an inverse and satisfies the
condition ‖M(t, x)−1‖ ≤ K < ∞;

2. Alcock and Burrage in [1] have analyzed asymptotic and mean-square
stability for several implementations of the balanced method and have
given a generalized result for the mean-square stability region of any
balanced method that we can also see some similar results here in our
investigation, as will be mentioned whenever needed;

3. Kahl and Schurz in [11] represent a class of linear-implicit methods with
some qualitative improvement on the balanced implicit methods of [6];

4. More recently the modified split-step backward balanced Milstien methods
have been described in [21] for a single noise system under the assumptions
in [17], in which the control function is defined as

Cn = c0(tn, yn)h + c2(tn, yn)
[
(�Wn)

2 − h
]

(2.3)

with c2 > 0 and c0 − c2 > 0.

2.3 Formulation of the new split-step balanced methods

In the following we will suppose that � is the increment function of a one-step
numerical ODE solver of order at least one and the control function

Cn = c0(tn, yn)h +
m∑

j=1

c j(tn, yn)
[(

�W j
n

)2 − h
]
. (2.4)

Now based on the two previous subsections and the selected increment func-
tion, we introduce a class of general split-step balanced numerical methods for
solving the SDE (1.1) as below:

Yn = yn + h�(h, yn, f ) − 1
2

h
m∑

j=1

L jg j(Yn),

yn+1 = Yn +
m∑

j=1

g j(Yn)I( j) + 1
2

m∑

j=1

L jg j(Yn)
[
�W j

n

]2

+
m∑

j1=1

m∑

j2=1
j2 	= j1

L j1 g j2(Yn)I( j1, j2) + Cn (Yn − yn+1) , (2.5)
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with the differential operators

L j =
m∑

k=1

gk
j

∂

∂xk
, (2.6)

for j = 1, ..., m and the stochastic Itô Integrals

I( j) = ∫ tn+1

tn
dW j

s = �W j
n, I( j1, j2) = ∫ tn+1

tn

∫ s1

tn
dW j1

s2 dW j2
s1 .

In the subsequent section we will analyze and investigate the convergence
properties of this kind of methods and show the superiority in accuracy and
stability in other sections.

Remark 2.1 It is obvious that if we consider � = f (t, x), the simple Euler
method, this method for the case m = 1, reduces to the special split-step
backward balanced Milstien introduced in [21].

3 Convergence properties

In this section the strong convergence order of (2.5) is analyzed. Following
two lemmas and a theorem we show that if � is the increment function of a
selected one-step ODE solver of order at least one, then the associated split-
step balanced method defined as (2.5) has order one in strong sense.

Motivated by previous work in this area, we also make the following
assumption on SDE (1.1) see [17, 21].

Assumption 2 The functions f , g j and L j1 g j2 for j, j1, j2 = 1, ..., m in (1.1) and
(2.5), for all x0, y0 ∈ R

d, and all t ∈ [t0, T] satisfy the Lipschitz condition for
constant K > 0 and linear growth bound, as follows:

| f (t, x0) − f (t, y0)| + |g j(t, x0) − g j(t, y0)| + |L j1 g j2(t, x0) − L j1 g j2(t, y0)|
≤ K|x0 − y0|,

| f (t, x0)|2 + |g j(t, x0)|2 + |L j1 g j2(t, x0)|2 ≤ K2(1 + |x0|2).
To prove Theorem 3.4 in this section, we recall the following theorem concern-
ing the order of convergence (see [15]).

Theorem 3.1 Assume for a one-step discrete time approximation y, the local
mean and mean-square errors for all N = 1, 2, ..., and n = 0, 1, ..., N − 1 satisfy
the inequalities

∣∣∣E
[(

yn+1 − y(tn+1)
)∣∣yn = y(tn)

]∣∣∣ ≤ K(1 + |yn|2) 1
2 × hp1, (3.1)

(
E
[(

yn+1 − y(tn+1)
)2∣∣yn = y(tn)

]) 1
2 ≤ K(1 + |yn|2) 1

2 × hp2, (3.2)
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with p2 ≥ 1
2 and p1 ≥ p2 + 1

2 . Then,

(
E
[(

yk − y(tk)
)2∣∣y0 = y(t0)

]) 1
2 ≤ K(1 + |y0|2) 1

2 × hp2− 1
2 , (3.3)

holds for each k = 0, 1, 2, ..., N. Here K is independent of h, but it is dependent
on the length of the time interval T − t0.

In the following, with the help of Theorem 3.1 and Assumptions 1 and 2, we
prove two useful lemmas.

Lemma 3.2 Let yA
k be the numerical approximation to y(tk) at the time T after

k steps with step-size h = T/N for N = 1, 2, ..., that is generated by

Y A
n = yn + hf (yn) − 1

2
h

m∑

j=1

L jg j
(
Y A

n

)
,

yA
n+1 = Y A

n +
m∑

j=1

g j(Y A
n )I( j) + 1

2

m∑

j=1

L jg j
(
Y A

n

) [
�W j

n

]2

+
m∑

j1=1

m∑

j2=1
j2 	= j1

L j1 g j2

(
Y A

n

)
I( j1, j2), (3.4)

then for all k = 0, 1, ..., N we have

(
E
[(

yA
k − y(tk)

)2∣∣y0 = y(t0)
]) 1

2 = O(h).

Proof We try to estimate mean and mean-square errors (3.1) and (3.2), respec-
tively for approximation yA

k . Suppose yn = y(tn) (local analysis assumption)
and consider yM

n+1, local Milstein approximation of y(tn+1), that is defined as
below

yM
n+1 = yn + hf (yn) +

m∑

j=1

g j(yn)I( j) +
m∑

j1=1

m∑

j2=1

L j1 g j2(yn)I( j1, j2),

then we can write
∣∣∣E
[

y(tn+1) − yA
n+1

∣∣yn = y(tn)
]∣∣∣ ≤

∣∣∣E
[

y(tn+1) − yM
n+1

∣∣yn = y(tn)
]∣∣∣

+
∣∣∣E
[

yM
n+1 − yA

n+1

∣∣yn = y(tn)
]∣∣∣

≤ K
(
1 + |yn|2

) 1
2 h2,
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because it is obviously seen that

∣∣E
[
yM

n+1 − yA
n+1

∣∣yn = y(tn)
]∣∣

=
∣∣∣∣∣∣
E

⎡

⎣
m∑

j=1

[
g j(Y A

n ) − g j(yn)
]

I( j)

+
m∑

j1=1

m∑

j2=1

[
L j1 g j2(Y

A
n ) − L j1 g j2(yn)

]
I( j1, j2)

⎤

⎦

∣∣∣∣∣∣
= 0.

Hence the first conclusion of Theorem 3.1 holds for p1 = 2. On the other hand,
because of the Assumptions 1 and 2 we can write

|yM
n+1 − yA

n+1| ≤ K|Y A
n − yn|

⎡

⎣
m∑

j=1

|I( j)| +
m∑

j1=1

m∑

j2=1

|I( j1, j2)|
⎤

⎦ .

Because of Y A
n − yn = hf (yn) − 1

2 h
∑m

j=1 L jg j(Y A
n ), we have |Y A

n − yn|2 =
O(h2). Now because of the inequality

(α1 + ... + αt)
2 ≤ t

(
α2

1 + ... + α2
t

)
(3.5)

for any αi > 0, for i = 1, ..., t, for any integer t > 0 we can write

∣∣yM
n+1 − yA

n+1

∣∣2 ≤ 2K2
∣∣Y A

n − yM
n

∣∣2
⎡

⎢⎣

⎡

⎣
m∑

j=1

∣∣I( j)
∣∣

⎤

⎦
2

+
⎡

⎣
m∑

j1=1

m∑

j2=1

∣∣I( j1, j2)
∣∣

⎤

⎦
2
⎤

⎥⎦

≤ K′ ∣∣Y A
n − yM

n

∣∣2
⎡

⎣
m∑

j=1

I2
( j) +

m∑

j1=1

m∑

j2=1

I2
( j1, j2)

⎤

⎦ , (3.6)

for a constant K′. In the other hand, from Lemma 5.7.2 in [14] we have
E
(
I2
( j)|yn = y(tn)

) ≤ O(h) and E
(
I2
( j1, j2)|yn = y(tn)

) ≤ O(h2), therefore from
(3.6) we have

(
E
[
(yM

n+1 − yA
n+1)

2
∣∣yn = y(tn)

]) 1
2 = O

(
h

3
2

)
,

and based on the second conclusion of Theorem 3.1 the proof is established.

�
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Lemma 3.3 Let yB
k be the numerical approximation of y(tk) at time T after k

steps with step-size h = T/N for N = 1, 2, ..., that is generated by dif ference
equation

Y B
n = yn + h�(h, yn, f ) − 1

2
h

m∑

j=1

L jg j
(
Y B

n

)
,

yB
n+1 = Y B

n +
m∑

j=1

g j(Y B
n )I( j) + 1

2

m∑

j=1

L jg j
(
Y B

n

) [
�W j

n

]2

+
m∑

j1=1

m∑

j2=1
j2 	= j1

L j1 g j2

(
Y B

n

)
I( j1, j2), (3.7)

where � is the increment function of the selected one-step ODE solver as
mentioned before. Then for all k = 0, 1, ..., N we have

(
E
[(

yB
k − y(tk)

)2∣∣y0 = y(t0)
]) 1

2 = O(h).

Proof Similar to Lemma 3.2, we try to estimate mean and mean-square errors
for approximation of yB

k . With assumption yn = y(tn) and the definition of yA
n

we can write

yB
n+1 − yA

n+1 =
(

yn + h�(h, yn, f ) − yn − hf (yn)
)

+
m∑

j=1

[
g j
(
Y B

n

)− g j
(
Y A

n

)]
I( j)

+
m∑

j1=1

m∑

j2=1

[
L j1 g j2

(
Y B

n

)− L j1 g j2

(
Y A

n

)]
I( j1, j2).

Now because yn + h�(h, yn, f ) and yn + hf (yn) are two numerical methods of
order one for ODE system x(t)′ = f (x(t)) with initial condition x(tn) = yn, so

|yn + �(h, yn, f ) − yn − hf (yn)| ≤ O(h2),

see (2.2), then from Lemma 3.2 we have

∣∣∣E
[

y(tn+1) − yB
n+1|yn = y(tn)

]∣∣∣ ≤
∣∣∣E
[

y(tn+1) − yA
n+1|yn = y(tn)

]∣∣∣

+
∣∣∣E
[

yB
n+1 − yA

n+1|yn = y(tn)
]∣∣∣

≤ K(1 + |yn|2) 1
2 h2.
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On the other hand, because of the above results and Assumptions 1 and 2 we
have

∣∣yB
n+1 − yA

n+1

∣∣ ≤ ∣∣O(h2)
∣∣+ K

∣∣Y B
n − Y A

n

∣∣

⎡

⎣
m∑

j=1

∣∣I( j)
∣∣+

m∑

j2=1

m∑

j1=1

|I( j1, j2)|
⎤

⎦ ,

therefore because |Y B
n − Y A

n | ≤ O(h) and inequality (3.5), then we have
∣∣∣E
[∣∣yA

n+1 − yB
n+1

∣∣2 ∣∣yn = y(tn)
]∣∣∣ ≤ O(h3),

that implies |E[|y(tn+1) − yB
n+1|2|yn = y(tn)]|1/2 ≤ O(h3/2), so the proof is

finished. 
�

Theorem 3.4 Let yC
k be the numerical approximation of y(tk) at time T after k

steps with step-size h = T/N for N = 1, 2, ..., that is generated by dif ferential
equation

yC
n+1 = Y B

n +
m∑

j=1

g j
(
Y B

n

)
I( j) + 1

2

m∑

j=1

L jg j
(
Y B

n

) [
�W j

n

]2

+
m∑

j1=1

m∑

j2=1
j2 	= j1

L j1 g j2

(
Y B

n

)
I( j1, j2) + Cn

(
Y B

n − yC
n+1

)
,

where Y B
n is def ined by (3.7) and Cn in (2.4), then for all k = 0, 1, ..., N we have

(
E
[(

yC
k − y(tk)

)2∣∣y0 = y(t0)
]) 1

2 = O(h).

Proof Based on definition of yB
n+1 in (3.7) we can write

yB
n+1 − yC

n+1 =
(

I − (I − Cn)
−1
)
⎛

⎜⎜⎝
m∑

j=1

g j
(
Y B

n

)
I( j) + 1

2

m∑

j=1

L jg j
(
Y B

n

) [
�W j

n

]2

+
m∑

j1=1

m∑

j2=1
j2 	= j1

L j1 g j2

(
Y B

n

)
I( j1, j2)

⎞

⎟⎟⎠

= (I − Cn)
−1 Cn

⎛

⎜⎜⎝
m∑

j=1

g j
(
Y B

n

)
I( j) + 1

2

m∑

j=1

L jg j
(
Y B

n

) [
�W j

n

]2

+
m∑

j1=1

m∑

j2=1
j2 	= j1

L j1 g j2

(
Y B

n

)
I( j1, j2)

⎞

⎟⎟⎠ .
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Now with the help of the symmetry property of the �W j
n in the above expres-

sion we obtain
∣∣∣E
(

yB
n+1 − yC

n+1

∣∣yn = y(tn)
)∣∣∣

=

∣∣∣∣∣∣∣∣
E

⎛

⎜⎜⎝(I+Cn)
−1Cn

⎛

⎜⎜⎝
1
2

m∑

j=1

L jgj
(
Y B

n

)[
�Wj

n

]2+
m∑

j1=1

m∑

j2=1
j2 	= j1

L j1 gj2

(
Y B

n

)
I( j1, j2)

⎞

⎟⎟⎠

∣∣∣∣∣∣∣
yn = y(tn)

⎞

⎟⎟⎠

∣∣∣∣∣∣∣∣

≤ K
(
1 + |Y B

n |2)1/2

⎛

⎜⎜⎝E

⎛

⎝1
2

m∑

j=1

∣∣∣Cn
[
�W j

n

]2∣∣∣

⎞

⎠+E

⎛

⎜⎜⎝
m∑

j1=1

m∑

j2=1
j2 	= j1

∣∣Cn I( j1, j2)
∣∣

⎞

⎟⎟⎠

⎞

⎟⎟⎠≤O(h2),

which K is a constant. The final inequality is established because of the
E(|Cn[�W j

n]2||yn = y(tn)) ≤ O(h2) and E(|Cn I( j1, j2)||yn = y(tn)) ≤ O(h2) for
all j, j1, j2 = 1, ..., m that comes from definition of Cn in (2.4).

On the other hand, for a constant K we have
∣∣∣yB

n+1 − yC
n+1

∣∣∣ ≤ K
(
1 + |Y B

n |2)1/2

×

⎛

⎜⎜⎝
m∑

j=1

∣∣Cn�W j
n

∣∣+ 1
2

m∑

j=1

∣∣∣Cn
[
�W j

n

]2∣∣∣+
m∑

j1=1

m∑

j2=1
j2 	= j1

∣∣Cn I( j1, j2)
∣∣

⎞

⎟⎟⎠ ,

therefore, based on Assumptions 1 and 2 and inequality (3.5) and the above
relation for a constant K′ we have

∣∣∣yB
n+1 − yC

n+1

∣∣∣
2 ≤ K′ (1 + |Y B

n |2)

×

⎛

⎜⎜⎝
m∑

j=1

∣∣Cn�W j
n

∣∣2 + 1
2

m∑

j=1

∣∣∣Cn
[
�W j

n

]2∣∣∣
2 +

m∑

j1=1

m∑

j2=1
j2 	= j1

∣∣Cn I( j1, j2)
∣∣2

⎞

⎟⎟⎠

So, because of the definition of Cn in (2.4) and inequality (3.5) we have
E(|yB

n+1 − yC
n+1|2|yn = y(tn)) ≤ O(h3) that completes the proof. 
�

4 Stability properties

In this section we want to analyze stability properties of the split-step balanced
methods introduced in (2.5). But for the sake of simplicity, we confine our
investigation to a particular case in which the drift increment function is taken
from the Rosenbrock method (6.1) as in the Appendix. In the following, we
consider SDE with a steady state solution Xt ≡ 0 such that f (t, 0) = g(t, 0) = 0
holds, which is called an equilibrium position.
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Definition 4.1 ([14, 16]) The zero solution of (1.1) is said to be

1. Mean-square stable, if for each ε > 0 and t0 ≥ 0 there exists δ = δ(t0, ε) ≥ 0
such that

E(|X(t; X(t0))|2) < ε, t ≥ t0

whenever E(|X(t0)|2) < δ;
2. Asymptotic mean-square stable, if 1. is satisfied and if there exists δ0 =

δ0(t0) such that for all E(|X(t0)|2) < δ0

E(|X(t; X(t0))|2) → 0. f or t → ∞,

In this paper, we will focus on asymptotic mean-square for linear test
equation with multiplicative noise

dXt = λXtdt + μXtdWt, λ, μ ∈ C, (4.1)

with nonrandom initial condition Xt0 = x0 ∈ R\{0}. The exact solution of (4.1)
is given by Xt = x0exp{(λ − 1

2μ2)(t − t0) + μ(Wt − Wt0)} which is asymptoti-
cally mean-square stable if

lim
t→∞ E(|Xt|2) = 0 ⇔ 2�(λ) + |μ|2 < 0, (4.2)

for λ, μ ∈ C, see [9, 14].

Definition 4.2 We say the method is numerically asymptotically mean-
square stable if the numerical solution yn, generated by method satisfies
limn→∞ E(|yn|2) = 0.

We should now find out what conditions must be imposed in order that the
split-step balanced method applied to SDE (4.1), produces numerically stable
solutions. After applying a one-step stochastic numerical method to linear
scalar test equation (4.1), we then obtain with the parametrization x = λh and
y = μ

√
h, [9] a one-step difference equation of the form

Yn+1 = Rn(x, y)Yn =
n∏

i=0

Ri(x, y)Y0, (4.3)

which frequently Rn(x, y) is called stability function of the numerical method.
After calculating E(|yn|2), it is clear that the domain of MS-stability of a
method is subset of C

2 such as RMS = {(x, y) ∈ C
2 : R̂n(x, y) < 1}, where

R̂n(x, y) = E(|Rn(x, y)|2). Since it is not easy to visualize the domains of
stability for λ, μ ∈ C, we restrict our attention to λ, μ ∈ R for presenting the
figures of stability in the x − y plane.

As was mentioned before, we analyze the mean-square stability of the
proposed methods with the increment function from the Rosenbrock classic
ODE solver, see Appendix. We denote the resulting new split-step balanced
methods (2.5) by “RSB”. It is clearly seen from [4] that with this selection of
drift increment function with just two stages, s = 2, in the sense of (2.2), the



152 Numer Algor (2012) 61:141–162

corresponding Rosenbrock ODE solver will have order two which is more
than needed for split-step balanced methods (2.5). Now, if we apply the RSB
methods to the linear test equation (4.1) with λ and μ 	= 0 that satisfy (4.2)
then setting K1(x) = (1 − γ x)−1x and K2(x) = K1(x)

[
1 + (a21 + γ21)K1(x)

]
,

the stage values k1, k2 and the YC
n in the method will be given as:

k1 = K1(x)yn,

k2 = K2(x)yn,

YC
n = 1

1 + 1
2 y2

[
1 + b 1 K1(x) + b 2 K2(x)

]
yn.

Now if we set Y(x, y) = 1
1+ 1

2 y2

[
1 + b 1 K1(x) + b 2 K2(x)

]
, we can obtain the

following difference equation for this class of methods

yn+1 = (1 + Cn)
−1
[

1 + μ�Wn + 1
2
μ2�W2

n + Cn

]
Y(x, y)yn. (4.4)

Set R(x, y, �Wn) = (1 + Cn)
−1
[
1 + μ�Wn + 1

2μ2�W2
n + Cn

]
Y(x, y) then we

have

R2 = (1 + Cn)
−2
[
1 + μ2�W2

n + 1
4
μ4�W4

n + C2
n + 2μ�Wn + μ2�W2

n + 2Cn

+μ3�W3
n + 2μ�WnCn + Cnμ

2�W2
n

]
Y2(x, y),

and after taking the expectation and according to the properties of standard
normal distribution we have

E[R2] = E
[
(1 + Cn)

−2
[
1 + μ2�W2

n + 1
4
μ4�W4

n

+ C2
n + μ2�W2

n + Cnμ
2�W2

n + 2Cn

]]
Y2(x, y),

Then in the terms of x and y this becomes

E[R2] = Y2(x, y) + E
[
(1 + Cn)

−2
[
(2 + Cn)y2z2

n + 1
4

y4z4
n

]]
Y2(x, y), (4.5)

where zn = �Wn√
h

is random variable with standard normal distribution. So the
mean square stability region of the method is

RMS ={(x, y)∈C
2 :Y2(x, y)+E

[
(1+Cn)

−2
[
(2+Cn)y2z2

n+ 1
4

y4z4
n

]]
Y2(x, y)<1}.

(4.6)
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Now, because of the complexity of structural of the E(R2) in the general
case, motivated by [21], in the following we try to investigate the mean-square
stability of RSB methods presented in (2.5) for two special cases.

Remark 4.3 For simplicity in the following two Cases 1 and 2, we choose
b 1 = b 2 = 0.5 and γ = 1 − 1√

2
. We leave a thorough discussion and numerical

testing of any other choices to our subsequent work.

Case 1 Suppose c0 = −λ and c1 = 0, in this case Cn = −x and (4.5) reduces to

f1 = Y(x, y)2 + Y(x, y)2 (2 − x)y2 + 3y4

4

(1 − x)2 . (4.7)

Now in order to have a better visualization of RMS in this case, Fig. 1 gives
the mean-square stability region of RSB method in a special case of (6.2).
The light gray area shows the mean-square stability region of RSB method
and the dark gray area shows the mean-square stability region of the test
equation (4.1). In Fig. 1, it is clear that the mean-square stability region of
RSB method includes the mean-square stability region of the test (4.1).

Remark 4.4 One can see from Fig. 1 that as the step-size h decreases the
mean-square stability region of RSB method appears to have a tendency to
display a similar characteristic as reported in [1], according which the stability
region of our method tends towards the mean-square stability region of the
test equation (4.1).

Fig. 1 Mean-square stability
regions for the test
equation (4.1) (dark gray
area) and RSB method (light
grey area) in the Case 1
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Case 2 Suppose c0 = −λ and c1 = μ2 in this case Cn = −x + y2(z2
n − 1) and

the (4.5) reduces to

f2 = Y(x, y)2 + Y(x, y)2 1√
2π

∫ +∞

−∞

×
[

y2z2
n

1 − x + y2(z2
n − 1)

+
y4z4

4 + y2z2

(
1 − x + y2(z2

n − 1)
)2

]
e−z2

n/2dzn. (4.8)

It seems it is not so simple to find the closed form of f2. Thus we use the Maple
software to compute the integral in (4.8). The integral interval (−∞, +∞) is
approximated by [−10, 10] because of the magnitude of the integrand in (4.8)
becomes sufficiently small when |x| > 10.

Now for the Case 2 we also illustrate the mean-square stability regions of
RSB method and the test equation (4.1). From Fig. 2 it is clearly seen that,
also in this case, the mean-square stability region of RSB method (light gray
area) includes the mean-square stability region of the test equation (4.1) (dark
gray area).

Remark 4.5 In the next section, we also compare the mean-square stability
of the RSB method with a split-step backward balanced Milstein DSSBBM
that was introduced in [21], see Appendix on systems of SDEs. We consider
DSSBBM in [21], because of its relatively good stability properties that has
been reported.

Fig. 2 Mean-square stability
regions for the test
equation (4.1) (dark gray
area) and RSB method (light
grey area) in the Case 2
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Table 1 Means of absolute
errors, Merr, for problem P1
with λ = 2, μ = 0.5, c0 = 0,
c1 = 0, Xt0 = 1

h RSB MSSBM DSSBBM

10−2 4.6 × 10−2 1.9 × 100 2.9 × 100

10−3 4.7 × 10−3 1.8 × 10−1 4.9 × 10−1

10−4 4.9 × 10−4 1.9 × 10−2 1.1 × 10−1

10−5 5.0 × 10−5 1.9 × 10−3 3.8 × 10−2

5 Numerical results

In this section numerical results are reported to illustrate the efficiency and su-
periority of RSB methods which were discussed in previous sections. Denoting
y(i)

N and X(i)(tN) as the numerical solutions and the exact solution at step point
tN in ith simulation, respectively. We use means of absolute errors denoted by
“Merr” defined by

Merr := 1
5000

5000∑

i=1

|X(i)(tN) − y(i)
N |,

to measure accuracy of the RSB method.

Remark 5.1 One of the benefit of RSB methods is that, we have free parame-
ters that can be chosen for getting better results in accuracy and stability. In
these simulations we considered b 2 = 0.7 and γ = 1 − 1√

2
for RSB method.

In the tables of numerical results, to highlight some worst performance of
the compared methods, the errors greater than one will be shown in bold type.

Problem 1 The first problem is a scalar test equation (4.1) that is considered on
I = [0, 2] with initial condition Xt0 = 1. This equation is stiff in deterministic
term, if λ is large and it is stiff in stochastic term, if μ is large. Tables 1, 2, 3,
4 and 5 show the means of absolute errors, Merr, of the RSB and some split-
step balanced methods introduced in [21], see Appendix. In Tables 1 and 2
we compare the means of absolute errors, Merr, of the RSB with some split-
step balanced methods with c0 = c1 = 0 for fixed parameter λ = 2 and μ = 0.5
and more larger μ = 1.4 to show the performance of the method in the case of
more stiffness both in the deterministic and stochastic components.

Table 2 Means of absolute
errors, Merr, for problem P1
with λ = 2, μ = 1.4, c0 = 0,
c1 = 0, Xt0 = 1

h RSB MSSBM DSSBBM

10−2 8.1 × 10−1 2.9 × 100 1.01 × 101

10−3 8.3 × 10−2 1.5 × 10−1 4.5 × 100

10−4 1.1 × 10−2 1.4 × 10−2 9.1 × 10−1

10−5 8.5 × 10−4 1.1 × 10−3 2.8 × 10−1
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Table 3 Means of absolute errors, Merr, for problem P1 with λ = 2, μ = 0.01, c0 = 5, c1 = 4,
Xt0 = 1

h RSB MSSBM MSSBBM MSSBDBM DSSBBM DSSBDBM

10−1 8.3 × 10−1 3.27 × 101 3.3 × 101 4.39 × 101 3.21 × 101 4.51 × 101

10−2 7.6 × 10−2 2.5 × 100 2.5 × 100 1.36 × 101 2.5 × 100 1.36 × 101

10−3 9.7 × 10−3 2.1 × 10−1 2.2 × 10−1 1.8 × 100 2.3 × 10−1 1.63 × 100

10−4 9.8 × 10−4 1.6 × 10−2 1.7 × 10−2 1.7 × 10−1 2.1 × 10−2 2.1 × 10−1

10−5 6.5 × 10−5 3.2 × 10−3 3.6 × 10−3 2.3 × 10−2 2.4 × 10−3 2.2 × 10−3

Table 4 Means of absolute errors, Merr, for problem P1 with λ = 3, μ = 0.01, c0 = 5, c1 = 4,
Xt0 = 1

h RSB MSSBM MSSBBM MSSBDBM DSSBBM DSSBDBM

10−2 5.6 × 10−1 3.85 × 101 3.85 × 101 1.36 × 102 3.85 × 101 3.87 × 101

10−3 7.1 × 10−2 3.61 × 100 3.62 × 100 1.73 × 101 3.6 × 100 3.6 × 100

10−4 7.2 × 10−3 3.6 × 10−1 3.2 × 10−1 1.8 × 100 3.5 × 10−1 3.6 × 10−1

10−5 6.5 × 10−4 3.2 × 10−2 4.6 × 10−2 2.1 × 10−1 3.4 × 10−2 3.5 × 10−2

Table 5 Means of absolute errors, Merr, for problem P1 with λ = 1.5, μ = 1.5, c0 = 1, c1 = 0.1,
Xt0 = 1

h RSB MSSBM MSSBBM MSSBDBM DSSBBM DSSBDBM

10−2 7.1 × 10−1 7.5 × 10−1 1.5 × 100 1.4 × 100 4.5 × 100 4.0 × 100

10−3 8.2 × 10−2 8.2 × 10−2 1.8 × 10−1 1.9 × 10−1 2.1 × 100 2.2 × 100

10−4 8.6 × 10−3 5.6 × 10−3 1.6 × 10−2 1.3 × 10−2 3.7 × 10−1 3.8 × 10−1

10−5 9.9 × 10−5 4.8 × 10−4 1.1 × 10−3 1.2 × 10−3 1.1 × 10−1 1.4 × 10−3

Table 6 Means of absolute
errors, Merr, for problem P2
with α = 1, β = 0.01, T = 2,
c0 = 0, c1 = 0

h RSB MSSBM DSSBBM

2−1 8.4 × 10−5 5.7 × 10−2 5.9 × 10−2

2−2 4.9 × 10−4 2.7 × 10−2 2.9 × 10−2

2−3 1.6 × 10−4 1.2 × 10−2 1.4 × 10−2

2−4 4.4 × 10−5 4.1 × 10−3 6.9 × 10−3

2−5 1.2 × 10−5 2.3 × 10−3 2.9 × 10−3

Table 7 Means of absolute errors, Merr, for problem P2 with α = 1, β = 0.01, T = 2, c0 = 5, c1 =
4 , Xt0 = 0.5

h RSB MSSBM MSSBBM MSSBDBM DSSBBM DSSBDBM

2−1 1.4 × 10−3 5.7 × 10−2 5.6 × 10−2 1.5 × 100 5.2 × 10−2 1.9 × 100

2−2 8.3 × 10−3 2.7 × 10−2 2.5 × 10−2 7.9 × 10−1 2.9 × 10−2 7.7 × 10−1

2−3 2.8 × 10−3 1.2 × 10−2 1.1 × 10−2 2.8 × 10−1 1.3 × 10−2 2.6 × 10−1

2−4 9.4 × 10−4 4.1 × 10−3 3.7 × 10−3 2.5 × 10−1 5.5 × 10−3 2.3 × 10−1

2−5 6.5 × 10−4 2.3 × 10−3 1.6 × 10−3 1.5 × 10−1 2.4 × 10−3 1.2 × 10−1

2−6 4.1 × 10−4 2.1 × 10−3 2.1 × 10−3 6.1 × 10−2 2.1 × 10−3 6.9 × 10−2
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Table 8 Means of absolute
errors, Merr, for problem P2
with α = 1, β = 0.1, T = 1,
c0 = 0, c1 = 0 , Xt0 = 0.5

h RSB MSSBM DSSBBM

2−1 3.4 × 10−3 5.7 × 10−2 5.9 × 10−2

2−2 4.0 × 10−4 3.7 × 10−2 3.9 × 10−2

2−3 2.6 × 10−4 3.6 × 10−2 3.6 × 10−2

2−4 1.2 × 10−4 3.8 × 10−2 3.8 × 10−2

2−5 5.2 × 10−5 4.1 × 10−2 4.9 × 10−2

In the Tables 3 and 4 we compare the Merr of the split-step balanced
methods with c0 = 5 and c1 = 4 for different values of h, for fixed μ = 0.01 and
values of λ = 2 and λ = 3 to show the comparison with more related schemes.

Finally we consider the parameters λ = μ = 1.5 that again make the prob-
lem 1 stiff both in the deterministic component and stochastic component and
demonstrate the results of our method and some more related schemes in
Table 5.

The numerical comparisons reported in the Tables 1–5 are in favor of the
new RSB method, which has a much better results in the sense of accuracy
and advantage of using larger stepsize.

Problem 2 The second equation is a nonlinear SDE in Itô sense as below

dy(t) = −(α + β2 y)(1 − y2)dt + β(1 − y2)dW(t) I = [0, T], y(0) = 0.5.

The exact solution of this equation is given by [14]

y(t) = (1 + y0)exp(−2αt + 2βW(t)) + y0 − 1
(1 + y0)exp(−2αt + 2βW(t)) − y0 + 1

.

This problem, with parameters α = 1 and β = 1, has been considered in [3]
as a stiff test problem for testing some stiff methods.

Tables 6, 7, 8 and 9 give the Means of absolute errors, Merr, of the RSB and
some split-step balanced methods introduced in [21], see Appendix. Tables 6
and 7 show the numerical comparison of the methods for fixed parameters
α = 1 and β = 0.01, but with two sets of control parameters c0 = 0, c1 = 0 and
c0 = 5, c1 = 4, respectively. Tables 8 and 9 compare the methods for fixed
parameter α = 1 and two values β = 0.1 and β = 1, respectively, to show the
effect of an increase in the stiffness of the stochastic parameter.

Table 9 Means of absolute errors, Merr, for problem P2 with α = 1, β = 1, T = 1, c0 = 1, c1 = 0.5,
Xt0 = 0.5

h RSB MSSBM MSSBBM MSSBDBM DSSBBM DSSBDBM

2−1 2.4 × 10−1 4.27 × 102 2.1 × 10−1 5.9 × 10−1 5.6 × 10−1 7.9 × 10−1

2−2 3.0 × 10−1 2.7 × 101 1.5 × 10−1 5.2 × 10−1 5.1 × 10−1 6.7 × 10−1

2−3 9.7 × 10−2 8.2 × 10−2 1. × 10−1 5.1 × 10−1 5.3 × 10−1 6.4 × 10−1

2−4 5.4 × 10−2 2.1 × 10−2 5.7 × 10−2 5.6 × 10−1 5.5 × 10−1 6.1 × 10−1

2−5 3.0 × 10−2 1.3 × 10−2 3.6 × 10−2 5.5 × 10−1 6.4 × 10−1 6.2 × 10−1



158 Numer Algor (2012) 61:141–162

As we can see in Tables 6–8, and particularly noticing the errors in bold type
in Table 9, it is clear that the new RSB method has a much better results in the
sense of accuracy and advantage of using larger stepsize.

Problem 3 Next, we consider a d = 4 dimensional non-linear SDE with non-
commutative noise of m = 2 dimensional driving Wiener process.

d

⎡

⎢⎢⎢⎢⎢⎢⎣

X1
t

X2
t

X3
t

X4
t

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

243
154

X1
t −27

77
X2

t
23
154

X3
t − 65

154
X4

t

27
77

X1
t −243

154
X2

t
65
154

X3
t − 23

154
X4

t

5
154

X1
t − 61

154
X2

t
162
77

X3
t −36

77
X4

t

61
154

X1
t − 5

154
X2

t
36
77

X3
t −162

77
X4

t

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

dt

+1
9

√
(X2

t )2 + (X3
t )2 + 2

23

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
13
1

14
1

13
1

15

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

dW1
t

+1
8

√
(X4

t )2 + (X1
t )2 + 1

11

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
14
1

16
1

16
1

13

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

dW2
t , (5.1)

with initial value X0 = [ 1
8 , 1

8 , 1, 1
8 ]T on [0, T], see [5]. The moments of the

solution can be calculated as E(Xi
T) = 1

8 exp(2T) for i = 1, 2. We calculated
E(X1

T) = 1
8 exp(2T) which is approximated at time T = 1 with step-sizes

2−1, ..., 2−5 and 103 simulated trajectories.

Remark 5.2 The random variables I(i, j) for 1 ≤ i, j ≤ m with i 	= j, are approx-
imated by a series expansion of the so-called Lévy stochastic series, see [13]
and also the Appendix.

As we know, the split-step balanced methods introduced in [21] can only
be applied to systems of SDEs with just one Wiener process. But here we
have shown the application of RSB to systems with a more general setting.
See Table 9 for numerical results in which we have given the absolute errors,
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Table 10 Errors for
approximation of E(X1

T ) for
problem P3 with T = 1,
c0 = 100I, c1 = 5I , c2 = 5I

h RSB Milstein

2−1 7.6 × 10−2 4.7 × 10−1

2−2 1.6 × 10−2 3.1 × 10−1

2−3 4.1 × 10−3 1.8 × 10−1

2−4 8.5 × 10−4 1.1 × 10−1

2−5 1.6 × 10−5 5.7 × 10−2

| 1
1000

∑1000
i=1 X(1)

i,T − 1
8 exp(2T)|, of the RSB and Milstein methods. It is obviously

seen that the new RSB method has a much better results in the sense of
accuracy (Table 10).

Problem 4 Here we consider a system of SDEs with noise intensity parameter
δ and apply the RSB method and also the DSSBBM method, as a sample of
split-step backward balanced Milstein methods, to compare them in the sense
of mean-square stability. Consider the mean-square stable SDE system

dX(t) =
[−1 0

0 −1.5

]
X(t)dt +

[
0.01 δ

δ 0.01

]
X(t)dW(t)

X(0) =
[

1
1

]
. (5.2)

see [7]. We simulated the mean-square of the first component, E(X(1)
t )2 ≈

1
1000

∑1000
i=1 (X(1)

i,t )2, of the exact solution of (5.1) with δ = 0.9, 1, for step-sizes
h > 0.7 , respectively, by RSB and DSSBBM methods (with c0 = 0.4I and
c1 = 0.01I). In this experiment, we have seen the stability of RSB method and
instability of DSSBBM method.

6 Conclusions

In this paper we introduce a class of general split-step balanced methods for
solving Itô stochastic differential systems with m-dimensional multiplicative
noise. The methods of this class are obtained by changing the drift increment
function � which can be taken from any one-step ODE solver of order at
least one. We analyze the strong convergence of the methods in this class
for general drift increment functions. For mean-square stability, to be able
to get more insight into the properties of the resulting split-step methods, we
confine ourselves to the case in which we use the increment function of the well
known one-step method of Rosenbrock. It is shown that this new split-step
balanced method denoted by “RSB” has a large region of stability. Hence as
the numerical results also confirm, this method could be appropriate for many
drift and diffusion stiff SDE systems with m-dimensional multiplicative noise.
We will consider constructing methods with higher strong global convergence
orders and better stability properties in future work.
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Appendix

Rosenbrock methods

As we know the general s stage Rosenbrock methods for solving ODE systems
is as follows:

yn+1 = yn +
s∑

j=1

b jk j,

ki = hf

⎛

⎝yn +
i−1∑

j=1

αijk j

⎞

⎠+ hJ
i∑

j=1

γijk j, i = 1, .., s, (6.1)

where αij, γij, b j are the determining coefficients and J = f ′(yn) [8]. Of special
interest are the methods for which γii = γ for i = 1, .., s so that we need only
one L-U-decomposition per step. The coefficients must be chosen so that the
method becomes convergent of a desired order, for example, for two stage
Rosenbrock method of second order of convergence we can choose

b 1 = 1 − b 2, γ21 = γ

b 2
, α21 = 1

2b 2
(6.2)

with γ and b 2 	= 0 still free. Furthermore, the method is A-stable if γ > 1
4 , and

is L-stable if γ = 1 ± 1√
2
, see [4].

Some split-step backward balanced Milstein methods for stiff stochastic
systems

1. Modified split-step backward Milstein (MSSBM) method

Yn = yn + hf (h, Yn) − 1
2

hg(Yn)g′(Yn),

yn+1 = Yn + �Wng(Yn) + 1
2
�W2

ng(Yn)g′(Yn); (6.3)

2. Drifting split-step backward balanced Milstein (DSSBBM) method

Yn = yn + hf (h, Yn),

yn+1 = Yn + �Wng(Yn) + 1
2
(�W2

n − h)g(Yn)g′(Yn) + Cn(Yn − yn+1).

(6.4)
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3. Modified split-step backward balanced Milstein (MSSBBM) method

Yn = yn + hf (h, Yn) − 1
2

hg(Yn)g′(Yn),

yn+1 = Yn + �Wng(Yn) + 1
2
�W2

ng(Yn)g′(Yn) + Cn(Yn − yn+1). (6.5)

4. Drifting split-step backward double balanced Milstein (DSSBDBM)
method

Yn = yn + hf (h, Yn) + Cn(yn − Yn),

yn+1 = Yn + �Wng(Yn) + 1
2
(�W2

n − h)g(Yn)g′(Yn) + Cn(Yn − yn+1).

(6.6)

5. Modified split-step backward double balanced Milstein (MSSBDBM)
method

Yn = yn + hf (h, Yn) − 1
2

hg(Yn)g′(Yn) + Cn(yn − Yn),

yn+1 = Yn + �Wng(Yn) + 1
2
�W2

ng(Yn)g′(Yn) + Cn(Yn − yn+1), (6.7)

with control function Cn as defined in (2.3), see [21].

Approximation of the I(i, j) by Lévy stochastic series

The authors in [13] have proposed the following simultaneous representation
of the random variables I(i, j): first I(i) ∼ N (0, h), which can be rescaled to√

hξ(i), where ξ(i) ∼ N (0, 1) then

I(i, j) = 1
2
(I(i) I( j) − hδi, j) + Ai, j(h) = h

2
(ξ(i)ξ( j) − δi, j) + Ai, j(h),

Ai, j(h) = h
2π

∞∑

k=1

1
k

{
χi,k(ζ j,k + √

2ξ j) − χ j,k(ζi,k + √
2ξi)
}
.

Here χi,k and ζ j,k are N (0, 1)-distributed independent random variables for
all r = 1, ..., m and k = 1, 2, ..., and δij is the Kronecker delta. For a practical
implementation the infinite sum representing Ai, j(h) has to be truncated after,
say, p terms and denoted the resulting finite sum by Ap

i, j(h), see [13].
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