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Abstract In this paper, a new adaptive nodes technique based on equi-
distribution principles and dimension reduction is presented for irregular
regions in three dimensional cases. The mesh generation is performed by first
producing some adaptive nodes in a cube based on equi-distribution along the
coordinate axes and then transforming the generated nodes to the physical
domain followed by a refinement process. The mesh points produced are
appropriate for meshless-type methods which need only some scattered points
rather than a mesh with some smoothness properties. The effectiveness of the
generated mesh points is examined by a collocation meshless method using a
well known radial basis function, namely φ(r) = r5 which is sufficiently smooth
for our purpose. Some experimental results will be presented to illustrate the
effectiveness of the proposed method.

Keywords Adaptive mesh · Equi-distribution · Collocation meshless
method · Dimension reduction method, Three dimension · Irregular regions

1 Introduction

In the recent years the meshless methods have attracted more attention as
a powerful tool to deal with the partial differential equations (PDEs). The
main advantage of this technique over the mesh dependent methods such as
finite element, finite difference and boundary element method is that they
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do not require a mesh or element to discretize the domain or boundary
which is a difficult task, especially in the three dimensional (3D) problems.
In stead this method needs only some scattered points whose connectivity
are not important. The meshfree methods are often divided into two major
categories: boundary-type (see for example [22, 27]) and domain-type methods
(see for example [12]). This study concerns with a collocation meshless method
which falls into the domain-type category and was first presented by Kansa
[14, 15]. The Kansa’s work was based on interpolating the solution in terms
of radial basis functions (RBFs). This method can be easily applied to the
case of higher dimensional spaces due to the nature of the RBFs (see [28]).
The condition number of RBF interpolation matrix dramatically increases for
the large scale problems. In particular, the size of the 3D problems are essen-
tially large and, consequently, the interpolation matrix in this case becomes
ill-conditioned [16].

Another difficulty concerns their computational complexity, due to the
dense matrices arising from interpolation. To tackle the above difficulties some
sort of localization, such as domain decomposition methods (DDM) [20] and
compactly supported RBFs (CS-RBFs) [6], have been recommended.

To treat ill-conditioning, this paper suggests a new approach based on
reducing the size of the interpolation matrices. As was noted before, in
using the classical RBFs, increasing the size of the problem itself affects the
conditioning. Consequently, any technique which can reduce the number of
nodes would improve the conditioning. In order to achieve this goal a set of
adaptive nodes rather than equally spaced points can be applied. As is well
known, the main idea in adaptive meshes is to use a minimum number of
nodes while keeping a desired accuracy. This is achieved by allocating more
mesh points to the areas where the solution is rapidly varied. The adaptive
mesh strategies often fall into two categories: the equi-distribution principle [9]
and the variational principle [30]. The most popular technique, which has been
widely considered in the literature, is based on the equi-distribution strategy,
which is also employed in this work. In this method the mesh distribution is
carried out in such a way that some measure of error, called a monitor function,
is equalized over each subinterval.

Much effort has been devoted to generating adaptive meshes in two and
three dimensional spaces, based on both equi-distribution and variational
principles (see for example [2, 24, 25]). In the literature two major methods,
namely transformation [7] and dimension reduction [26], have been employed
to produce 2D meshes. The first category is based on mapping the physical
domain into a simple domain with a uniform mesh and it leads to solving
a differential equation in order to obtain an adaptive mesh. In the latter
category, which is also used in this study, the equi-distribution is reduced
to the case of 1D. We previously presented a method in [21] to produce a
set of adaptive nodes in rectangular regions. Recently, a generalization of
this approach to the case of non-rectangular domains was presented in [23].
This was based on transforming the physical domain to a rectangle using the
polar coordinate system and applying the method described in [21]. A more
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generalization of the above methods to the case of 3D has been presented in
[24] to generate adaptive nodes in a cube. The method was based on equi-
distributing along the three coordinate axes. The mesh points produced by
the above method was successfully applied to a collocation meshless method.
However, due to the use of the grid lines in the coordinate directions, this
method was limited to the case of cubic domains.

The purpose of the present work is to extend the above method to more
general cases of 3D domains with irregular boundaries. This is carried out by
employing a suitable transformation which maps the physical domain into a
cube using the spherical coordinates. A set of adaptive points, first, is gener-
ated in the cube using the method presented in [24] and, then, it is mapped
into the physical domain. The mesh points produced in the main domain are
not smoothly distributed due to the nature of the spherical transformation and
need some refining process.

We remark that constructing monitor functions for different applications
is a line of research which is widely seen in the literature [3, 4, 8, 18]. For
example, some optimal monitors for piecewise polynomial interpolation have
been derived in [4, 8]. In addition, some monitors suitable for linear reaction
diffusion two-point boundary value problem have been presented in [18].
While the former monitors depend on the derivative of the solution, the
latter ones are constructed based on the finite differences of the solution. The
present work is not concerned with giving a special monitor for the underlying
method. We employ some well known monitors including the arc-length
and those presented in [4, 8] to examine the effectiveness of the adaptation
method. Our used monitors depend on the derivatives of the solution function,
however, they are approximated by a finite difference formula.

This paper is organized as follows. The concept of adaptive mesh in 1D and
3D is reviewed in Section 2. In Section 3 the new mesh generation technique
is presented. A collocation meshless method will be reviewed in Section 4.
Finally, some numerical results are presented in Section 5.

2 Adaptive mesh

We first introduce the concept of equi-distribution in the 1D case.

Definition 1 (Equi-distributing) Let M be a non-negative piecewise continu-
ous function on [a, b ] and c be a constant such that n = 1

c

∫ b
a M(x)dx is an

integer. The mesh

� : a = x0 < x1 < · · · < xn = b ,

is called equi-distributing (e.d.) on [a, b ] with respect to M and c if
∫ x j+1

x j

M(x)dx = c, j = 0, 1, · · · , n − 1.
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A suitable algorithm to produce an e.d. mesh has been given in [17]. In
Definition 1 the function M, often called a monitor, depends on the solution
of the PDE and its derivatives. The arc-length monitor

M =
√

1 + u2
x , (1)

which is also employed in this work, has been widely used, as a general
monitor, in the literature (see for example [1, 29]). The function u in (1) is the
solution function of the underlying PDE, x is the coordinate in the direction of
which the adaptivity is performed, and ux is the partial derivative with respect
to x.

Much effort has been devoted to finding monitor functions suitable for
different applications. Good examples can be found in [4, 8]. Carey and
Dinh considered the interpolation by a kth degree piecewise polynomial and
obtained the following monitor based on minimization of the Hm-seminorm of
the local truncation error [4]

M = [u(k+1)]2/[2(k+1−m)+1].

For instance, the choice of m = 1 in the case of a quadratic polynomial (k = 2)
gives the monitor M = (u

′′
)2/5.

Chen generalized the above work by employing a Sobolev (l1, l2)-seminorm
and obtained the Monitor (see [8]).

M =
⎧
⎨

⎩

l2∑

r=l1

[
uk+r+1−l1)

]2

⎫
⎬

⎭

1/[2(k+1−l1)+1]

.

For example, this monitor, in the case of a quadratic polynomial with the
choice of l1 = 0 and l2 = 2, leads to the monitor

M =
[
u

′′′2 + u
′′′′2 + u

′′′′′2
]1/7

.

In Section 5, we will employ these monitors to test our proposed adaptation
method. To find more details about the monitors see for example [3, 5, 18].

2.1 3D equi-distribution

A natural extension of Definition 1 to the case of 3D is as follows,

Definition 2 (3D Equi-distributing) Given a 3D domain �, an adaptive mesh
based on equi-distributing will be a mesh obtained by dividing the domain �

into n subdomains �i such that
∫ ∫ ∫

�i

M(x, y, z)dxdydz = constant,

where M is a suitable monitor function.
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Obviously an infinite number of adaptive meshes based on Definition 2
exist, though obtaining even one of these meshes is a very difficult task. Below
we review a method previously presented to produce adaptive nodes in a cubic
domain [24]. This approach was base on dimension reduction, i.e. reducing the
adaptive process to the 1D case, as performed for the 2D case in [21].

We start with a uniform mesh in a cube in the form

{(x, y, z)| a1 ≤ x ≤ b 1, a2 ≤ y ≤ b 2, a3 ≤ z ≤ b 3} .

We perform the equi-distribution process in four stages. The first three stages
are the same as those in the 2D case, as suggested in [21]. In the first stage,
equi-distribution is performed in the direction of the x-axis (Fig. 1a). In the
second stage the equi-distribution is performed in the vertical direction along
the grid lines produced in the first stage. Since the grid lines are curved, the
equi-distribution is performed along the arc rather than the vertical coordinate
(Fig. 1b). A similar procedure is performed in the third stage along the
horizontal grid curves, with the monitor in the x coordinate direction again
(Fig. 1c).

Fig. 1 The four stages of adapting mesh are displayed in (a), (b), (c) and (d), respectively
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The mesh resulting from the above procedure in each plane z = zk forms
quadrilaterals whose sides equi-distribute the grid lines in the two coordinate
directions (see Fig. 1c).

In the final stage, the equi-distribution is performed with respect to the third
coordinate, i.e. equi-distributing along the grid curves, roughly parallel to the
z-axis using the monitor function Mz(x, y, z). This stage of equi-distribution
is illustrated by a simple case in Fig. 1d showing three planes and four grid
curves.

The above process results in a 3D mesh containing hexahedrons whose
edges form 1D e.d. meshes along the grid curves in the three coordinate
directions (see Fig. 1d). To find more details see [24]. In the next Section we
apply this method to the case of non-cubic domains.

3 Adapting mesh in an irregular region

Let �p be a physical domain in �3 bounded by � whose parametric equations
are given by

� : x = g1(θ, φ), y = g2(θ, φ), z = g3(θ, φ),

0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π,

(2)

where θ and φ are the angular components in the spherical coordinate system.
We introduce a suitable mapping to transform �p to a cubic domain. In order
to do this, we use the cube

�c = {(ρ, θ, φ) : 0 ≤ ρ ≤ 1, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π} , (3)

in the cartesian coordinate system ρθφ and employ a transformation

ψ : �c → �p (4)

defined by

x = ρg1(θ, φ), y = ρg2(θ, φ), z = ρg3(θ, φ). (5)

The above mapping transforms each point (ρ, θ, φ) ∈ �c to a unique point
(x, y, z) ∈ �p under some restrictions on the mesh points. In this transfor-
mation ρ = 1 corresponds to the boundary � and for any 0 < ρ̄ < 1, ρ = ρ̄

corresponds to a closed surface in xyz coordinate system. Therefore, any
subregion

�ci = {(ρ, θ, φ) : 0 < ρ1 ≤ ρ ≤ ρ2 ≤ 1, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π},
in �c is mapped into a subdomain �pi which is a region enclosed by two closed
surfaces ρ = ρ1 and ρ = ρ2 in �p.
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The main idea in this study is, first, prepare a uniform mesh

0 = θ0 < θ1 < θ2 < . . . < θn−1 = 2π − hθ ,

hφ = φ0 < φ1 < . . . < φm−1 = π − hφ ,

hρ = ρ1 < ρ2 < . . . < ρk−1 < ρk = 1 , (6)

where

hθ = 2π

n
, θ j = jhθ , j = 0, 1, . . . , n − 1 ,

hφ = π

m
, φi = (i + 1)hφ , i = 0, 1, . . . , m − 1 ,

hρ = 1
k

, ρl = lhρ , l = 1, 2, . . . , k , (7)

in the cube defined by (3) and then make the grid mesh adaptive in the cube
using the method described in Section 2. It should be noted that the points
θ = 2π, φ = 0, π, and ρ = 0 are excluded from the uniform mesh points (6)
in order to have a one to one corresponding between �c and �p. Finally,
the adaptive nodes produced in �c are mapped into the physical region �p.
However, the mesh points transformed into �p will be clustered in some parts
of the domain due to the nature of the spherical coordinate system (see Fig. 2).
This issue is treated by a refinement process similar to that presented in [23] for
two dimensional cases. For this purpose we first present a method to produce
some roughly uniform mesh points in �p using a refinement process. Of course
there are easier ways to produce a uniform mesh, but, the proposed method
will be combined with the adapting process later.

Fig. 2 The uniform mesh in �c and the corresponding mesh points in �p are displayed in (a) and
(b), respectively, in the case of a spherical domain
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3.1 A uniform mesh in the physical domain

We propose a process to generate some uniform mesh points in the physical
domain �p. We start with a uniform mesh in the cartesian coordinate system
ρθφ (Fig. 2a). Acting the transformation (4) on the uniform mesh, some new
points (x, y, z) in �p are produced as displayed in Fig 2b. Similar to the two
dimensional case, the new mesh points are not uniformly distributed due to the
fact that the same number of nodes are distributed on the concentric surfaces
with different area and this make the nodes cluster in some parts, especially,
when the coordinate ρ becomes too small.

Constructing a uniform mesh in �p requires a refining process which is
more complicated than that in the 2D case (see [23]). Here, in addition to
the refinement applied in the 2D case, two more refinements are proposed to
modify the number of nodes on each surface. Below we present a three-stage
refinement in order to obtain a uniform mesh in �p.

Suppose that the uniform mesh in �c is given by (6) and the coordinates of
the points are denoted by

{(
ρijk, θijk, φijk

) : i = 0, 1, . . . , nθ , j = 0, 1, . . . , nφ, k = 1, . . . , nρ

}
, (8)

and the corresponding points in the xyz system are indicated by (xijk, yijk, zijk).

Stage 1 The first stage of refinement is to find a suitable number of nodes on
each closed surface ρ = ρk. This can be accomplished by determining
an approximate value of the area for each surface ρ = ρk and choos-
ing the number of nodes based on the area evaluated. In order to do
so, we approximate the area of the kth surface by the area of a sphere
whose radius is equal to the average values of the position vector, i.e.

Rk =
∑nθ

i=0
∑nφ

j=0 Rij

(nθ + 1)
(
nφ + 1

) , k = 1, . . . , nρ,

where

Rij =
√

x2
ijk + y2

ijk + z2
ijk.

A suitable number of nodes on ρ = ρk, therefore, can be given by

nρ(k) = s(k)

s
(
nρ

) × M, (9)

where s(k) is the area of the sphere associated with the kth surface
and M is the number of nodes on the boundary and will be deter-
mined based on the next stages of the refinement.

Stage 2 This stage involves a refinement of the nodes associated with the
coordinate φ. As can be seen in Fig. 3, by decreasing the coordinate
ρ, the curves associated with φ j’s become closer. This causes the grid
points cluster for small values of ρ. Thus, an appropriate partition of
the coordinate φ for each surface ρ = ρk, k = 1, · · · , nρ, is required.
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Fig. 3 The distance between the curves corresponding to φ j’s are closer for smaller values of ρ

In order to do so for a surface ρ = ρk, we first evaluate an average
length of the curves formed by the φ j’s over the variation of θ . More
precisely, for θ = θi the length of such a curve can be evaluated by
(see Fig. 4)

l′i =
nφ−1∑

j=0

l′′ij , i = 0, 1, . . . , nθ ,

where

l′′ij =
√(

xi, j+1,k − xi, j,k
)2 + (

yi, j+1,k − yi, j,k
)2 + (

zi, j+1,k − zi, j,k
)2

.

An average measure of these curves are given by

l(k) =
(

nθ∑

i=0

l′i

)

/(nθ + 1). (10)

Fig. 4 The arc-length of the
curves associated with θi’s
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It is quite reasonable that nφ(k), the number of partitions for φ on
ρ = ρk to be proportional to the length derived in (10), that is

nφ(k) = l(k)

l
(
nρ

) × (
nφ + 1

)
. (11)

So far, for each surface ρ = ρk, we have obtained a total num-
ber of nodes suitably selected and an appropriate mesh size for
coordinate φ.

Stage 3 The last stage aims to select a suitable partition for the coordinate
θ . More precisely, nθ ( j, k), the number of steps along the θ axes for
k = 1, · · · , nρ , j = 0, · · · , nφ(k) is determined. As seen in Fig. 5, for
a surface ρ = ρk the same number of nodes are distributed on the
curves associated with φ j’s. This again causes the mesh points cluster
when the perimeter of the curves becomes small. In order to find a
suitable number nθ ( j, k), we consider the uniform mesh in �c with
the revised number of nφ(k) in stage 2. The perimeter of the curves
φ j’s can be used for this purpose (see Fig. 5). Let p( j, k) represents
the perimeter of the jth curve on the kth surface, then we have

p( j, k) =
nθ −1∑

i=0

lijk, j = 0, 1, . . . , nφ(k),

where

lijk =
√(

xi+1 jk − xijk
)2 + (

yi+1 jk − yijk
)2 + (

zi+1 jk − zijk
)2

,

i = 0, 1, . . . , nθ − 1.

Now let p0 denotes the maximum values of the perimeters and N is
the number of the steps along the curve associated with p0, then a
reasonable value for nθ ( j, k) is a number which satisfies

nθ ( j, k)

N
= p( j, k)

p0
or nθ ( j, k) = N.

p( j, k)

p0
, j = 0, 1, . . . , nφ(k).

(12)

Fig. 5 The curves associated
with φ j’s
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On the other hand, the values of nθ ( j, k) must satisfy

nφ(k)∑

j=0

nθ ( j, k) = nρ(k), (13)

where nρ(k) previously evaluated in (9) is the total number of nodes
on ρ = ρk. Substituting (12) in (13) yields

N
p0

nφ(k)∑

j=0

p( j, k) = nρ(k) or N = nρ(k) × p0
∑nφ(k)

j=0 p( j, k)
. (14)

Therefore, having obtained the value of N, nθ ( j, k) can be provided
by applying (12). However, N itself depends on nρ(k), the total
number of nodes on the kth surface, and (9) states that this number
is dependent on M, the total number of nodes on the boundary,
which is still unknown. In practice, M can be constructed through
the refinement process. We propose the following algorithm in order
to produce the uniform mesh points:

Algorithm 1 Constructing a uniform mesh
For given values of nθ , nφ and nρ

1. nθ ( j, nρ), j = 1, · · · , nφ , the appropriate number of divisions of θ for each
curve associated with φ j, on the boundary are determined using (12) for
k = nρ in stage 3. Note that N = nθ . Having obtained the nθ ( j, nρ), M, the
total number of points on the boundary, can be derived by

M =
nφ∑

j=0

nθ ( j, nρ).

2. Having obtained M, nρ(k), k = 1, · · · , nρ − 1, can be calculated using (9).
3. Having obtained nρ(k), for each surface k, k = 1, · · · , nρ − 1, the suitable

partition of φ, nφ(k), can be evaluated using (11).
4. Having prepared nρ(k) and nφ(k), k = 1, · · · , nρ − 1, nθ (k, j) for j =

1, · · · , nφ(k) can be derived using (12).

A set of roughly uniform mesh points obtained from Fig. 2 after
refinement is displayed in Fig. 6.

3.2 Adapting the nodes

We now describe the adapting method. We start with the uniform mesh (8)
in �c where �c is the cube introduced in (3). First, an adaptive mesh is made
in the cube employing the technique presented in Section 2.1 and then the
mesh points produced are transformed into the physical domain �p using
the mapping (4). A set of adaptive nodes in an ellipsoid for the solution
function u = x2 + y2 + z2 is shown in Fig. 7. As depicted in the figure, the
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Fig. 6 A set of roughly uniform mesh points obtained from the nodes in Fig. 2 after refinement

mesh points are clustered in some parts of the domain. This is due to the
issue highlighted in Section 3. In order to have some adaptive nodes smoothly
distributed, the adapting method needs to be combined with the refinement
process described in Section 3.1 for constructing a uniform mesh. In fact the
same number of divisions, nρ(k), nφ(k) and nθ ( j, k) obtained in Section 3.1
are suitable for this purpose. The key point to our proposed method is to
distribute an appropriate number of adaptive nodes a long the grid curves
produced in the adapting method (see Fig. 1). More precisely, for each surface
ρ = ρk, k = 1, · · · , nρ , which has been resulted from the initial plane ρ = ρk

Fig. 7 A set of adaptive nodes produced by the new method without refinement in �c and �p are
displayed, respectively in (a) and (b)
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Fig. 8 The adaptive nodes after refining the φ partition

based on the adapting method, nφ(k) adaptive nodes are distributed along
the associated grid curves formed by the four stages of the adapting methods
(Fig. 8). The final refinement is related to the partition of the coordinate θ

based on the appropriate number nθ ( j, k). To this end, for k = 1, · · · , nρ and
j = 0, · · · , nφ(k), nθ ( j, k) adaptive nodes are distributed along the respective
grid curves constructed by the four stages of the method and the above
refinement of the φ partition (Fig. 9).

Another example of the adaptive points produced by the new method is
given in Fig. 10 for two solution functions u = e4−x2−y2−z2

and u = ex2+y2+z2
in

an ellipsoid. As expected, for the former case, the mesh points are more dense

Fig. 9 The adaptive nodes after the final refinement
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Fig. 10 Adaptive nodes
produced for the solution
functions u = e4−x2−y2−z2

and u = ex2+y2+z2
in an

ellipsoid are displayed,
respectively, in (a) and (b)

around the center and, for the latter case, the nodes are more dense close to
the boundary.

4 Collocation meshless method

In this Section we first introduce the RBFs and then describe their application
to the numerical solution of PDEs based on the collocation method.

4.1 Radial basis functions

RBFs are known as the natural extensions of splines to multi-variate interpo-
lation. Suppose the set of points

{xi ∈ �|i = 1, 2, · · · , N} ,

is given, where � is a bounded domain in Rn. The radial function ϕ : � −→ R
is used to construct the approximate function

s(x) =
N∑

k=1

αkϕ(‖x − xk‖),

which interpolates an unknown function f whose values at {xi}N
i=1 are known.

‖.‖ represents the Euclidean norm. The unknown coefficients αk are deter-
mined such that the following N interpolation conditions are satisfied,

f (xi) = s(xi) =
N∑

k=1

αkϕ(‖xi − xk‖), i = 1, · · · , N.

There is a large class of interpolating RBFs [19] that can be used in mesh-
less methods. These include the linear 1 + r, the polynomial Pk(r), the thin
plate spline (TPS) r2 log r, the Gaussian exp(−r2/β2), and the multi-quadrics√

β2 + r2 (with β a constant parameter) [13]. In this paper we shall mainly use
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the RBF r5 which is a particular case of r2k+1 (k=2), known as the generalized
linear RBF. The theoretical discussion of this RBF has been given in [10].

4.2 Collocation method

We describe the collocation method for a general case of PDEs in the form

Lu = F, (15)

where L = [L1, · · · , LN]T represents a vector of linear operations and F =
[ f1, · · · , fN]T denotes a vector containing the right hand sides of the equations.
For instance, Poisson’s equation with a Dirichlet boundary condition

u = f, in �,

u = g, on ∂�,

is a very simple case of (15) where L = [, I]T , F = [ f, g]T and the operators
 and I act on the domain � and the boundary ∂� respectively.
The collocation method is simply to express the unknown function u in terms
of the RBFs as

u(x) =
N∑

k=1

αkϕ(‖x − xk‖), (16)

and determine the unknowns αk in such a way that (16) satisfies (15) for all
interpolation points. Substituting (16) in (15) and imposing the N essential
conditions of the collocation method lead to a linear system of equations whose
coefficient matrix consists of N row blocks, the entries of which are of the form

Aμ

ij = Lμϕ(‖x − x j‖)|x=xi , i = 1, · · · , Nμ, j = 1, · · · , N,

where Nμ indicates the number of nodes associated with the operator Lμ

(see [11]).

4.3 Implementation

We now discuss the practical aspects of the adaptive nodes method in connec-
tion with the meshless method. The first point is how the monitor function is
evaluated? We explain the process for the case of the arc-length monitor. In
order to equi-distribute the mesh points in the three coordinate directions, θ ,
φ and ρ, the monitors

Mθ =
√

1 + u2
θ , Mφ =

√
1 + u2

φ, Mρ =
√

1 + u2
ρ,

are required where

uθ = ∂u
∂x

dx
dθ

+ ∂u
∂y

dy
dθ

+ ∂u
∂z

dz
dθ

, uφ = ∂u
∂x

dx
dφ

+ ∂u
∂y

dy
dφ

+ ∂u
∂z

dz
dφ

,

uρ = ∂u
∂x

dx
dρ

+ ∂u
∂y

dy
dρ

+ ∂u
∂z

dz
dρ

.
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In the above expressions, we approximate the partial derivatives of u by
the symmetric three-point finite difference formula using a primary solution
obtained by a set of uniformly distributed points. The other derivative terms
can be exactly obtained using (5).

The application of the adaptation method to the meshless method is sum-
marized in the following algorithm.

Algorithm 2 Adaptive meshless method
For a given PDE and a domain �p with boundary � determined by (2),

1. Get the values nθ , nφ and nρ .
2. Produce a uniform mesh in �p and apply the collocation meshless method

to obtain a primary approximate solution.
3. Produce a uniform mesh in the cube �c in the cartesian system ρθφ using

nθ , nφ and nρ as the numbers of points in each coordinate direction.
4. For k = 1, · · · , nρ − 1, evaluate nρ(k) and nφ(k) by Algorithm 1.
5. For k = 1, · · · , nρ − 1, evaluate nθ (k, j), j = 1, · · · , nφ(k) by

Algorithm 1.
6. Use the solution of step 2 to approximate the derivatives at the nodal

points and evaluate the monitor function at these points.
7. Start with the uniform mesh of step 3 and use the four-stage algorithm of

Section 2.1 to obtain the adaptive mesh and the grid curves generated in
the adaptation process.

8. For each surface ρ = ρk, k = 1, · · · , nρ , distribute nφ(k) adaptive nodes
along the associated grid curves derived in step 7.

9. For k = 1, · · · , nρ and j = 0, · · · , nφ(k), distribute nθ ( j, k) adaptive nodes
along the respective grid curves associated with θ .

10. Transform the mesh points produced in steps 8 and 9 into �p using
mapping (4) and obtain the final adaptive nodes.

11. Apply the collocation meshless method to the underlying PDE using the
nodes generated in step 10.

5 Numerical results

We now solve some PDEs by the collocation meshless method to show the
effectiveness of the new mesh generation approach. In each case, a PDE is
considered with (i) some equally spaced nodes and (ii) adaptive nodes and
the numerical errors are compared. As previously noted, φ(r) = r5 is used as
a basis function. In each example, M test points, which do not coincide with
the interpolation nodes, are randomly selected and a root mean square (RMS)
error at these points is evaluated by

RMS error =
√√
√
√

M∑

i=1

(
uapr,i − uex,i

)2
/M,
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where uapr,i and uex,i denote the approximate and exact values of u, respec-
tively, at a test point i.

We consider the Poisson equation

u = f (x, y, z) in �,

u(x, y, z) = g(x, y, z) on ∂�,
(17)

for three different cases with various solutions and regions.

Example 1

f (x, y, z) = 6, g(x, y, z) = x2 + y2 + z2,

� is a region bounded by the ellipsoid 16x2 + 4y2 + 16/9z2 = 1. The exact
solution for the above equation is given by u(x, y, z) = x2 + y2 + z2.

Example 2

f (x, y, z) = 6ex2+y2+z2 + 4
(
x2 + y2 + z2

)
ex2+y2+z2

g(x, y, z) = ex2+y2+z2

and the boundary is given by the parametric equations:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x = 1
4 sin(φ) cos(θ)

y = 1
2 sin(φ) sin(θ)

z = 3
4 cos(φ)

The exact solution in this case is given by u(x, y, z) = ex2+y2+z2
.

Example 3 As the last example, we consider (17) in a sphere in the case of

g(x, y, z) = sech
(
50

(
(x − 0.5)2 + (y − 0.5)2 + (z − 0.5)2 − 0.32)) ,

and the function f (x, y, z) is determined such that the function

u(x, y, z) = sech
(
50

(
(x − 0.5)2 + (y − 0.5)2 + (z − 0.5)2 − 0.32)) ,

is the exact solution.

The mesh points generated by the new method for the above solutions of
Examples 1, 2 and 3 are, respectively, displayed in Figs. 9b, 11 and 12. As
observed in Fig. 9b, more mesh points have been allocated to the area where
the solution function has more variation. A similar situation is observed in
Fig. 11 for solution of Example 2. The solution of Example 3 has a large
variation across the sphere (x − 0.5)2 + (y − 0.5)2 + (z − 0.5)2 = 0.32. This can
be observed in the produced adaptive nodes in which the mesh points are dense
around the above sphere.
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Fig. 11 Adaptive nodes
produced for the solution of
Example 2

The collocation meshless method was applied to the above equation using
the adaptive nodes generated in three cases: (I) Arc-length monitor, (II)
M = (u

′′
)2/5 and (III) M = [u′′′2 + u

′′′′2 + u
′′′′′2]1/7 referred to as Monitor 1,

Monitor 2 and Monitor 3, respectively, in the Tables. The error values for
Examples 1 and 2 are listed in Tables 1 and 2, respectively for various number
of nodes, n and different monitors. In most cases, the results demonstrate a
considerable improvement in the accuracy. In particular, for Example 1, the
error in the case of using 436 adaptive nodes is less than that in the case
of using 1360 uniform mesh points. We also observe that the most accurate
solution is obtained in the case of using an arc-length monitor. Moreover,
Monitor 3 generally acts better than Monitor 2. In particular, in the case of

Fig. 12 Adaptive nodes
produced for the solution of
Example 3
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Table 1 Error values for Example 1

nθ , nφ, nρ 21,14,4 23,15,5 24,16,5 26,17,6 30,20,7 32,22,7 33,23,7 34,23,8
n 288 384 436 590 934 1,126 1,202 1,360

Uniform 9.34E-5 7.19E-5 5.47E-5 1.95E-5 7.81E-6 5.80E-6 4.07E-6 2.381E-6
Monitor 1 2.05E-6 5.21E-6 1.77E-6 2.53E-7 4.71E-7 2.24E-7 1.90E-7 5.05E-8
Monitor 2 8.43E-6 8.25E-6 4.47E-6 2.00E-6 1.47E-6 1.07E-6 1.15E-6 3.54E-7
Monitor 3 9.36E-6 1.27E-6 2.25E-6 1.05E-6 1.32E-6 3.87E-7 3.13E-7 2.26E-7

Example 2, whose solution has a much larger variation than that of Example
1, the accuracy, in the case of Monitor 2 is even less than that in the case of
equally spaced nodes.

The error values for Example 3 in the case of using the arc-length monitor is
given in Table 3 for various number of nodes, n. The solution of this example
has a significantly larger variation than those of the previous examples. This
seriously affects the accuracy in the cases of both uniform and the adaptive
nodes. However, the adaptation method demonstrates some improvement in
the results.

5.1 A general irregular region

In Section 3, we assumed analytical equations for the boundary, in order to
explain the transformation used in the adaptation process. Here we propose
a linear piecewise interpolation to approximate the functions gi(θ, φ), i =
1, 2, 3 in (2) for a general case of an irregular domain. Let {(x j, y j, z j)| j =
1, 2, · · · , N}, be a set of points distributed on the boundary. Using these points,
we construct a set of triangular elements covering whole the boundary. Let
(x1, y1, z1), (x2, y2, z2) and (x3, y3, z3) be the vertexes of an element. Using the
relations between the spherical and cartesian coordinates, we find the spherical
coordinates of these points. Suppose that (θ1, φ1, ρ1), (θ2, φ2, ρ2) and (θ3, φ3, ρ3)

are the spherical coordinates corresponding to the above three points. Now the
function x = g1(θ, φ) is a surface in the cartesian coordinate (θ, φ, x) which can
be approximated in the triangle by a linear piecewise interpolation x = φ1x1 +
φ2x2 + φ3x3, where φi, i = 1, 2, 3 are the appropriate basis functions used in
the classical finite element. Other functions, y = g2(θ, φ) and z = g3(θ, φ) can
be approximated in a similar way.

Table 2 Error values for
Example 2

nθ , nφ, nρ 31,14,4 32,14,5 35,16,5 45,21,7
n 420 500 628 1,372

Uniform 8.65E-4 7.96E-4 4.73E-4 1.47E-4
Monitor 1 3.24E-4 6.37E-5 3.38E-5 9.77E-6
Monitor 2 4.07E-2 4.13E-2 4.12E-2 4.13E-2
Monitor 3 3.42E-4 9.67E-5 4.01E-5 9.78E-6



102 Numer Algor (2012) 61:83–103

Table 3 Error values for
Example 3

nθ , nφ, nρ 16-10-3 17-11-4 18-11-4
n 126 172 180

Uniform 7.41E-1 7.59E-1 6.89E-1
Adaptive 8.23E-1 4.97E-2 4.36E-2

6 Conclusion

An adaptive nodes method based on an equi-distribution property was de-
veloped for irregular domains in the case of 3D. The method was based on
transforming the physical domain to a cube and generating some adaptive
nodes in the cube using dimension reduction and equi-distributing principle.
The adapting process in the cube was accomplished by equi-distributing along
the grid curves in the three coordinate directions using a previous work.
The adaptive nodes produced was transformed into the physical domain. The
proposed method offers a set of 3D scattered points suitable for the meshless-
type methods in which the connectivity of the points is not used and the
smoothness of the mesh is not required.

The new method was examined by considering some Poisson equations
solved by a collocation meshless method and the results demonstrated consid-
erable reduction in the error values. Since the current work was not involved
with constructing a monitor for the underlying method, some well known
monitors were employed to produce the adaptive nodes and the best accuracy
was achieved in the case of using the arc-length monitor. Of course, using
a suitable monitor for the underlying method could have resulted in more
improvement in the numerical results.

In addition to improving the computational efficiency, the proposed method
can be a treatment for ill-conditioning of the RBFs due to the fact that it
reduces the total number of the nodes. Moreover, applying the new adaptive
nodes technique to the methods such as domain decomposition and locally sup-
ported RBFs, previously suggested to treat ill-conditioning, is recommended
and left for a future work.

The new method was implemented for regions whose boundary was given
by parametric equations in terms of spherical coordinates. This method can
be also applied to more general cases. We suggested a linear piecewise
interpolation, in terms of some scattered points on the boundary, to make a
set of parametric equations.
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