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Abstract Collocation with quadratic C1-splines for a singularly perturbed
reaction-diffusion problem in one dimension is studied. A modified Shishkin
mesh is used to resolve the layers. The resulting method is shown to be almost
second order accurate in the maximum norm, uniformly in the perturbation
parameter. Furthermore, a posteriori error bounds are derived for the colloca-
tion method on arbitrary meshes. These bounds are used to drive an adaptive
mesh moving algorithm. Numerical results are presented.
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1 Introduction

Consider the reaction-diffusion problem of finding u ∈ C2(0, 1) ∩ C[0, 1]
such that

Lu := −ε2u′′ + ru = f in (0, 1), u(0) = γ0, u(1) = γ1, (1)

where ε ∈ (0, 1] and r ≥ �2 on [0, 1] with some constant � > 0. This is a difficult
problem because standard numerical methods fail to capture layers – regions in
the vicinity of x = 0 and x = 1 where the solution of (1) changes rapidly when
the perturbation parameter ε tends to zero. As a consequence the performance
of these methods deteriorate when ε → 0.

The ultimate goal for numerical methods applied to (1) is uniform conver-
gence or robustness with regard to the perturbation parameter. Indicating by
sub- and superscripts that the solution of (1) and its approximation depend on
the perturbation parameter and on the number N of degrees of freedom, the
numerical approximation is said to be uniformly convergent of order p > 0 in
the norm ‖ · ‖∗ if there exist a constant C and an integer N0 which are both
independent of ε such that

∥
∥uε − uN

ε

∥
∥∗ ≤ CN−p for all N ≥ N0.

Our norm of choice is the supremum norm ‖ · ‖∞. Special procedures have
been devised predominantly in the area of finite differences or finite elements.
For a survey, we refer the reader to recent monographs [14, 19] and earlier
books [6, 16] and references therein. One possible approach—which we shall
also pursue in the present paper is the use of layer-adapted meshes. These
are designed to resolve the layers present in the solution of (1). Most of the
literature is devoted to difference schemes and various types of FEMs, while
there are only very few publications on collocation methods. This motivates
our interest in the subject.

Collocation methods with polynomial trial functions play a very important
role in the context of spectral methods. Section 9.7 of Funaro’s monograph [7]
is dedicated to the application of these methods to problems with boundary
layers. For problem (1), polynomials of degree p ≈ ε−1 must be used to resolve
the layers satisfactorily.

A general theory for spline-collocation methods applied to classical, not sin-
gularly perturbed, boundary-value problems was derived in [5]. An immediate
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application of those results to (1) yields error bounds with “constants” that
tend to infinity when ε → 0.

The initial goal of our investigation was to extend the general theory
from [5] to spline-collocation on arbitrary layer-adapted meshes for the
reaction-diffusion problem (1). However, so far we have managed to analyse
quadratic C1-splines on a special modified Shishkin mesh [22] only. Collo-
cation with C1-splines of arbitrary order as well as transition to convection-
diffusion problems present an open task.

In recent years the groups of Kadalbajoo and of Rao have extensively pub-
lished on collocation methods for a number of singularly perturbed problems,
including (1). Here we mention [8] and [18] only. Unfortunately all these
papers are flawed by various mistakes in the analysis.

The only reliable paper we are aware of that studies quadratic C1-spline
collocation for (1) on a layer-adapted mesh is [21]. Therein the authors use a
nodal basis to represent the collocation spline with the value at the mesh points
as degrees of freedom. The method is interpreted as a difference scheme. This
in turn is analysed on a Shishkin mesh using truncation-error and stability
arguments. The maximum error in the mesh points is shown to be uniformly
bounded by CN−2 ln2 N with a constant independent of ε.

In the present paper a B-spline basis is used instead and results in a
completely different convergence analysis compared to [21]. It may have the
potential of being extended to C1-spline collocation with piece-wise poly-
nomial of arbitrary degree. However, some stability issues remain open. A
posteriori error bounds for the collocation method will also be given. We
shall illustrate how these can be used to design an adaptive algorithm that
automatically adapts to the structure of the solution.

For the analog of (1) posed on a rectangle, we expect that the a priori
analysis can be extended to biquadratic C1-splines on tensor-product modified
Shishkin meshes. Also, a posteriori estimates can possibly be derived along the
lines of [11]. However, details need to be checked. This is ongoing work.

The paper is organised as follows. First, in Section 2 properties of the
differential operator L and of the solution u of (1) are quoted from the
literature. Based on this information the construction of the layer-adapted
mesh from [22] will be explained. Section 3 is concerned with interpolation-
error bounds. The main results of the paper, Theorems 4 and 5, are presented
in Section 4. Finally, Section 5 contains results of numerical experiments in
order to illustrate our theoretical findings.

Notation Throughout, C will denote a generic positive constant that is in-
dependent of the perturbation parameter ε and of the number N of degrees
of freedom. For any set D ⊂ [0, 1] and any function v defined on D we set
‖v‖∞,D := supx∈D |v(x)|. If D = [0, 1] then we drop D from the notation.
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2 Properties of the exact solution and adapted meshes

2.1 The Green’s function

Stability of a differential operator is best characterised by its Green’s function.
Let G be the Green’s function associated with the operator L in (1). With its
help any function v ∈ W1,∞(0, 1) with v(0) = v(1) = 0 can be represented as

v(x) =
∫ 1

0
G(x, ξ) (Lv) (ξ) dξ. (2)

For G and its derivatives we have the following (weighted) L1-norm esti-
mates [14, Th. 3.31]

‖rG(x, ·)‖1 ≤ 1,
∥
∥Gξ (x, ·)∥∥1 ≤ (�ε)−1 and

∥
∥Gξξ (x, ·)∥∥1 ≤ 2ε−2; (3)

with ‖v‖1 := ∫ 1
0 |v|. These bounds will be used in Section 4.3 to derive a

posteriori error estimates for the collocation method.

2.2 Derivative bounds

For any a priori error analysis, bounds on the derivatives of the exact solution
are required. These are provided by the following Lemma, see [14, Th. 3.35]

Lemma 1 Let r, f ∈ C4[0, 1]. Then
∣
∣u(k)(x)

∣
∣ ≤ C

{

1 + ε−ke−�x/ε + ε−ke−�(1−x)/ε
}

, for x ∈ (0, 1), k = 0, . . . , 4.

Furthermore, the solution can be decomposed as u = v + w0 + w1. For k =
0, . . . , 4, the regular solution component v satisf ies

∥
∥v(k)

∥
∥∞ ≤ C, while for the

layer parts w0 and w1 we have
∣
∣
∣w

(k)
0 (x)

∣
∣
∣ ≤ Cε−ke−�x/ε,

∣
∣
∣w

(k)
1 (x)

∣
∣
∣ ≤ Cε−ke−�(1−x)/ε, x ∈ [0, 1].

2.3 Layer-adapted meshes

The solution changes rapidly near x = 0 and x = 1. Hence, the mesh has to
be refined there. Various meshes have been proposed in the literature. Most
frequently analysed are the exponentially graded mesh of Bakhvalov [1] and
the piecewise uniform mesh of Shishkin [16, 20].

Here we shall use the smoothed Shishkin mesh proposed by Vulanović [22].
It is constructed as follows. Let N + 1 be the number of mesh points. Let q ∈
(0, 1/2) and σ > 0 be mesh parameters. Define the Shishkin-mesh transition
point by

λ := min
{

σε

�
ln N, q

}

.
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Remark 1 For the mere sake of simplicity in the representation, we assume,
that λ = σε�−1 ln N. Otherwise, the method can be analysed in a classical way.
We shall also assume that qN is an integer. This is easily achieved, for example,
by choosing q = 1/4 and N divisible by 4.

The mesh � : x0 < x1 < · · · < xN is generated by xi = ϕ(i/N) with the mesh
generating function

ϕ(t) :=

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λ

q
t t ∈ [0, q],

p(t − q)3 + λ

q
t t ∈ [q, 1/2],

1 − ϕ(1 − t) t ∈ [1/2, 1],

where p is chosen such that ϕ(1/2) = 1/2, i.e., p = 1
2

(

1 − λ
q

) ( 1
2 − q

)−3
. Note,

that ϕ ∈ C1[0, 1] with
∥
∥ϕ′∥∥∞,

∥
∥ϕ′′∥∥∞ ≤ C. Therefore, the mesh sizes hi = xi −

xi−1, i = 1, . . . , N satisfy

hi =
∫ i/N

(i−1)/N
ϕ′(t) dt ≤ CN−1 and

|hi+1 − hi| =
∣
∣
∣
∣

∫ i/N

(i−1)/N

∫ t+1/N

t
ϕ′′(s) ds dt

∣
∣
∣
∣
≤ CN−2. (4)

Also, for i = 1, . . . , N,

hi ≥ N−1 min
t∈[0,1]

∣
∣ϕ′(t)

∣
∣ = λ

qN
= σε

q�

ln N
N

.

Hence,

ε

hi
≤ q�

σ

N
ln N

. (5)

These properties and the explicit control we have over the transition point are
essential in our a priori error analysis.

In Section 5 we shall consider the original Shishkin mesh and the Bakhvalov
mesh too. The former is generated with the mesh generating function

ϕS(t) :=

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

λ

q
t t ∈ [0, q],
q − λ

q(1 − 2q)
(t − q) + λ

q
t t ∈ [q, 1/2],

1 − ϕS(1 − t) t ∈ [1/2, 1],
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while the Bakhvalov mesh [1] is generated with

ϕB(t) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

χ(t) := σε

�
ln

q
q − t

t ∈ [0, τ ],
π(t) := χ(τ) + χ ′(τ )(t − τ) t ∈ [τ, 1/2],
1 − ϕB(1 − t) t ∈ [1/2, 1],

where the point τ satisfies (1 − 2τ)χ ′(τ ) = (1 − 2χ(τ)). Geometrically this
means that (τ, χ(τ)) is the contact point of the tangent π to χ that passes
through the point (1/2, 1/2).

Remark 2 Both the standard Shishkin mesh and the Bakhvalov mesh do not
satisfy |hi+1 − hi| ≤ CN−2. This inequality is violated where the meshes change
from fine to coarse. Because of this our analysis does not extend to these
meshes.

3 The interpolation error

In this section we study the interpolation error for piecewise quadratic splines.
Let the mesh intervals be denoted by Ji := [xi−1, xi]. Their midpoints are
xi−1/2 := (xi−1 + xi) /2 = xi−1 + hi/2, i = 1, . . . , N. For, m,  ∈ N, m < , let

Sm
 (�) := {

s ∈ Cm[0, 1] : s|Ji ∈ �, for i = 1, . . . , N
}

and Sm
,0(�) := {

s ∈ Sm
 (�) : s(0) = s(1) = 0

}

, where � is the space of polyno-
mials of highest degree .

3.1 S0
2 -interpolation

Given an arbitrary function g ∈ C0[0, 1], consider the interpolation problem of
finding I0

2 g ∈ S0
2 (�) with

(

I0
2 g

)

i = gi, i = 0, . . . , N, and
(

I0
2 g

)

i−1/2 = gi−1/2, i = 1, . . . , N, (6)

where here and throughout we use di = d(xi) and di−1/2 = d(xi−1/2) to denote
the values of d ∈ C0[0, 1] in the mesh points and in the midpoints of the mesh
intervals.

Theorem 1 Assume r, f ∈ C4[0, 1]. Then the interpolation error I0
2u − u for the

solution of (1) on a smoothed Shishkin mesh with σ ≥ 3 satisf ies

∥
∥u − I0

2u
∥
∥∞ ≤ CN−3 ln3 N and ε2 max

i=1,...,N

∣
∣
∣

(

u − I0
2u

)′′
i−1/2

∣
∣
∣ ≤ CN−2 ln2 N.
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Proof First, use the Lagrange representation of the interpolation polynomial
and Taylor expansions to verify that, for any g ∈ C4[0, 1], the interpolation
error on each mesh interval satisfies

∥
∥g − I0

2 g
∥
∥∞,Ji

≤ h3
i

24

∥
∥g′′′∥∥∞,Ji

,

∣
∣
∣

(

g − I0
2 g

)′′
i−1/2

∣
∣
∣ ≤ h2

i

48

∥
∥g(4)

∥
∥∞,Ji

, (7a)

and

∥
∥g − I0

2 g
∥
∥∞,Ji

≤ 5
4

‖g‖∞,Ji
,

∣
∣
∣

(

g − I0
2 g

)′′
i−1/2

∣
∣
∣ ≤ 2

∥
∥g′′∥∥∞,Ji

. (7b)

Recalling the solution decomposition of Lemma 1, we split the error in a
similar manner as

u − I0
2u = (

v − I0
2v

) + (

w0 − I0
2w0

) + (

w1 − I0
2w1

)

,

because of the linearity of I0
2 . The terms on the right-hand side will be bounded

separately.
For the regular solution component v, (7a), (4) and Lemma 1 yield

∥
∥v − I0

2v
∥
∥∞ ≤ CN−3 and max

i=1,...,N

∣
∣
∣

(

v − I0
2v

)′′
i−1/2

∣
∣
∣ ≤ CN−2.

For the boundary layer w0 the arguments splits. On [0, λ], the local mesh
size is hi = CεN−1 ln N. Thus,

∥
∥w0− I0

2w0
∥
∥∞,[0,λ] ≤CN−3 ln3 N and ε2 max

i=1,...,qN

∣
∣
∣

(

w0− I0
2w0

)′′
i−1/2

∣
∣
∣≤CN−2 ln2 N,

by (7a) and Lemma 1. On [λ, 1], use (7b) and the exponential decay of w0. We
obtain
∥
∥w0 − I0

2w0
∥
∥∞,[λ,1] ≤ CN−σ and ε2 max

i=qN+1,...,N

∣
∣
∣

(

w0 − I0
2w0

)′′
i−1/2

∣
∣
∣ ≤ CN−σ .

Similar estimates are obtained for w1 − I0
2w1.

Finally, application of a triangle inequality completes the proof. �

Lemma 2 Let s ∈ S0
2 (�) with si−1/2 = 0, i = 1, . . . , N. Then

‖s‖∞,Ji
≤ max {|si−1| , |si|} and

∥
∥s′′∥∥∞,Ji

≤ 8
h2

i

max {|si−1| , |si|} , i = 1, . . . , N.

Proof Clearly,

s(x) = 2
x − xi−1/2

h2
i

[

si−1(x − xi) + si(x − xi−1)
]

, x ∈ Ji.

Hence, |s(x)| ≤ max {|si−1| , |si|} 2h−1
i

∣
∣x − xi−1/2

∣
∣ and s′′(x) = 4h−2

i (si−1 + si).
The proposition of the lemma follows. �
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3.2 S1
2 -interpolation

Given an arbitrary function g ∈ C0[0, 1], consider the interpolation problem of
finding I1

2 g ∈ S1
2 (�) with

(

I1
2 g

)

0 = g0,
(

I1
2 g

)

i−1/2 = gi−1/2, i = 1, . . . , N,
(

I1
2 g

)

N = gN. (8)

For any s ∈ S1
2 (�), we have [9, 15]

[Ms]i := aisi−1 + 3si + cisi+1 = 4aisi−1/2 + 4cisi+1/2, i = 1, . . . , N − 1 (9)

with ai := hi+1/ (hi + hi+1) and ci := 1 − ai = hi/ (hi + hi+1).

Lemma 3 For all vectors s ∈ R
N+1 with s0 = sN = 0, there holds

max
i=1,...,N−1

|si| ≤ 1
2

max
i=1,...,N−1

|[Ms]i| .

Proof Let k ∈ argmaxi=1,...,N−1 |si|. Then 3sk = [Ms]k − aksk−1 − cksk+1. A tri-
angle inequality implies 3 |sk| ≤ |[Ms]k| + (ak + ck) |sk| = |[Ms]k| + |sk|. The
proposition of the lemma follows. �

Theorem 2 Assume r, f ∈ C4[0, 1]. Then the interpolation error for the solution
u of (1) on a smoothed Shishkin mesh with σ ≥ 4 satisf ies

max
i=0,...,N

∣
∣
(

u − I1
2u

)

i

∣
∣ ≤ CN−4 ln4 N, (10a)

∥
∥u − I1

2u
∥
∥∞ ≤ CN−3 ln3 N, (10b)

ε2 max
i=1,...,N

∣
∣
∣

(

u − I1
2u

)′′
i−1/2

∣
∣
∣ ≤ CN−2 ln2 N. (10c)

Remark 3 The first bound (10a) constitutes a superconvergence result because
the interpolation error in the mesh nodes is one order smaller than the inter-
polation error on the whole domain, compare (10b). For classical problems
without layers this property is well known even for biquadratic interpolation,
see [9, Theorem 5.5] and [3]. Similar superconvergence properties are not
observed in the collocation method.

Proof of Theorem 2

(i) First, for an arbitrary g ∈ C4[0, 1], the interpolation error satisfies
(

g − I1
2 g

)

0 = (

g − I1
2 g

)

N = 0 and
[

M
(

g − I1
2 g

)]

i = aigi−1 − 4aigi−1/2 + 3gi − 4cigi+1/2

+ cigi+1 =: τg,i, i = 1, . . . , N, (11)

which follows from (8) and (9). Taylor expansions yield
∣
∣τg,i

∣
∣ ≤ 8 ‖g‖∞,[xi−1,xi+1] (12a)
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and

∣
∣τg,i

∣
∣ ≤ 1

12
hihi+1 |hi+1 − hi|

∣
∣g′′′

i

∣
∣ + 5

96
max {hi, hi+1}4 ∥

∥g(4)
∥
∥∞,[xi−1,xi+1] .

(12b)

Again, we decompose the interpolation error:

u − I1
2u = (

v − I1
2v

) + (

w0 − I1
2w0

) + (

w1 − I1
2w1

)

.

The three error components are analysed separately.
Lemma 1, (4) and (12b) give

∣
∣τv,i

∣
∣ ≤ CN−4. Then Lemma 3 implies

∣
∣
(

v − I1
2v

)

i

∣
∣ ≤ CN−4, i = 1, . . . , N.

For the layer component, the argument splits. First, for i < qN,
hi = hi+1 = CεN−1 ln N. Therefore,

∣
∣τw0,i

∣
∣ ≤ CN−4 ln4 N, by (12b) and

Lemma 1. For i ≥ qN, we use the exponential decay of w0 and (12a):

∣
∣τw0,i

∣
∣ ≤ C exp

(

−�(λ − hqN)

ε

)

≤ CN−σ Nσ/(qN) ≤ CN−4.

Consequently,
∣
∣τw0,i

∣
∣ ≤ CN−4 ln4 N, i = 1, . . . , N, and Lemma 3 yields

∣
∣
(

w0 − I1
2w0

)

i

∣
∣ ≤ CN−4 ln4 N, i = 1, . . . , N. The same bound is obtained

for
∣
∣w1 − I1

2w1
∣
∣. Then the use of a triangle inequality establishes (10a).

(ii) A triangle inequality gives
∥
∥u − I1

2u
∥
∥∞ ≤ ∥

∥u − I0
2u

∥
∥∞ + ∥

∥I0
2u − I1

2u
∥
∥∞

≤ ∥
∥u − I0

2u
∥
∥∞ + max

i=0,...,N

∣
∣
(

u − I1
2u

)

i

∣
∣ ,

by Lemma 2 and because
(

I0
2u

)

i = ui, i = 0, . . . , N. Now, Theorem 1
and (10a) imply (10b).

(iii) Again starting from a triangle inequality, we verify (10c):
∣
∣
∣

(

u − I1
2u

)′′
i−1/2

∣
∣
∣ ≤

∣
∣
∣

(

u − I0
2u

)′′
i−1/2

∣
∣
∣ +

∣
∣
∣

(

I0
2u − I1

2u
)′′

i−1/2

∣
∣
∣

≤
∣
∣
∣

(

u − I0
2u

)′′
i−1/2

∣
∣
∣ + 8

h2
i

max
i=0,...,N

∣
∣
(

u − I1
2u

)

i

∣
∣ ,

by Lemma 2 and because
(

I0
2u

)

i = ui, i = 0, . . . , N. Then, Theorem 1,
(10a) and (5) give (10c). �

4 The collocation method

We shall discretise (1) by seeking a spline in S1
2 (�) that satisfies the boundary

conditions and the differential equation (1) in certain points. For problems
that are not singularly perturbed, it is well known that the best choice for
collocation with quadratic C1-splines are the midpoints of the partition, see [5].
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Let � be an arbitrary partition of [0, 1]. Our discretisation is: Find u� ∈
S1

2 (�) such that

u�,0 = γ0, (Lu�)i−1/2 = fi−1/2, i = 1, . . . , N, u�,N = γ1. (13)

Let {ϕi}N+1
i=0 be the B-spline basis in S1

2 (�), see Appendix A. Then we may
represent u� as

u� :=
N+1
∑

k=0

αkϕk,

where the αk are determined by collocation. A careful calculation shows
that (13) is equivalent to

α0 = γ0, [Lα]i−1/2 = fi−1/2, i = 1, . . . , N, αN+1 = γ1 (14)

with α := (α0, . . . , αN+1)
T ∈ R

N+2 and

[Lα]i−1/2 := − ε2
[

2(αi+1 − αi)

hi(hi + hi+1)
− 2(αi − αi−1)

hi(hi−1 + hi)

]

+ ri−1/2
[

q+
i αi+1 + (

1 − q+
i − q−

i

)

αi + q−
i αi−1

]

, i = 1, . . . , N,

q+
i := hi

4(hi + hi+1)
and q−

i := hi

4(hi + hi−1)
,

where we have formally set h0 = hN+1 = 0.

4.1 Stability

The operator L is not inverse monotone. Nonetheless, we can establish its
maximum-norm stability.

Theorem 3 Assume, there exists a constant κ > 0 such that

max {hi+1, hi−1} ≥ κhi, i = 2, . . . , N − 1, h1 ≥ κh2, and hN ≥ κhN−1.

(15)

Then the operator L is maximum-norm stable with

‖γ ‖∞ := max
i=1,...,N

|γi| ≤ 2(1 + κ)

κ
max

i=1,...,N

∣
∣
∣
∣
∣

[

Lγ
]

i−1/2

ri−1/2

∣
∣
∣
∣
∣

≤ 2(1 + κ)

κ�2
‖Lγ ‖∞ for all γ ∈ R

N+2
0 ,

where R
N+2
0 := {

v ∈ R
N+2 : v0 = vN+1 = 0

}

.

Proof Set mi−1/2 := ri−1/2
(

1 − q+
i − q−

i

)

, i = 1, . . . , N. Note that q+
i , q−

i ∈
(0, 1/4), i = 1, . . . , N. Therefore mi > 0, i = 1, . . . , N.
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For arbitrary vectors γ ∈ R
N+2
0 , define the operator � by

[

�γ
]

i−1/2 := − ε2

mi−1/2

(
2(γi+1 − γi)

hi(hi + hi+1)
− 2(γi − γi−1)

hi(hi−1 + hi)

)

+ γi, i = 1, . . . , N.

Because of the positivity of all mi, � is well defined. After eliminating γ0 and
γN+1 which are both zero, � is a square matrix whose offdiagonal entries are
all non-positive and its row sums are at least 1. Therefore, the M-criterion [17]
implies

∥
∥�−1

∥
∥∞ ≤ 1.

Next, note that

[

�γ
]

i−1/2 =
[

Lγ
]

i−1/2 − ri−1/2
(

q+
i γi+1 + q−

i γi−1
)

mi−1/2
, i = 1, . . . , N.

Thus,

‖γ ‖∞ ≤ max
i=1,...,N

∣
∣
∣
∣
∣

[

Lγ
]

i−1/2

mi−1/2

∣
∣
∣
∣
∣
+ max

i=1,...,N

ri−1/2
(

q+
i + q−

i

)

mi−1/2
‖γ ‖∞ , (16)

because
∥
∥�−1

∥
∥∞ ≤ 1.

Then, by (15),

max
i=1,...,N

ri−1/2
(

q+
i + q−

i

)

mi−1/2
≤ 2 + κ

2 + 3κ
for i = 1, . . . , N, (17a)

and

1
mi−1/2

≤ 4(1 + κ)

ri−1/2(2 + 3κ)
for i = 1, . . . , N. (17b)

Inequalities (16) and (17) yield

‖γ ‖∞ ≤ 4(1 + κ)

2 + 3κ
max

i=1,...,N

∣
∣
∣
∣
∣

[

Lγ
]

i−1/2

ri−1/2

∣
∣
∣
∣
∣
+ 2 + κ

2 + 3κ
‖γ ‖∞ .

The proposition of the theorem follows. �

Remark 4 The smoothed Shishkin mesh satisfies (15) with κ = 1.

Remark 5 Numerical experiments on randomly generated meshes indicate
that

‖γ ‖∞ ≤ 3 max
i=1,...,N

∣
∣
∣
∣
∣

[

Lγ
]

i−1/2

ri−1/2

∣
∣
∣
∣
∣

for all γ ∈ R
N+2
0 ,

without any restrictions on the mesh. However, we have not been able to prove
this sharper result.
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4.2 Maximum-norm a priori error bound

Theorem 4 Let u be the solution of (1) and u� its approximation by the
collocation method on a smoothed Shishkin mesh with σ ≥ 4. Then

‖u − u�‖∞ ≤ CN−2 ln2 N.

Proof The interpolant I1
2u of u can be represented by means of the B-spline

basis as I1
2u = ∑N+1

k=0 βkϕk. Clearly, α − β ∈ R
N+2
0 and

[L (α − β)]i−1/2 = L
(

u� − I1
2u

)

i−1/2 = ε2 (

I1
2u − u

)′′
i−1/2 , i = 1, . . . , N.

Theorems 2 and 3 yield ‖α − β‖∞ ≤ CN−2 ln2 N. Next, note that ϕk ≥ 0 and
∑N+1

k=0 ϕk = 1. Therefore,
∥
∥I1

2u − u�

∥
∥∞ ≤ ‖α − β‖∞. Theorem 2 and a triangle

inequality complete the proof. �

Remark 6 Theorem 4 should be compared with similar results for central
differencing and piecewise linear Galerkin-FEM, see [14]. All three methods
are uniformly convergent of (almost) second-order on layer-adapted meshes.
All three approaches generate tridiagonal systems. Therefore they give (ap-
proximately) the same accuracy with identical computational costs. Amongst
these methods collocation is the least well understood.

4.3 Maximum-norm a posteriori error bounds

Theorem 5 Let u be the solution of (1) and u� its approximation by the
collocation method on an arbitrary mesh �. Then

‖u − u�‖∞ ≤ η(ru� − f, �)

with η(q, �) = ηI(q, �) + η3(q, �) + η4(q, �),

ηI(q, �) :=
∥
∥
∥
∥

I0
2q − q

r

∥
∥
∥
∥∞

,

η3(q, �) := 2
�2 max

i=1,...,N

[

max
{|qi − qi−1/2|, |qi−1/2 − qi−1|

}

min
{

1,
hi�

4ε

}]

and

η4(q, �) := max
i=1,...,N

|qi−1 − 2qi−1/2 + qi|
4�2 .

Remark 7 The term ηI captures the data oscillations and inevitably requires
sampling of r and f . In view of the collocation condition (13), we have
ru� − f ≈ ε2u′′

�. Therefore, η3 and η4 involve discrete third and fourth order
derivatives of u�.

Remark 8 A posteriori error bounds for central differencing and P1-FEM
were derived in [10] and [13], resp. In contrast to Theorem 5, these error
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bounds involve discrete derivatives of order three (central differencing) and
of order two (FEM) only.

Proof of Theorem 5 Let q := ru� − f . For a fixed x ∈ (0, 1), the error of the
method can be written as

(u − u�) (x) =
∫ 1

0
G(x, ξ) (L(u − u�)) (ξ) dξ =

∫ 1

0
G(x, ξ) ( f − Lu�) (ξ) dξ,

(18)

by (2). In view of (13), we have

N
∑

i=1

( f − Lu�)i−1/2

∫

Ji

G(x, ξ) dξ = 0.

Subtracting the last equation from (18) and employing that u′′
� ≡ u′′

�,i−1/2 on Ji,
we obtain

(u − u�) (x) =
N

∑

i=1

∫

Ji

G(x, ξ)
[

qi−1/2 − q(ξ)
]

dξ.

Clearly,

(u − u�) (x) =
∫ 1

0

(

I0
2q − q

)

(ξ)G(x, ξ) dξ

+
N

∑

i=1

∫

Ji

G(x, ξ)
[

qi−1/2 − (

I0
2q

)

(ξ)
]

dξ.

A direct calculation gives
(

I0
2q

)

(ξ) − qi−1/2 = (ξ − xi−1/2)Ri(ξ), ξ ∈ Ji, with

Ri(ξ) = qi − qi−1

hi
+ 2

(

ξ − xi−1/2
) qi−1 − 2qi−1/2 + qi

h2
i

.

Then, using (3) and a triangle inequality, we get

|(u − u�) (x)| ≤
∥
∥
∥
∥

I0
2q − q

r

∥
∥
∥
∥∞

+
N

∑

i=1

∣
∣
∣
∣

∫

Ji

G(x, ξ)(ξ − xi−1/2)Ri(ξ) dξ

∣
∣
∣
∣
. (19)

Next we derive two bounds for the summands in (19). First, a Hölder
inequality gives

∣
∣
∣
∣

∫

Ji

G(x, ξ)(ξ − xi−1/2)Ri(ξ) dξ

∣
∣
∣
∣
≤ hi

2
‖Ri‖∞,Ji

∫

Ji

G(x, ξ) dξ. (20)

Second, note that

ξ − xi−1/2 = d
dξ

[
(ξ − xi−1/2)

2

2
− h2

i

8

]

.
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Integration by parts yields
∫

Ji

G(x, ξ)(ξ − xi−1/2)Ri(ξ) dξ

=
∫

Ji

[
h2

i

8
− (ξ − xi−1/2)

2

2

]
(

Gξ (x, ξ)Ri(ξ) + G(x, ξ)R′
i(ξ)

)

dξ.

Again, using a Hölder inequality, we obtain the alternative bound
∣
∣
∣
∣

∫

Ji

G(x, ξ)(ξ − xi−1/2)Ri(ξ) dξ

∣
∣
∣
∣

≤ hi

8

{

‖Ri‖∞,Ji

∫

Ji

∣
∣Gξ (x, ξ)

∣
∣ dξ + ∥

∥R′
i

∥
∥∞,Ji

∫

Ji

G(x, ξ) dξ

}

. (21)

Combine (20) and (21):
∣
∣
∣
∣

∫

Ji

G(x, ξ)(ξ − xi−1/2)Ri(ξ) dξ

∣
∣
∣
∣

≤ hi

2
‖Ri‖∞,Ji

min
{

1,
hi�

4ε

}{∫

Ji

G(x, ξ) dξ + ε

�

∫

Ji

∣
∣Gξ (x, ξ)

∣
∣ dξ

}

+ ∥
∥R′

i

∥
∥∞,Ji

∫

Ji

G(x, ξ) dξ.

Summing for i = 1, . . . , N, we have bounded the sum in (19). Then, a discrete
Hölder inequality and (3) yield

|(u − u�) (x)| ≤
∥
∥
∥
∥

I0
2q − q

r

∥
∥
∥
∥∞

+ 2
�2 max

i=1,...,N

hi

2
‖Ri‖∞,Ji

min
{

1,
hi�

4ε

}

+ 1
�2 max

i=1,...,N

h2
i

8

∥
∥R′

i

∥
∥∞,Ji

.

Finally, note that

R′
i ≡ 2

qi−1 − 2qi−1/2 + qi

h2
i

and ‖Ri‖∞,Ji
= max

{|qi−qi−1/2|, |qi−1/2−qi−1|
}

.

This completes the proof. �

4.4 An adaptive algorithm

Using the a posteriori estimates of the preceding section an adaptive algorithm
can be devised. It is based on an idea by de Boor [4] and uses an equidistrib-
ution principle. Its convergence in connection with an error estimator for a
central difference scheme was recently studied by Kopteva and Chadha [2].
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The idea is to adaptively design a mesh for which the local contributions to
the a posteriori error estimator

μi (u�, �) :=
∥
∥
∥
∥

I0
2q − q

r

∥
∥
∥
∥∞,Ji

+ |qi−1 − 2qi−1/2 + qi|
4�2

+ 2
�2

[

max
{|qi − qi−1/2|, |qi−1/2 − qi−1|

}

min
{

1,
hi�

4ε

}]

,

q = ru� − f,

are the same on each mesh interval, i.e., μi−1 (u�, �) = μi (u�, �), for i =
1, . . . , N. This is equivalent to

Qi (u�, �) = 1
N

N
∑

j=1

Q j (u�, �) , Qi (u�, �) := μi (u�, �)1/2 . (22)

However, de Boor’s algorithm, which we are going to describe now, be-
comes numerically unstable when the equidistribution principle (22) is en-
forced strongly. Instead, we shall stop the algorithm as proposed in [2, 12] when

Q̃i (u�, �) ≤ γ

N

N
∑

j=1

Q̃ j (u�, �) ,

for some user chosen constant γ > 1. Here we have also modified Qi by
choosing

Q̃i (u�, �) := (

h2
i + μi (u�, �)

)1/2
.

Adding this constant floor to μi avoids mesh starvation and smoothes the
convergence of the adaptive mesh algorithm.

Algorithm (de Boor [4])

1. Fix N, r and a constant γ > 1. The initial mesh �[0] is uniform with mesh
size 1/N.

2. For k = 0, 1, . . . , given the mesh �[k], compute the discrete solution u[k]
�[k]

on this mesh using the S1
2 -collocation method. Set h[k]

i = x[k]
i − x[k]

i−1 for
each i. Compute the piecewise-constant monitor function M[k] defined by

M[k](x) := Q̃[k]
i := Q̃i

(

u[k]
�[k] , �

[k]
)

for x ∈ (

xk
i−1, xk

i

)

.

The total integral of the monitor function is

I[k] :=
∫ 1

0
M[k](t) dt =

N
∑

j=1

h[k]
j Q̃[k]

j .
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3. Test mesh: If

h[k]
j Q̃[k]

j ≤ γ I[k]N−1 for all j = 1, . . . , N

then go to Step 5. Otherwise, continue to Step 4.
4. Generate a new mesh by equidistributing the monitor function M[k], i.e.,

choose the new mesh �[k+1] such that

∫ x[k+1]
i

x[k+1]
i−1

M[k](t) dt = I[k]

N
, i = 1, . . . , N.

Return to Step 2.
5. Set �∗ = �[k] and u∗

�∗ = u[k]
�[k] then stop.

5 Numerical experiments

We verify the theoretical results of the preceding section by applying the
collocation method to the test problem

−ε2u′′(x) + 4u(x) = cos 12x, x ∈ (0, 1), u(0) = u(1) = 0. (23)

Its exact solution is easily determined.
Although the solution of (23) is available, the maximum norm of the

error cannot be determined exactly. Therefore, we evaluate the error in the
mesh points and in additional points evenly distributed in each mesh interval.
Indicating by a superscript ε that the solution and the collocation spline depend
on the perturbation parameter, we approximate the maximum-norm errors by

∥
∥uε − uε

�

∥
∥∞ ≈ χε

N := max
i=1,...,N

m=0,...,M

∣
∣
(

uε − uε
�

)

(xi−1 + mM−1hi)
∣
∣

and the uniform errors by

χN := max
k=0,...,20

χ10−k

N .

In our experiments we have chosen M = 7. Larger values will give more accu-
rate approximations of the actual errors. However, the difference is negligible.

Table 1 contains the results of our test computations. Apart from smoothed
Shishkin meshes, we also considered standard Shishkin meshes, Bakhvalov
meshes and uniform meshes. The table also gives the rates of convergence.
These are computed using the following formulae:

p̃N := ln χN − ln χ2N

ln 2
for the Bakhvalov mesh and the uniform mesh,

pN := ln χN − ln χ2N

ln 2 + ln ln N − ln ln 2N
for the two meshes of Shishkin type.



Numer Algor (2012) 61:35–55 51

Table 1 Maximum-norm errors of the collocation method on layer-adapted meshes

N Smoothed Standard Bakhvalov mesh Uniform mesh
Shishkin mesh Shishkin mesh
χN pN χN pN χN p̃N χN p̃N

26 3.198e-03 2.49 2.879e-03 2.29 1.024e-04 2.07 1.574e-01 0.00
27 8.375e-04 2.10 8.375e-04 2.10 2.439e-05 2.03 1.575e-01 0.00
28 2.588e-04 2.08 2.588e-04 2.08 5.987e-06 2.01 1.575e-01 0.00
29 7.800e-05 2.05 7.800e-05 2.05 1.485e-06 2.01 1.574e-01 0.00
210 2.335e-05 2.03 2.335e-05 2.03 3.698e-07 2.00 1.574e-01 0.00
211 6.940e-06 2.02 6.940e-06 2.02 9.229e-08 2.00 1.574e-01 0.00
212 2.046e-06 2.01 2.046e-06 2.01 2.305e-08 2.00 1.574e-01 0.00
213 5.971e-07 2.00 5.971e-07 2.00 5.761e-09 2.00 1.574e-01 0.00
214 1.726e-07 2.00 1.726e-07 2.00 1.440e-09 2.00 1.575e-01 0.00
215 4.947e-08 2.00 4.947e-08 2.00 3.599e-10 2.00 1.575e-01 0.00
216 1.406e-08 2.00 1.406e-08 2.00 8.998e-11 2.00 1.574e-01 0.00
217 3.966e-09 2.00 3.966e-09 2.00 2.249e-11 2.00 1.574e-01 0.00
218 1.111e-09 – 1.111e-09 – 5.623e-12 – 1.574e-01 –

The first formula is standard. The second one estimating the “Shishkin rate”
of convergence is motivated by our theoretical estimate χN ∼ (N−1 ln N)p

with p = 2. The results of our test computations for the smoothed Shishkin
mesh (with � = 2 and σ = 4) are in full agreement with Theorem 4. For
comparison reasons, Table 1 also contains results for other meshes. Both the
standard Shishkin mesh and the Bakhvalov mesh are constructed with the
same parameter � and σ , see Section 2.3. Most notably, the original and the
smoothed Shishkin mesh give almost precisely the same accuracy, only for
rather small N differences can be observed.

As expected, the Bakhvalov mesh outperforms the Shishkin meshes because
its convergence is not spoiled by a logarithmic factor. The errors behave like
O(N−2). On uniform meshes the method is not uniformly convergent.

Table 2 A posteriori-error estimates for smoothed Shishkin meshes; ε = 10−12

N χN η ηI η3 η4 χN/η

26 3.198e-03 6.468e-02 1.662e-03 5.302e-02 1.000e-02 4.945e-02
27 8.375e-04 2.437e-02 2.190e-04 1.991e-02 4.238e-03 3.437e-02
28 2.588e-04 8.510e-03 2.730e-05 6.905e-03 1.578e-03 3.042e-02
29 7.800e-05 2.807e-03 3.401e-06 2.265e-03 5.386e-04 2.779e-02
210 2.335e-05 8.878e-04 4.246e-07 7.138e-04 1.736e-04 2.630e-02
211 6.940e-06 2.724e-04 5.302e-08 2.185e-04 5.381e-05 2.548e-02
212 2.046e-06 8.168e-05 6.624e-09 6.545e-05 1.623e-05 2.504e-02
213 5.971e-07 2.407e-05 8.278e-10 1.927e-05 4.797e-06 2.481e-02
214 1.726e-07 6.996e-06 1.035e-10 5.600e-06 1.397e-06 2.468e-02
215 4.947e-08 2.011e-06 1.293e-11 1.609e-06 4.017e-07 2.461e-02
216 1.406e-08 5.723e-07 1.616e-12 4.579e-07 1.144e-07 2.457e-02
217 3.966e-09 1.616e-07 2.021e-13 1.293e-07 3.231e-08 2.455e-02
218 1.111e-09 4.529e-08 2.526e-14 3.624e-08 9.058e-09 2.454e-02
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Table 3 A posteriori-error estimates for smoothed Shishkin meshes, robustness of the estimator;
N = 214

ε χN η ηI η3 η4 χN/η

1 1.715e-09 8.335e-08 7.159e-13 6.846e-08 1.489e-08 2.058e-02
10−2 1.720e-07 6.971e-06 3.587e-12 5.580e-06 1.392e-06 2.468e-02
10−3 1.726e-07 6.996e-06 8.304e-11 5.599e-06 1.397e-06 2.468e-02
10−4 1.726e-07 6.996e-06 1.013e-10 5.600e-06 1.397e-06 2.468e-02
10−6 1.726e-07 6.996e-06 1.034e-10 5.600e-06 1.397e-06 2.468e-02
10−8 1.726e-07 6.996e-06 1.035e-10 5.600e-06 1.397e-06 2.468e-02
10−12 1.726e-07 6.996e-06 1.035e-10 5.600e-06 1.397e-06 2.468e-02
10−16 1.726e-07 6.996e-06 1.035e-10 5.600e-06 1.397e-06 2.468e-02
10−20 1.726e-07 6.996e-06 1.035e-10 5.600e-06 1.397e-06 2.468e-02

A posteriori-error estimates according to Theorem 5 for the smoothed
Shishkin mesh are displayed in Tables 2 and 3. The first column of these tables
gives the value of N or ε. The actual error and the error estimates can be found
in columns 2 and 3. The following three columns give the three different parts
of the estimator, while the last column contains the effectivity index.

Table 2 shows results for fixed ε and various numbers of mesh points. It is
observed that ηI , which captures the data oscillations behaves like O(N−3). It
is the least important part of the estimator. In contrast η3 and η4 strongly cor-
relate with the actual error and behave like O(N−2 ln2 N). In this experiment
the errors are overestimated by a factor of approximately 40.

Table 3 verifies the robustness of the estimator with respect to the pertur-
bation parameter. We have fixed N and varied ε. Similar results are observed
for other layer-adapted meshes.

Table 4 gives results for uniform meshes. Again, ηI decreases like O(N−3),
while η3 and η4 are the dominating terms. The effectivity index is greater than
for the Shishkin meshes, the errors are overestimated by a factor of 3.5 only.

Table 4 The a posteriori-error estimator for a uniform mesh, ε = 10−12

N χN η ηI η3 η4 χN/η

26 1.574e-01 5.518e-01 1.200e-05 5.000e-01 5.178e-02 2.853e-01
27 1.574e-01 5.518e-01 1.501e-06 5.000e-01 5.178e-02 2.853e-01
28 1.574e-01 5.518e-01 1.877e-07 5.000e-01 5.178e-02 2.853e-01
29 1.574e-01 5.518e-01 2.346e-08 5.000e-01 5.178e-02 2.853e-01
210 1.574e-01 5.518e-01 2.932e-09 5.000e-01 5.178e-02 2.853e-01
211 1.574e-01 5.518e-01 3.666e-10 5.000e-01 5.178e-02 2.853e-01
212 1.574e-01 5.518e-01 4.582e-11 5.000e-01 5.178e-02 2.853e-01
213 1.574e-01 5.518e-01 5.727e-12 5.000e-01 5.178e-02 2.853e-01
214 1.574e-01 5.518e-01 7.159e-13 5.000e-01 5.178e-02 2.853e-01
215 1.574e-01 5.518e-01 8.949e-14 5.000e-01 5.178e-02 2.853e-01
216 1.574e-01 5.518e-01 1.119e-14 5.000e-01 5.178e-02 2.853e-01
217 1.574e-01 5.518e-01 1.398e-15 5.000e-01 5.178e-02 2.853e-01
218 1.574e-01 5.518e-01 1.748e-16 5.000e-01 5.178e-02 2.853e-01
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Table 5 The adaptive algorithm, ε = 10−12

N χN p̃N η ηI η3 η4 χN/η #iter

26 2.237e-04 0.63 2.071e-03 1.066e-04 1.667e-03 2.972e-04 1.080e-01 8
27 1.445e-04 2.09 1.115e-03 1.432e-05 9.878e-04 1.132e-04 1.296e-01 14
28 3.393e-05 2.17 1.255e-04 1.648e-06 1.093e-04 1.456e-05 2.703e-01 6
29 7.528e-06 2.37 3.961e-05 2.149e-07 3.563e-05 3.765e-06 1.901e-01 5
210 1.457e-06 0.80 8.961e-06 2.599e-08 8.068e-06 8.666e-07 1.626e-01 5
211 8.373e-07 3.86 2.864e-06 3.504e-09 2.602e-06 2.581e-07 2.924e-01 4
212 5.750e-08 0.27 4.942e-07 4.111e-10 4.410e-07 5.273e-08 1.164e-01 4
213 4.760e-08 3.65 1.632e-07 5.099e-11 1.481e-07 1.502e-08 2.917e-01 4
214 3.786e-09 −0.11 6.380e-08 1.227e-11 5.104e-08 1.276e-08 5.934e-02 3
215 4.095e-09 3.35 1.408e-08 8.956e-13 1.273e-08 1.348e-09 2.909e-01 3
216 4.028e-10 1.17 2.327e-09 1.030e-13 2.106e-09 2.205e-10 1.731e-01 3
217 1.796e-10 1.72 6.174e-10 1.256e-14 5.591e-10 5.833e-11 2.909e-01 3
218 5.440e-11 – 1.834e-10 1.559e-15 1.686e-10 1.479e-11 2.966e-01 3

Av. rate 1.83 1.95 3.00 1.94 2.02

Finally, Table 5 contains the results of our test computations for the adaptive
algorithm of Section 4.4. The last column gives the number of iterations
required until the stopping criterion with γ = 2 is met. The bottom row
displays averaged rates of convergence of the quantities in the respective
column. The adaptive strategy is successful, although the actual errors are
reduced in a less continuous way than observed for a priori chosen meshes. The
algorithm is based on a posteriori error estimates. These upper error bounds
are continuously reduced in each level of refinement. The term η3 is the leading
contribution to the error estimator.

Appendix A: B-spline basis functions

The B-spline basis for S1
2,0(�) is

ϕ0(x) =

⎧

⎪⎨

⎪⎩

(x1 − x)2

h2
1

if x ∈ [x0, x1],

0 otherwise,

ϕ1(x) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

h2
1 − (x1 − x)2

h2
1

− (x − x0)
2

(h1 + h2)h1
if x ∈ [x0, x1],

(x2 − x)2

(h1 + h2)h1
if x ∈ [x1, x2],

0 otherwise,
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for i = 2, . . . , N − 1:

ϕi(x) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x − xi−2)
2

(hi−1 + hi)hi−1
if x ∈ [xi−2, xi−1],

(x − xi−2)(xi − x)

(hi−1 + hi)hi
+ (xi+1 − x)(x − xi−1)

(hi + hi+1)hi
if x ∈ [xi−1, xi],

(xi+1 − x)2

(hi + hi+1)hi+1
if x ∈ [xi, xi+1],

0 otherwise,

ϕN(x) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(xN−2 − x)2

(hN−1 + hN)hN−1
if x ∈ [xN−2, xN−1],

h2
N − (xN−1 − x)2

h2
N

− (x − xN)2

(hN + hN−1)hN
if x ∈ [xN−1, xN],

0 otherwise

and

ϕN+1(x) =

⎧

⎪⎨

⎪⎩

(xN−1 − x)2

h2
N

if x ∈ [xN−1, xN],

0 otherwise.
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