
Numer Algor (2012) 60:27–50
DOI 10.1007/s11075-011-9510-5

ORIGINAL PAPER

Multistep Hermite collocation methods for solving
Volterra Integral Equations

Somayyeh Fazeli · Gholamreza Hojjati · Sedaghat Shahmorad

Received: 15 March 2011 / Accepted: 28 September 2011 /
Published online: 16 October 2011
© Springer Science+Business Media, LLC 2011

Abstract In this paper, we propose a new class of multistep collocation
methods for solving nonlinear Volterra Integral Equations, based on Hermite
interpolation. These methods furnish an approximation of the solution in each
subinterval by using approximated values of the solution, as well as its first
derivative, in the r previous steps and m collocation points. Convergence order
of the new methods is determined and their linear stability is analyzed. Some
numerical examples show efficiency of the methods.
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1 Introduction

Consider a nonlinear Volterra Integral Equation (VIE) of the form

y(t) = g(t) +
∫ t

0
K(t, τ, y(τ ))dτ , t ∈ I := [0, T], (1)

where g : I → R is a sufficiently smooth function and K : D × R → R, with
D := {(t, τ ) : 0 ≤ τ ≤ t ≤ T}, is continuous and satisfies in Lipschits condition
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with respect to y. Under these assumptions (1) has a unique continuous
solution [5].

One of the most practical methods for solving VIEs of the second kind is
approximating the exact solution by piecewise collocation polynomial. In the
literature many authors have analyzed one-step collocation methods for VIEs
(see [3, 5] and references of them). As it is well known, the collocation methods
are based on approximating the solution of VIE by piecewise polynomial
which interpolates the exact solution of the equation in certain points which are
called collocation points. Approximate solutions by collocation methods are
usually discontinuous on mesh points. Note that for m ≥ 2 the choice of c1 = 0
and cm = 1 yields continuous approximations where m denotes the number
of collocation parameters and c j, j = 1, 2, · · · , m are collocation parameters.
Some smooth piecewise collocation approximations lead to divergent colloca-
tion polynomials for VIEs of the second kind [4]. Collocation methods have
uniform convergence order m for any choice of collocation parameters and
local super convergence order 2m − 2 in the mesh points (Gauss and Lobatto
points) or 2m − 1 (Radau II points) [5].

Recently Conte et al. proposed two-step collocation methods for VIEs
which are obtained by using collocation technique and relaxing some collo-
cation conditions in order to obtain good stability properties. These methods
introduce continuous approximations for solution [7].

Also in [8, 9] multistep collocation methods were proposed. In these meth-
ods, the solution at each mesh point depends on the numerical solution at a
fixed number of previous time steps and m collocation points in the previous
subinterval. The approximate solution by multistep collocation method is con-
tinuous on the mesh points. The r step m points multistep collocation methods
have uniform convergence order m + r and local superconvergence order
2m + r − 1 at the mesh points, for special choice of collocation parameters.
These methods have extensive stability region, whiles there is not any A-stable
method in this class.

Differentiating (1) yields the integro-differential equation

y′(t) = g′(t) +
∫ t

0
Kt(t, τ, y(τ ))dτ + K(t, t, y(t)), t ∈ I, (2)

with Kt(t, τ, y(τ )) = ∂K(t,τ,y(τ ))

∂t . In the case that the kernel does not depend on
t, (2) is an ordinary differential equation with initial condition y(0) = g(0) and
it may be integrated by any ordinary differential equation solver. In this paper,
we use both of (1) and (2), so that the approximate solution in each subinterval
depends on the values of approximated solution and its first derivative in the
fixed number r of previous time steps, and also the values of approximate so-
lution and its first derivative in the m collocation points. We want to find more
smooth piecewise approximations such that the approximate solution is con-
tinuously differentiable on the mesh points and some methods are A-stable.
Also by this technique we can find higher order methods with extensive sta-
bility region. We show that the new methods, which we call multistep Hermite
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collocation methods (MHCMs) will have the uniform convergence order 2m +
2r for r steps and m collocation points.

This paper is organized as follows: in Section 2, we describe construction
of the new methods. In Section 3, convergence order of the new method is
determined. In Section 4, we analyze stability properties of the methods and in
Section 5, we show performance of the methods by some examples.

2 Construction the method

Let us discretize the interval I by introducing a uniform mesh with stepsize
h := tn+1 − tn as

Ih := {tn := nh, n = 0, 1, · · · , N, Nh := T}.
Corresponding to this mesh, (1) can be rewritten as

y(t) = Fn(t) + �n(t), t ∈ [tn, tn+1], (3)

where

Fn(t) = g(t) +
∫ tn

0
K(t, τ, y(τ ))dτ,

�n(t) =
∫ t

tn
K(t, τ, y(τ ))dτ, (4)

are called lag-term and increment function, respectively. Similarly, for (2),
we have

y′(t) = Hn(t) + �n(t) + K(t, t, y(t)), (5)

where

Hn(t) = gt(t) +
∫ tn

0
Kt(t, τ, y(τ ))dτ,

�n(t) =
∫ t

tn
Kt(t, τ, y(τ ))dτ. (6)

Let 0 < c1 < c2 < · · · < cm ≤ 1 be m fixed collocation parameters and tn, j :=
tn + c jh be collocation points. For approximating the solution of (1) restricted
to the interval [tn, tn+1], approximated values of the solution and its first
derivative in the r previous steps and m collocation points, tn, j, are used. Thus
to construct the method, we seek a collocation polynomial of the form

un(tn + sh) =
r−1∑
k=0

ϕk(s)yn−k +
m∑

j=1

ψ j(s)Un, j + h
r−1∑
k=0

χk(s)y′
n−k + h

m∑
j=1

ρ j(s)U ′
n, j,

(7)
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for s ∈ [0, 1], n = r, r + 1, · · · , N − 1 in such a way that the conditions

Un, j = un(tn, j),

U ′
n, j = u′

n(tn, j) (8)

are satisfied.
Then the approximation for y′(t), in the interval [tn, tn+1], is obtained from

hu′
n(tn+sh) =

r−1∑
k=0

ϕ′
k(s)yn−k +

m∑
j=1

ψ ′
j(s)Un, j +h

r−1∑
k=0

χ ′
k(s)y′

n−k +h
m∑

j=1

ρ ′
j(s)U

′
n, j.

(9)

The polynomials ϕk(s), ψ j(s), χk(s) and ρ j(s) for k = 0, 1, · · · , r − 1 and j =
1, 2, · · · , m are of degree 2(m + r) − 1 and their coefficients are determined
by equating both sides of (7) and (9) at the points tn−k and satisfying in the
conditions (8) which lead to the following interpolation conditions:

ϕk(−i) = δik, ϕ′
k(−i) = 0, ϕk(c j) = 0 ϕ′

k(c j) = 0,

ψ j(−i) = 0, ψ ′
j(−i) = 0, ψ j(cl) = δ jl, ψ ′

j(cl) = 0,

χk(−i) = 0, χ ′
k(−i) = δik, χk(c j) = 0, χ ′

k(c j) = 0,

ρ j(−i) = 0, ρ ′
j(−i) = 0, ρ j(cl) = 0, ρ ′

j(cl) = δ jl.

(10)

So by using Hermite interpolation formula (see [15]), we have

ϕk(s) = Lk0(s) − L′
k0(−k)Lk1(s),

χk(s) = Lk1(s), k = 0, 1, · · · , r − 1, (11)

with

Lk0(s) =
r−1∏
i=0
i �=k

(
s + i

−k + i

)2 m∏
j=1

(
s − c j

−k − c j

)2

Lk1(s) = (s + k)Lk0(s),

and

ψ j(s) = L j0(s) − L′
j0(c j)L j1(s),

ρ j(s) = L j1(s), j = 1, 2, · · · , m, (12)

with

L j0(s) =
r−1∏
i=0

(
s + i
c j + i

)2 m∏
i=1
i �= j

(
s − ci

c j − ci

)2

,

L j1(s) = (s − c j)L j0(s).

The exact MHCM is then obtained by imposing the collocation conditions
for both (3) and (5), i.e. the collocation polynomials (7) and (9) exactly satisfy
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(3) and (5) at the collocation points tn,i, which leads to the coupled system of
2m equations in the unknowns Un,i and U ′

n,i in the form
{

Un,i = Fn,i + �n,i,

U ′
n,i = Hn,i + �n,i + K(tn,i, tn,i, Un,i),

(13)

where

Fn,i = g(tn,i) + h
n−1∑
ν=0

∫ 1

0
K(tn,i, tν + sh, uν(tν + sh))ds,

�n,i = h
∫ ci

0
K(tn,i, tn + sh, un(tn + sh))ds,

Hn,i = g′(tn,i) + h
n−1∑
ν=0

∫ 1

0
Kt(tn,i, tν + sh, uν(tν + sh))ds,

�n,i = h
∫ ci

0
Kt(tn,i, tn + sh, un(tn + sh))ds,

then yn+1 = un(tn+1) and hy′
n+1 = hu′

n+1(tn+1) are computed by
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

yn+1 =
r−1∑
k=0

ϕk(1)yn−k +
m∑

j=1

ψ j(1)Un, j +h
r−1∑
k=0

χk(1)y′
n−k +h

m∑
j=1

ρ j(1)U ′
n, j,

hy′
n+1 =

r−1∑
k=0

ϕ′
k(1)yn−k +

m∑
j=1

ψ ′
j(1)Un, j +h

r−1∑
k=0

χ ′
k(1)y′

n−k +h
m∑

j=1

ρ ′
j(1)U ′

n, j.

(14)

Also the discretized MHCM is obtained by using suitable quadrature for-
mulas for approximating Fn,i, �n,i, Hn,i and �n,i. The discretized multistep
Hermite collocation polynomials for approximating y(tn + sh) and y′(tn + sh)

take the forms

Pn(tn + sh) =
r−1∑
k=0

ϕk(s)yn−k +
m∑

j=1

ψ j(s)Yn, j + h
r−1∑
k=0

χk(s)y′
n−k + h

m∑
j=1

ρ j(s)Y ′
n, j

(15)

and

hP′
n(tn + sh) =

r−1∑
k=0

ϕ′
k(s)yn−k +

m∑
j=1

ψ ′
j(s)Yn, j +h

r−1∑
k=0

χ ′
k(s)y′

n−k +h
m∑

j=1

ρ ′
j(s)Y

′
n, j,

(16)

where the unknowns Yn, j := Pn(tn, j) and Y ′
n, j := P′

n(tn, j) are determined by
solving the coupled nonlinear system

{
Yn,i = F̄n,i + �̄n,i,

Y ′
n,i = H̄n,i + �̄n,i + K(tn,i, tn,i, Yn,i).

(17)
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The approximations of Fn,i, �n,i, Hn,i and �n,i are of the form

F̄n,i = g(tn,i) + h
n−1∑
ν=0

μ1∑
l=1

bl K(tn,i, tν + ξlh, Pν(tν + ξlh)),

�̄n,i = h
μ0∑
l=1

wil K(tn,i, tn + dilh, Pn(tn + dilh)),

H̄n,i = g′(tn,i) + h
n−1∑
ν=0

μ1∑
l=1

bl Kt(tn,i, tν + ξlh, Pν(tν + ξlh)),

�̄n,i = h
μ0∑
l=1

wil Kt(tn,i, tn + dilh, Pn(tn + dilh)),

where (bl, ξl)
μ1
l=1 and (wil, dil)

μ0
l=1 denote quadrature weights and nodes for the

intervals [0, 1] and [0, ci], respectively and μ0 and μ1 are positive integers.

Remark 1 The discretized MHCM (15)–(17) provides a continuously
differentiable approximation P(t) for the solution y(t) of (1) in [0, T], which
is given by

P(t)|[tn,tn+1] = Pn(t).

We note that usually the piecewise polynomials constructed by collocation
methods for VIEs do not use the numerical solution in the previous steps and
give a discontinuous approximation of the solution, i.e. u(t) ∈ S(−1)

m−1(Ih) where

S(d)
μ (Ih) = {

v ∈ Cd(I) : v|(tn,tn+1] ∈ μ (0 ≤ n ≤ N − 1)
}
.

Here, μ denotes the space of polynomials of degree not exceeding μ.

The given approximated solution by the multistep collocation method uses
r previous steps and does not use the derivative of the approximate solution,
so it is a non smooth continuous approximation, i.e. u(t) ∈ S(0)

m+r−1(Ih). In this
new extension the Hermite collocation polynomial is an smooth continuous
approximation to the solution of (1), i.e. u(t) ∈ S(1)

2m+2r−1(Ih).

The idea of introduced methods which use the derivatives of approximate
solution in some points has been widely developed in the context of ordinary
differential equations (ODEs). In particular [6, 10, 11] deal with linear mul-
tistep methods and second derivative multistep methods. The reason of the
interest in constructing new methods lies in the fact that they are high order
methods with extensive stability region, as we will show in the next sections.
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3 Convergence order

In this section we will analyze convergence order of the MHCMs and dis-
cretized MHCMs.

Lemma 1 Consider the linear VIE

y(t) = g(t) +
∫ t

0
K(t, τ )y(τ )dτ , t ∈ I := [0, T], (18)

with y ∈ R, K ∈ Cp(D), g ∈ Cp(I) and p = 2m + 2r. Then for any choice of
distinct collocation parameters 0 < c1 < c2 < · · · < cm ≤ 1, the exact solution
y(t) of (18) satisf ies

y(tn + sh) =
r−1∑
k=0

ϕk(s)y(tn−k) +
m∑

j=1

ψ j(s)y(tn, j) + h
r−1∑
k=0

χk(s)y′(tn−k)

+ h
m∑

j=1

ρ j(s)y′(tn, j) + hp Rm,r,n(s), s ∈ [0, 1], (19)

where the polynomials ϕk, ψ j, χk and ρ j are given in (11) and (12), and

Rm,r,n(s) =
∫ 1

−r+1
Km,r(s, ν)y(p)(ν)dν,

Km,r(s, ν) = 1
(p − 1)!

{
(s − ν)

p−1
+ −

r−1∑
k=0

ϕk(s)(−k − ν)
p−1
+

−
m∑

j=1

ψ j(s)(c j − ν)
p−1
+ − h(p − 1)

r−1∑
k=0

χk(s)(−k − ν)
p−2
+

− h(p − 1)

m∑
j=1

ρ j(s)(c j − ν)
p−2
+

⎫⎬
⎭ .

Proof By the Peano theorem for interpolation [3, 12], it follows that the thesis
is true for s ∈ [−r + 1, 1]. �	

Theorem 1 Let ε(t) = y(t) − u(t) and ε′(t) = y′(t) − u′(t) be the error of exact
MHCM and p = 2m + 2r. Suppose that

(i) the given functions in VIE (1) satisfy K ∈ Cp(D × R) and g ∈ Cp(I),
(ii) the starting errors are ‖ε‖∞,[0,tr] = O(hp) and ‖ε′‖∞,[0,tr] = O(hp−1),

(iii) ρ(H) < 1, where ρ denotes the spectral radius and

H =
[

A Ã
Â Ā

]
(20)
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with

A =
[

0r−1,1 Ir−1

ϕr−1(1) ϕr−2(1), · · · , ϕ0(1)

]
, Ã =

[
0r−1,1 Ir−1

χr−1(1) χr−2(1), · · · , χ0(1)

]
,

Â =
[

0r−1,1 Ir−1

ϕ′
r−1(1) ϕ′

r−2(1), · · · , ϕ′
0(1)

]
, Ā =

[
0r−1,1 Ir−1

χ ′
r−1(1) χ ′

r−2(1), · · · , χ ′
0(1)

]
.

(21)

Then

‖ε‖ = O(hp).

Proof We will carry out the proof in the case of linear VIE (18). The proof can
be straightforwardly extended to the case of the VIE (1) by the mean value
theorem.

By Lemma 1, we have

y(tn + sh) =
r−1∑
k=0

ϕk(s)y(tn−k) +
m∑

j=1

ψ j(s)y(tn, j) + h
r−1∑
k=0

χk(s)y′(tn−k)

+ h
m∑

j=1

ρ j(s)y′(tn, j) + hp Rm,r,n(s), s ∈ [0, 1]. (22)

By subtracting (7) from (22), the error of exact MHCM, ε(t), takes the local
representation

ε(tn + sh) =
r−1∑
k=0

ϕk(s)εn−k +
m∑

j=1

ψ j(s)εn, j + h
r−1∑
k=0

χk(s)ε′
n−k

+ h
m∑

j=1

ρ j(s)ε′
n, j + hp Rm,r,n(s), (23)

with n ≥ r, εn−k = ε(tn−k), εn, j = ε(tn, j), ε′
n−k = ε′(tn−k) and ε′

n, j = ε′(tn, j).

Differentiating (23) leads to

hε′(tn + sh) =
r−1∑
k=0

ϕ′
k(s)εn−k +

m∑
j=1

ψ ′
j(s)εn, j + h

r−1∑
k=0

χ ′
k(s)ε

′
n−k

+ h
m∑

j=1

ρ ′
j(s)ε

′
n, j + hp R′

m,r,n(s). (24)

Replacing n by l − 1 in (23) and (24), and s = 1, lead to

ε
(1)

l = Aε
(1)

l−1 + Sε
(2)

l−1 + hÃε′(1)

l−1 + hS̃ε′(2)

l−1 + hpρ̃m,r,l−1 (25)

and

hε′(1)

l = Âε
(1)

l−1 + Ŝε
(2)

l−1 + hĀε′(1)

l−1 + hS̄ε′(2)

l−1 + hpρ̄m,r,l−1, (26)
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where A, Â, Ā and Ã are given in (21) and

S =
(

0r−1,m

ψ(1)T

)
, S̃ =

(
0r−1,m

ρ(1)T

)
, ρ̃m,r, j =

(
0r−1,1

Rm,r, j(1)

)
,

Ŝ =
(

0r−1,m

ψ ′(1)T

)
, S̄ =

(
0r−1,m

ρ′(1)T

)
, ρ̄m,r, j =

(
0r−1,1

R′
m,r, j(1)T

)
,

ε
(1)

l = [εl−r+1, · · · , εl]T ∈ R
r, ε

(2)

l = [εl,1, · · · , εl,m]T ∈ R
m,

ε′(1)

l = [
ε′

l−r+1, · · · , ε′
l

]T ∈ R
r, ε′(2)

l = [
ε′

l,1, · · · , ε′
l,m

]T ∈ R
m,

ψ(1) = [ψ1(1), · · · , ψm(1)]T ,

ψ ′(1) = [ψ ′
1(1), · · · , ψ ′

m(1)]T .

Combining (25) and (26) gives the following matrix equation

E (1)

l = HE (1)

l−1 + GE (2)

l−1 + Qm,r,l−1hp, (27)

where H is given by (20) and

G =
(

S hS̃
Ŝ hS̄

)
, Qm,r, j =

(
ρ̃m,r, j
ρ̄m,r, j

)
,

E (1)

l−1 =
(

ε
(1)

l

hε′(1)

l

)
, E (2)

l−1 =
(

ε
(2)

l

ε′(2)

l

)
.

The solution of difference equation (27) is

E (1)

l = Hl−r+1E (1)
r−1 +

l−1∑
j=r−1

Hl− j−1
(

GE (2)

j + hpQm,r, j

)
(28)

(see [13]). On the other hand, by evaluating (18) for t = tn,i, we obtain

y(tn,i) = g(tn,i) + h
n−1∑
l=0

∫ 1

0
K(tn,i, tl + sh)y(tl + sh)ds

+ h
∫ ci

0
K(tn,i, tn + sh)y(tn + sh)ds. (29)

The first equation in (13), for the linear case, is equivalent to

un(tn,i) = g(tn,i) + h
n−1∑
l=0

∫ 1

0
K(tn,i, tl + sh)ul(tl + sh)ds

+ h
∫ ci

0
K(tn,i, tn + sh)un(tn + sh)ds. (30)
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By subtracting (30) from (29), we get

εn,i = h
n−1∑
l=0

∫ 1

0
K(tn,i, tl + sh)ε(tl + sh)ds+h

∫ ci

0
K(tn,i, tn + sh)ε(tn + sh)ds. (31)

By the hypothesis on the starting errors, it follows that

ε(tl + sh) = hpql(s), l = 0, 1, · · · , r − 1 (32)

and

hε′(tl + sh) = hpq′
l(s), l = 0, 1, · · · , r − 1, (33)

with ‖ql‖∞ ≤ C1 and ‖q′
l‖∞ ≤ C2 independent of h. By substituting (32), (33)

and (23) in (31), we obtain

(I − hC(n)
n )ε(2)

n − h2 E(n)
n ε′(2)

n = hp+1
n∑

l=0

R̄(l)
n + h

n−1∑
l=r

C(l)
n ε

(2)

l + h
n∑

l=r

B(l)
n ε

(1)

l

− h2
n−1∑
l=r

E(l)
n ε(2)

n + h2
n∑

l=r

D(l)
n ε′(1)

l , (34)

where R̄(l)
n ∈ R

m, C(l)
n , E(l)

n ∈ R
m×m and B(l)

n , D(l)
n ∈ R

m×r are defined as

(
R̄(l)

n

)
i :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∫ 1

0
K(tn,i, tl + sh)ql(s)ds, l = 0, 1, · · · , r − 1,∫ 1

0
K(tn,i, tl + sh)Rm,r,l(s)ds, l = r, · · · , n − 1,∫ 1

0
K(tn,i, tn + sh)Rm,r,n(s)ds, l = n,

(
B(l)

n

)
ik :=

⎧⎪⎪⎨
⎪⎪⎩

∫ 1

0
K(tn,i, tl + sh)ϕk(s)ds, l = r, · · · , n − 1,∫ ci

0
K(tn,i, tn + sh)ϕk(s)ds l = n,

(
C(l)

n

)
ij :=

⎧⎪⎪⎨
⎪⎪⎩

∫ 1

0
K(tn,i, tl + sh)ψ j(s)ds, l = r, · · · , n − 1,∫ ci

0
K(tn,i, tn + sh)ψ j(s)ds, l = n,

(
D(l)

n

)
ik :=

⎧⎪⎪⎨
⎪⎪⎩

∫ 1

0
K(tn,i, tl + sh)χk(s)ds, l = r, · · · , n − 1,∫ ci

0
K(tn,i, tn + sh)χk(s)ds, l = n,

(
E(l)

n

)
ij :=

⎧⎪⎪⎨
⎪⎪⎩

∫ 1

0
K(tn,i, tl + sh)ρ j(s)ds, l = r, · · · , n − 1,∫ ci

0
K(tn,i, tn + sh)ρ j(s)ds, l = n.
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Similarly we have

ε′
n,i = h

n−1∑
l=0

∫ 1

0
Kt(tn,i, tl + sh)ε(tl + sh)ds + K(tn,i, tn,i)εn,i

+ h
∫ ci

0
Kt(tn,i, tn + sh)ε(tn + sh)ds (35)

for the approximation error of y′(t). By substituting (32), (33) and (23) in (35),
we have(

I − h2 Ẽ(n)
n

)
ε′(2)

n −
(

K(tn,i, tn,i) + hC̃(n)
n

)
ε(2)

n

= hp+1
n∑

l=0

R̃(l)
n + h

n−1∑
l=r

C̃(l)
n ε

(2)

l + h
n∑

l=r

B̃(l)
n ε

(1)

l + h2
n−1∑
l=r

Ẽ(l)
n ε′(2)

l

+ h2
n∑

l=r

D̃(l)
n ε′(1)

l (36)

with

(
R̃(l)

n

)
i :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∫ 1

0
Kt(tn,i, tl + sh)ql(s)ds, l = 0, 1, · · · , r − 1,∫ 1

0
Kt(tn,i, tl + sh)Rm,r,l(s)ds, l = r, · · · , n − 1,∫ 1

0
Kt(tn,i, tn + sh)Rm,r,n(s)ds, l = n,

(
B̃(l)

n

)
ik :=

⎧⎪⎪⎨
⎪⎪⎩

∫ 1

0
Kt(tn,i, tl + sh)ϕk(s)ds, l = r, · · · , n − 1,∫ ci

0
Kt(tn,i, tn + sh)ϕk(s)ds l = n,

(
C̃(l)

n

)
ij :=

⎧⎪⎪⎨
⎪⎪⎩

∫ 1

0
Kt(tn,i, tl + sh)ψ j(s)ds, l = r, · · · , n − 1,∫ ci

0
Kt(tn,i, tn + sh)ψ j(s)ds, l = n,

(
D̃(l)

n

)
ik :=

⎧⎪⎪⎨
⎪⎪⎩

∫ 1

0
Kt(tn,i, tl + sh)χk(s)ds, l = r, · · · , n − 1,∫ ci

0
Kt(tn,i, tn + sh)χk(s)ds, l = n,

(
Ẽ(l)

n

)
ij :=

⎧⎪⎪⎨
⎪⎪⎩

∫ 1

0
Kt(tn,i, tl + sh)ρ j(s)ds, l = r, · · · , n − 1,∫ ci

0
Kt(tn,i, tn + sh)ρ j(s)ds, l = n.
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Combination of (34) and (36) leads to the following matrix equation

W(n)
n E (2)

n = h
n∑

l=r

W̄(l)
n E (1)

l + h
n−1∑
l=r

Ŵ(l)
n E (2)

l + hp+1
n∑

l=0

R̂(l)
n , (37)

where

W(n)
n =

[
I − hC(n)

n −h2 E(n)
n

−K(tn,i, tn,i) + hC̃(n)
n I − h2 Ẽ(n)

n

]
, W̄(l)

n =
[

B(l)
n D(l)

n

B̃(l)
n D̃(l)

n

]
,

Ŵ(l)
n =

[
C(l)

n hE(l)
n

C̃(l)
n hẼ(l)

n

]
, R̂(l)

n =
[

R̄(l)
n

R̃(l)
n

]
.

Substituting (28) in (37) yields

W(n)
n E (2)

n = h
n∑

l=r

W̄l
nHl−r+1E (1)

r−1 + h
n−1∑
j=r

n∑
l= j+1

W̄l
nHl− j−1GE (2)

j

+ h
n∑

l=r

W̄(l)
n Hl−rGE (2)

r−1 + h
n−1∑
l=r

Ŵ(l)
n E (2)

l

+ hp+1
n−1∑

j=r−1

n∑
l= j+1

W̄(l)
n Hl− j−1Qm,r, j + hp+1

n∑
l=0

R̂(l)
n , n ≥ r. (38)

Now a bound for E (2)
n can be found by the same way as described in [9]

(Theorem 4.2) that leads to the estimate

‖E (2)
n ‖ ≤ M2hp,

then from (28) a bound for ‖E (1)
n ‖ obtained in the form

‖E (1)
n ‖ ≤ M1hp.

Note that the coefficients M1 and M2 depend on the bounds of the matrices
in (38). Using the local error representation (23) and two above inequalities
together to the expression (32) for the starting errors, complete the proof. �	

Now we state similar discussion for discretized MHCMs by the following
theorem.

Theorem 2 Let e(t) = y(t) − P(t) be the error of discretized MHCM and p =
2m + 2r. Suppose that

(i) K ∈ Cp(D × R) and g ∈ Cp(I),
(ii) The quadrature formulas for approximating Fn,i, �n,i, Hn,i and �n,i are

of orders p + 1, p, p + 1 and p, respectively,
(iii) The starting errors are ‖e‖∞,[0,tr] = O(hp) and ‖e′‖∞,[0,tr] = O(hp−1),

(iv) ρ(H) < 1, where H is given by (20).
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Then

‖e‖∞ = O
(
h2m+2r) .

Proof The result is obtained from Theorem 1, the inequality

‖e‖∞ ≤ ‖ε‖∞ + ‖u − P‖∞

and order of quadrature formulas. �	

4 Linear stability

In this section, we analyze the stability properties of exact and discretized
MHCMs. The stability behavior of a numerical method for (1) is usually
analyzed by applying the method with a fixed positive stepsize h to the basic
test equation (see [1, 2])

y(t) = 1 + λ

∫ t

0
y(τ )dτ, t ∈ [0, T], Re(λ) < 0. (39)

This test equation is equivalent to the ODE test equation y′ = λy.

Definition 1 Absolute stability region of the method is the set of all z := λh ∈
C, such that the numerical solution yn of test equation (39) with a constant
stepsize h, tends to zero as n → ∞. The method is said to be A-stable if its
absolute stability region includes the negative complex half plane C

−.

To state the main results of stability properties of the new method, let us
define

�ik =
∫ ci

0
ϕk(s)ds, �ij =

∫ ci

0
ψ j(s)ds,

�ik =
∫ ci

0
χk(s)ds, �ij =

∫ ci

0
ρ j(s)ds,

αk =
∫ 1

0
ϕk(s)ds, β j =

∫ 1

0
ψ j(s)ds,

γk =
∫ 1

0
χk(s)ds, η j =

∫ 1

0
ρ j(s)ds,
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and introduce the vectors and matrices

Un = [Un,1, · · · , Un,m]T , u = [1, · · · , 1]T ∈ R
m,

y(r)
n = [yn, · · · , yn−r+1]T , y′(r)

n = [
y′

n, · · · , y′
n−r+1

]T
,

ϕ(1) = [ϕ0(1), · · · , ϕr−1(1)]T , ψ(1) = [ψ1(1), · · · , ψm(1)]T ,

χ(1) = [χ0(1), · · · , χr−1]T , ρ(1) = [ρ1(1), · · · , ρm(1)]T ,

ϕ′(1) = [
ϕ′

0(1), · · · , ϕ′
r−1(1)

]T
, ψ ′(1) = [

ψ ′
1(1), · · · , ψ ′

m(1)
]T

,

χ ′(1) = [
χ ′

0(1), · · · , χ ′
r−1

]T
, ρ′(1) = [

ρ ′
1(1), · · · , ρ ′

m(1)
]T

,

E1 =
[−(ψ(1)T + zρ(1)T)

0r,1

]
, E2 =

[−(ψ ′(1)T + zρ′(1)T)

0r,1

]
, F =

[
01,r 0
Ir 0r,1

]
,

G2,1 =
[

1 −ϕ(1)T

0r,1 Ir

]
, G2,2 =

[
0 −χ(1)T

0r,1 0r,r

]
,

G3,1 =
[

0 −ϕ′(1)T

0r,1 0r,r

]
, G3,2 =

[
1 −χ ′(1)T

0r,1 Ir

]
.

Theorem 3 The exact MHCM, applied to the test equation (39) leads to the
following recurrence relation

⎡
⎢⎢⎢⎢⎣

yn+1

y(r)
n

hy′
n+1

hy′(r)
n

Un

⎤
⎥⎥⎥⎥⎦ = R(z)

⎡
⎢⎢⎢⎢⎣

yn

y(r)
n−1

hy′
n

hy′(r)
n−1

Un−1

⎤
⎥⎥⎥⎥⎦ , (40)

where R(z) is the stability matrix and it is given by

R(z) = [Q(z)]−1 M(z),

with

Q(z) =
⎡
⎣ 0m,1 −z� 0m,1 −z� Im − z(� + z	)

G2,1 G2,2 E1

G3,1 G3,2 E2

⎤
⎦ ,

M(z) =
⎡
⎣ 0m,1 z(uαT − �) 0m,1 z(uγ T − �) M1

F 0r+1,r+1 0r+1,m

0r+1,r+1 F 0r+1,m

⎤
⎦ ,

and

M1 = Im + zu
(
βT + zηT)− z(� + z	).
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Proof Second equation in (13), applied to test equation (39), yields

U ′
n,i = λUn,i. (41)

Now from (41) and applying (14) to the test equation (39), we obtain

yn+1 = ϕ(1)Ty(r)
n + χ(1)T hy′(r)

n + (ψ(1)T + zρ(1)T)Un (42)

and

hy′
n+1 = ϕ′(1)Ty(r)

n + χ ′(1)T hy′(r)
n + (ψ ′(1)T + zρ′(1)T)Un (43)

which can be written in the following matrices forms

G2,1

[
yn+1

y(r)
n

]
+ G2,2

[
hy′

n+1
hy′(r)

n

]
+ E1Un = F

[
yn

y(r)
n−1

]
(44)

and

G3,1

[
yn+1
y(r)

n

]
+ G3,2

[
hy′

n+1
hy′(r)

n

]
+ E2Un = F

[
hy′

n

hy′(r)
n−1

]
. (45)

Now, with the purpose of finding a recurrence relation, we compute Un −
Un−1, to get

Un − Un−1 = F̄n − F̄n−1 + �n − �n−1

with

F̄n − F̄n−1

= λh
∫ 1

0
un−1(tn−1 + sh)ds

= z

⎛
⎝ r−1∑

k=0

αk yn−1−k +
m∑

j=1

β jUn−1, j + h
r−1∑
k=0

γk y′
n−1−k + z

m∑
j=1

η jUn−1, j

⎞
⎠

= zu
(
αTy(r)

n−1 + hγ Ty′(r)
n−1 + (βT + zηT)Un−1

)
. (46)

On the other hand, we have from (4)

�n,i := �n(tn,i) = λh
∫ ci

0
un(tn + sh)ds

= z

⎛
⎝ r−1∑

k=0

�ik yn−k+
m∑

j=1

�ijUn, j+h
r−1∑
k=0

�ik y′
n−k+z

m∑
j=1

�ijUn, j

⎞
⎠ .

Therefore

�n = z�y(r)
n + hz�y′(r)

n + z(� + z	)Un
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and

�n−�n−1 =z�
(

y(r)
n −y(r)

n−1

)
+z�

(
hy′(r)

n −hy′(r)
n−1

)
+z(�+z	)(Un−Un−1).

(47)

Now computation of difference Un − Un−1, by substituting (46) and (47),
leads to

(Im − z(� + z	))Un − z�y(r)
n − z�hy′(r)

n

= (Im + zu(βT + zηT) − z(� + z	))Un−1 + z(uαT − �)y(r)
n−1

+ z(uγ T − �)hy′(r)
n−1. (48)

Finally from (44), (45) and (48), we obtain

Q(z)

⎡
⎢⎢⎢⎢⎣

yn+1
y(r)

n
hy′

n+1
hy′(r)

n
Un

⎤
⎥⎥⎥⎥⎦ = M(z)

⎡
⎢⎢⎢⎢⎣

yn

y(r)
n−1

hy′
n

hy′(r)
n−1

Un−1

⎤
⎥⎥⎥⎥⎦

which is equivalent to (52). �	

Remark 2 In the case cm = 1, from the interpolation conditions (10), we have

ϕ′
k(1) = ψ ′

j(1) = χ ′
k(1) = 0,

ρ ′
j(1) = 0, j = 1, 2, · · · , m − 1, ρ ′

m(1) = 1.

So from (14), we have y′
n+1 = U ′

n,m = λUn,m = λyn+1. Thus the relation (42) is
equivalent to

yn+1 = (
ϕ(1)T + zχ(1)T) y(r)

n + (
ψ(1)T + zρ(1)T)Un (49)

and can be written in the matrix form

G
[

yn+1

y(r)
n

]
+ E1Un = F

[
yn

y(r)
n−1

]
, (50)

where G = G2,1 + zG2,2. Also (48) can be written in the form

(Im − z(� + z	))Un − z(� + z�)y(r)
n

= (Im + z(uβT + zuηT) − z(� + z	))Un−1 + (z(uαT + zuγ T)

− z(� + z�))y(r)
n−1. (51)

Therefore the exact MHCM applied to the test equation (39) leads to the
following recurrence relation⎡

⎣ yn+1

y(r)
n

Un

⎤
⎦ = R(z)

⎡
⎣ yn

y(r)
n−1

Un−1

⎤
⎦ , (52)
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where R(z) is the stability matrix and it is given by

R(z) = [Q(z)]−1 M(z),

with

Q(z) =
[

0m,1 −z(� + z�) Im − z(� + z	)

G E1

]
,

M(z) =
[

0m,1 M1 M2

F 0r+1,m

]
,

where

M1 = zu
(
αT + zγ T)− z(� + z�),

M2 = Im + zu
(
βT + zηT)− z(� + z	).

Thus in the case of methods having cm = 1, the stability matrix R(z) has the
smaller dimension m + r + 1 instead of m + 2r + 2.

Let us define

�̃ik =
μ0∑
l=1

wilϕk(dil), �̃ij =
μ0∑
l=1

wilψ j(dil),

�̃ik =
μ0∑
l=1

wilχk(dil), λ̃ij =
μ0∑
l=1

wilρ j(dil),

α̃k =
μ1∑
l=1

blϕk(ξl), β̃ j =
μ1∑
l=1

blψ j(ξl),

γ̃k =
μ1∑
l=1

blχk(ξl), η̃ j =
μ1∑
l=1

blρ j(ξl)

and introduce the vectors and matrices

Y = [Yn,1, · · · , Yn,m]T ,

α̃ = [α̃0, · · · , α̃r−1]T , β̃ = [β̃1, · · · , β̃m]T ,

γ̃ = [γ̃0, · · · , γ̃r−1]T , η̃ = [η̃1, · · · , η̃m]T ,

�̃=(�̃ik)∈R
m×r, �̃=(�̃ij)∈R

m×m, �̃=(�̃ik)∈R
m×r, 	̃=(�̃ij)∈R

m×m.

Then:
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Theorem 4 The discretized MHCM, applied to test equation (39), leads to the
following recurrence relation

⎡
⎢⎢⎢⎢⎣

yn+1
y(r)

n
hy′

n+1
hy′(r)

n
Yn

⎤
⎥⎥⎥⎥⎦ = R̃(z)

⎡
⎢⎢⎢⎢⎣

yn

y(r)
n−1

hy′
n

hy′(r)
n−1

Yn−1

⎤
⎥⎥⎥⎥⎦ , (53)

where the stability matrix is given by

R̃(z) =
[

Q̃(z)
]−1

M̃(z),

with

Q̃(z) =
⎡
⎣ 0m,1 −z�̃ 0m,1 −z�̃ Im − z(�̃ + z	̃)

G2,1 G2,2 E1

G3,1 G3,2 E2

⎤
⎦ ,

M̃(z) =
⎡
⎣ 0m,1 z(uα̃

T − �̃) 0m,1 z(uγ̃
T − �̃) M̃1

F 0r+1,r+1 0r+1,m

0r+1,r+1 F 0r+1,m

⎤
⎦ ,

and

M̃1 = Im + zu
(
β̃

T + zη̃
T
)

− z
(
�̃ + z	̃

)
.

Proof The proof is analogous to that of Theorem 3. �	

The stability function of the methods with respect to (39) is defined as

p(w, z) = det(wIm+2r+2 − R(z)). (54)

To investigate the stability properties of the exact MHCM, it is more con-
venient to work with the polynomial obtained by multiplying the stability
function (54) by its denominator. The resulting polynomial which will be
denoted by the same symbol p(w, z), takes the following form

p(w, z) =
m+2r+2∑

i=0

pi(z)wi, (55)

where pi(z), i = 0, 1, · · · , m + 2r + 2, are polynomials of degree less than or
equal to 2m. Denoting by w1, w2, · · · , wm+2r+2, the roots of the polynomial
p(w, z), the region of absolute stability of the methods is defined by

S := {z ∈ C : |wi(z)| < 1, i = 1, 2, · · · , m + 2r + 2}.
To obtain this region we use the boundary locus method [14]. Inserting w = eiθ ,

the roots of (55) describe the stability region.
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4.1 Examples of MHCMs with 2 steps and 1 stage

Consider the MHCMs with 2 steps and 1 collocation parameter c1. The stability
polynomial of this family of methods assumes the form

p(w, z) = w2(p5(z)w5 + p4(z)w4 + · · · + p0(z)
)
,

where pi(z), i = 0, 1, · · · , 5 are polynomials of degree less than or equal to 2.
Performing a computer search based on the boundary locus method, shows
that this family of methods are A-stable of order 6 for c1 ∈ [0.22, 0.39] ∪
[0.67, 0.72].

4.2 Examples of MHCMs with 2 steps and 2 stages

Consider MHCMs with 3 steps and 2 collocation parameters c1 and c2. The
stability polynomial for this family of methods is of the form

p(w, z) = w2(p6(z)w6 + p5(z)w5 + · · · + p0(z)),

where pi(z), i = 0, 1, · · · , 6 are polynomials of degree less than or equal to
4. Performing an extensive computer search based on the boundary locus
method, we obtain A-stable methods of order 8 when both collocation para-
meters are within the region reported in Fig. 1.

4.3 Examples of MHCMs with 3 steps and 1 stage

Consider the MHCMs with 3 steps and 1 collocation parameter c1. The stability
polynomial of this family of methods assumes the form

p(w, z) = w2(p7(z)w7 + p6(z)w6 + · · · + p0(z)
)
,

Fig. 1 Acceptable (c1, c2)

pairs for A-stability of
MHCMs with r = 2, m = 2

0 1
0

1

c1

c2
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Fig. 2 Acceptable (c1, c2)

pairs for A-stability of
MHCMs with r = 3, m = 2

0 1
0

1

c1

c2

where pi(z), i = 0, 1, · · · , 7 are polynomials of degree less than or equal to 2.
Performing a computer search based on the boundary locus method, shows
that this family of methods are A-stable of order 8 for c1 ∈ [0.27, 0.32].

4.4 Examples of MHCMs with 3 steps and 2 stages

Consider MHCMs with 3 steps and 2 collocation parameters c1 and c2. The
stability polynomial for this family of methods is of the form

p(w, z) = w2(p8(z)w8 + p7(z)w7 + · · · + p0(z)),

where pi(z), i = 0, 1, · · · , 8 are polynomials of degree less than or equal to 4.
Performing an extensive computer search based on the boundary locus method,

Fig. 3 Stability region for
MHCM with r = 3, m = 1,

c1 = 1
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Fig. 4 Stability region for
MHCM with r = 3, m = 2,

c1 = 0.7, c2 = 1
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we obtain A-stable methods of order 10 when both collocation parameters are
within the region reported in Fig. 2.

Remark 3 Figure 3 shows the stability region for MHCM with r = 3, m = 1
and Fig. 4 shows the stability region for MHCM with r = 3, m = 2 and c1 = 7

10 ,

c2 = 1 as collocation parameters.

Remark 4 In the discretized MHCMs, the order of applied quadrature rules
is at least the same proved order for MHCMs in Section 3. These rules are
exact for ϕk(s), χk(s), k = 0, 1, · · · , r − 1, ψ j(s), ρ j(s) and j = 1, 2, · · · , m,

since these polynomials are of degree 2m + 2r − 1. Thus we have

R̃(z) = R(z)

and so the stability regions plotted in Figs. 1 and 2 do not change for the
discretized cases.

5 Numerical experiments

In this section illustrative examples are given to show efficiency of proposed
methods. We solve the given problems by MHCMs and compare the results
with multistep collocation method [9]. Here the starting values y1, · · · , yr−1
and y′

1, · · · , y′
r−1 are obtained by a one step MHCM of the same order of the

present method, i.e. the number of collocation abscissas must be m + r − 1. It
must be mentioned that in [9] the starting values y1, · · · , yr−1 have been taken
from the known exact solutions.

In practice, we need quadrature rules to obtain numerical solutions. For this
purpose, we have to apply the rules that preserve order of the main method. A
suitable choice is Gauss quadrature formulas with m + r − 1 points.



48 Numer Algor (2012) 60:27–50

In what follows, we describe details of the implemented methods:

– Method 1: MHCM of convergence order 10 with r = 3, m = 2, and
collocation parameters c1 = 0.8, c2 = 1.

– Method 2: MHCM of convergence order 8 with r = 2, m = 2, and colloca-
tion parameters c1 = 0.7, c2 = 1, which is an A-stable method.

– Method 3: MHCM of convergence order 8 with r = 2, m = 2, and colloca-
tion parameters c1 = 0.55, c2 = 1, which has bounded stability region.

– Method 4: Multistep collocation method of local superconvergence order 8
[9] with r = 3, m = 3, and collocation parameters c1 = 103

194 −
√

89355
1358 , c2 =

103
194 +

√
89355
1358 , c3 = 1.

Computational experiments are doing by applying the methods 1–4 on the
following problems:

I The linear VIE

y(t) = et +
∫ t

0
2 cos(t − τ)y(τ )dτ, t ∈ [0, 10],

with exact solution y(t) = et(1 + t)2.

II The nonlinear VIE

y(t) = 2 − cos(t) −
∫ t

0
sin(ty(τ ) − τ)dτ, t ∈ [0, 5],

with exact solution y(t) ≡ 1.

III The nonlinear VIE

y(t) = 1 +
∫ t

0
e−t y2(τ )dτ, t ∈ [0, 5],

with the exact solution y(t) = et.

IV The linear stiff VIE [16]

y(t) = sin t + λ(1 − cos t) − λ

∫ t

0
y(τ )dτ, t ∈ [0, 20],

with the exact solution y(t) = sin t.
In the Tables 1, 2 and 3, maximal end point errors are 10−cd, where cd

denotes the number of correct digits. Convergence order of the method is
defined by p(h) = Log2(

e(2h)

e(h)
), where e(h) is the maximal absolute end point

error. In Table 4, we show the effect of linear stability of the methods 2 and 3 in
solving the stiff problem IV. The absolute stability region for the method 3, is
bounded. For z = λh out of this region, increasing of absolute error is evidently
seen while this does not happen for the method 2, which is an A-stable method
and the obtained results are acceptable.
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Table 1 The results of
problem I

N 8 16 32 64 128 256

Method 1 cd 5.04 7.87 10.77 13.74 16.72 19.72
p(h) 9.40 9.67 9.83 9.91 9.95

Method 2 cd 3.89 6.24 8.61 11.01 13.40 15.80
p(h) 7.82 7.89 7.94 7.96 7.98

Table 2 The results of
problem II

N 8 16 32 64 128 256

Method 1 cd 14.63 17.56 20.53 23.51 26.52 29.52
p(h) 9.74 9.84 9.92 9.96 9.98

Method 2 cd 11.22 13.54 15.90 18.28 20.68 23.09
p(h) 7.71 7.84 7.92 7.96 7.98

Table 3 The results of
problem III

N 8 16 32 64 128 256

Method 1 cd 9.78 12.86 15.91 18.93 21.92 24.96
p(h) 10.23 10.10 10.05 9.96 10.06

Method 2 cd 8.30 10.71 13.12 15.52 17.93 20.34
p(h) 8.01 8.00 8.00 8.00 8.00

Table 4 Comparison
absolute errors of the
methods 2 and 3 for problem
IV with λ = 400

Method 2 Method 3
t N = 128 N = 256 N = 128 N = 256

2.5 9.440E−14 3.270E−16 1.481E−12 4.052E−16
5 1.263E−14 5.372E−16 7.485E−11 4.994E−16
10 4.669E−14 8.603E−16 1.888E−07 1.334E−16
15 9.981E−14 3.553E−16 4.766E−04 4.237E−16
20 1.033E−13 4.797E−16 1.203E+00 3.738E−16

Fig. 5 The number of kernel
evaluations for problem I
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We compare the performance of MHCMs with respect to the multistep col-
location methods in terms of computational cost. Figure 5 shows the number of
kernel evaluations, ke, including kernel derivatives, with respect to the correct
digits of methods 2 and 4 for solving the problem I.

6 Conclusion

In the introduced methods which are a new class of multistep collocation
methods, the first derivative of approximate solution in r previous mesh points
and m collocation points, as well as the values of approximate solution in
these points, are used. The applied technique not only gets methods of higher
orders, but also causes to A-stable methods in some cases and the approximate
solution is more smooth than the approximate solution in multistep collocation
methods and collocation methods.
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