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Abstract The numerical solution of linear discrete ill-posed problems typi-
cally requires regularization, i.e., replacement of the available ill-conditioned
problem by a nearby better conditioned one. The most popular regularization
methods for problems of small to moderate size, which allow evaluation of
the singular value decomposition of the matrix defining the problem, are
the truncated singular value decomposition and Tikhonov regularization. The
present paper proposes a novel choice of regularization matrix for Tikhonov
regularization that bridges the gap between Tikhonov regularization and
truncated singular value decomposition. Computed examples illustrate the
benefit of the proposed method.

Keywords Ill-posed problem · Tikhonov regularization ·
Truncated singular value decomposition · Regularization matrix

1 Introduction

Consider the computation of an approximate solution of the minimization
problem

min
x∈Rn

‖Ax − b‖, (1.1)

where ‖ · ‖ denotes the Euclidean vector norm and A ∈ R
m×n is a matrix

with many singular values of different sizes close to the origin. Minimization
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problems (1.1) with a matrix of this kind often are referred to as discrete ill-
posed problems. They arise, for example, from the discretization of linear ill-
posed problems, such as Fredholm integral equations of the first kind with a
smooth kernel. The vector b ∈ R

m in (1.1) represents error-contaminated data.
We will for notational simplicity assume that m ≥ n; however, the methods
discussed also can be applied when m < n.

Let e ∈ R
m denote the (unknown) error in b, and let b̂ ∈ R

m be the
(unknown) error-free vector associated with b, i.e.,

b = b̂ + e. (1.2)

We sometimes will refer to the vector e as “noise.” The (unavailable) linear
system of equations with error-free right-hand side,

Ax = b̂, (1.3)

is assumed to be consistent; however, we do not require the least-squares
problem with error-contaminated data b (1.1) to be consistent.

Let A† denote the Moore-Penrose pseudoinverse of A. We are interested
in computing an approximation of the solution x̂ = A† b̂ of minimal Euclidean
norm of the error-free linear system (1.3) by determining an approximate
solution of the error-contaminated least-squares problem (1.1). Note that the
solution of (1.1),

x̆ = A†b = A†(b̂ + e) = x̂ + A†e, (1.4)

typically is dominated by the propagated error A†e and then is meaningless.
Tikhonov regularization seeks to determine a useful approximation of x̂ by

replacing the minimization problem (1.1) by a penalized least-squares problem
of the form

min
x∈Rn

{‖Ax − b‖2 + ‖Lμx‖2}, (1.5)

where the matrix Lμ ∈ R
k×n, k ≤ n, is referred to as the regularization matrix.

The scalar μ > 0 is known as the regularization parameter. The matrix Lμ is
commonly chosen to be μI, where I denotes the identity matrix; however, if
the desired solution x̂ has particular known properties, then it may be mean-
ingful to let Lμ be a scaled finite difference approximation of a differential
operator or a scaled orthogonal projection; see, e.g., [1–3, 5, 7, 10, 11] for
examples.

Solving (1.5) requires both the determination of a suitable value of μ > 0
and the computation of the associated solution x = xμ of the minimization
problem. We will assume that a bound for the norm of the error-vector e is
known. Then μ can be determined with the aid of the discrepancy principle; see
below for details. The use of the discrepancy principle to determine μ generally
requires the solution of (1.5) for several values of μ. When Lμ = μI and the
singular value decomposition (SVD) of A is available, the desired value of
μ can be computed inexpensively by using a zero-finder, such as Newton’s
method.
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The regularization matrices mentioned above are linear functions of μ. We
use the notation Lμ (instead of μL), because we will introduce a regularization
matrix that depends on μ in a nonlinear fashion. This regularization matrix
may be an attractive substitute for μI when no particular properties of the
desired solution x̂ are known. Similarly as when the regularization matrix
μI is used, the solution of (1.5) with the proposed matrix Lμ easily can be
computed when the SVD of A is available. Our new regularization matrix is
designed to dampen low frequencies less than the matrix Lμ = μI. Numerical
examples illustrate the proposed regularization matrix to often yield more
accurate approximations xμ of x̂ than the regularization matrix Lμ = μI.

Another common regularization method for (1.1) is the truncated SVD
(TSVD) method. In this method the smallest singular values of A are set to
zero and the minimal-norm solution of the resulting least-squares problem is
computed. We determine the truncation index with the discrepancy principle
and compare TSVD with Tikhonov regularization.

This paper is organized as follows. Section 2 discusses regularization by
the TSVD and Tikhonov methods and introduces our new regularization
matrix. Section 3 contains a few computed examples. Concluding remarks and
comments on possible extensions can be found in Section 4.

2 Regularization methods

We first introduce the SVD of A and then discuss regularization by the TSVD
and Tikhonov methods. The SVD of A is given by

A = U�VT , (2.1)

where U = [u1, u2, . . . , um] ∈ R
m×m and V = [v1, v2, . . . , vn] ∈ R

n×n are or-
thogonal matrices, and

� = diag[σ1, σ2, . . . , σn] ∈ R
m×n

is a (possibly rectangular) diagonal matrix, whose nonnegative diagonal entries
σ j are the singular values of A. They are ordered according to σ1 ≥ σ2 ≥ . . . ≥
σn ≥ 0.

Let A be of rank �. Then (2.1) can be expressed as

A =
�∑

j=1

σ ju jv
T
j (2.2)

with σ1 ≥ σ2 ≥ . . . ≥ σ� > 0. When the matrix A stems from the discretization
of a Fredholm integral equation of the first kind with a smooth kernel,
the vectors v j and u j represent discretizations of singular functions that are
defined on the domains of the integral operator and its adjoint, respectively.
These singular functions typically oscillate more with increasing index. The
representation (2.2) then is a decomposition of A into rank-one matrices u jv

T
j
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that represent more and more oscillatory components of A with increasing
index j.

2.1 Regularization by truncated singular value decomposition

The Moore-Penrose pseudoinverse of A is given by

A† =
�∑

j=1

σ−1
j v juT

j .

The difficulty of solving (1.1) without regularization stems from the fact that
the matrix A has “tiny” positive singular values and the computation of the
solution (1.4) of (1.1) involves division by these tiny singular values. This
results in severe propagation of the error e in b and of round-off errors
introduced during the calculations into the computed solution of (1.1).

Regularization by the TSVD method overcomes this difficulty by ignoring
the tiny singular values of A. Introduce, for k ≤ �, the rank-k approximation
of A,

Ak =
k∑

j=1

σ ju jv
T
j ,

with Moore-Penrose pseudoinverse

A†
k =

k∑

j=1

σ−1
j v juT

j .

The TSVD method yields approximate solutions of (1.1) of the form

xk = A†
kb =

k∑

j=1

uT
j b

σ j
v j, k = 1, 2, . . . , �. (2.3)

It is convenient to use the transformed quantities

x̃k = VT xk, b̃ = [b̃1, b̃2, . . . , b̃m]T = U T b

in the computations. Thus, we compute

x̃k =
[

b̃1

σ1
,

b̃2

σ2
, . . . ,

b̃k

σk
, 0, . . . , 0

]T

(2.4)

for a suitable value of 1 ≤ k ≤ � and then determine the approximate solution
xk = V x̃k of (1.1).

Assume that a bound for the norm of the error

‖e‖ ≤ ε
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is available. We then can determine the truncation index k by the discrepancy
principle, i.e., we choose k as small as possible so that

‖Axk − b‖ ≤ ηε, (2.5)

where η > 1 is a user-specified constant independent of ε. Thus, the truncation
index k = kε depends on ε and generally increases as ε decreases. A proof of
the convergence of xkε

to x̂ as ε ↘ 0 in a Hilbert space setting is presented in
[5]. It requires the constant η > 1 in (2.5). In actual computations, we use the
representation

‖Axk − b‖2 =
m∑

j=k+1

b̃ 2
j

to determine kε from (2.5). Further details on regularization by TSVD can be
found in, e.g., [5, 7].

2.2 Tikhonov regularization with Lμ = μI

Substituting (2.1), x̃ = VT x, b̃ = U T b, and Lμ = μI into (1.5) yields the
penalized least-squares problem

min
x̃∈Rn

{‖� x̃ − b̃‖2 + μ2‖̃x‖2}

with solution

x̃μ = (�T� + μ2 I)−1�T b̃ (2.6)

for μ > 0. The solution of (1.5) is given by xμ = V x̃μ. It satisfies

(AT A + μ2 I)xμ = AT b. (2.7)

The discrepancy principle prescribes that the regularization parameter μ >

0 be determined so that

‖Axμ − b‖ = ηε, (2.8)

or, equivalently, so that

‖� x̃μ − b̃‖2 = η2ε2, (2.9)

where the constant η > 1 is independent of ε. This nonlinear equation for μ

can be solved, e.g., by Newton’s method. Each evaluation of the left-hand
side of (2.9) requires at most O(m) arithmetic floating point operations. The
computational effort needed to determine the desired value of μ therefore
is negligible compared with the O(mn2) arithmetic floating point operations
required for the evaluation of the SVD (2.1) of A. Generally, μ decreases with
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ε. Proofs of the convergence xμ → x̂ as ε ↘ 0 are provided in [5, 6]. The proofs
are in Hilbert space settings and require the constant η > 1 in (2.8).

2.3 Tikhonov regularization with the new regularization matrix

It follows from (2.6) that Tikhonov regularization with Lμ = μI and μ > 0
dampens all components of �T b̃, i.e., all solution components v j of xμ. On the
other hand, TSVD does not dampen any solution component that is not set
to zero; cf. (2.4). It is known that Tikhonov regularization may oversmooth
the computed solution when the regularization parameter is well determined;
see, e.g., [9] for a recent discussion. We propose to choose a regularization
matrix Lμ that provides no damping of solution components v j with small
index.

Introduce

Lμ = DμVT (2.10)

with

D2
μ = diag

[
max{μ2 − σ 2

1 , 0}, max{μ2 − σ 2
2 , 0}, . . . , max{μ2 − σ 2

n , 0}] .

Analogously to (2.6), we obtain

x̃μ = (�T� + D2
μ)−1�T b̃. (2.11)

If σk > μ ≥ σk+1, then

�T� + D2
μ = diag

[
σ 2

1 , σ 2
2 , . . . , σ 2

k , μ2, . . . , μ2] ∈ R
n×n.

In particular, if μ > 0, then the above matrix is positive definite and the
solution (2.11) exists. The corresponding approximate solution of (1.1) is given
by xμ = V x̃μ and satisfies

(AT A + LT
μ Lμ)xμ = AT b; (2.12)

cf. (2.7). The value of μ used in (2.11) is the same as in Section 2.2.
In order to avoid severe propagation of the error e in b into the computed

approximate solution xμ, the smallest eigenvalue of the matrix AT A + LT
μ Lμ,

which is max{μ2, σ 2
n }, has to be sufficiently large. Moreover, we would like

the matrix LT
μ Lμ to be of small norm, because this may help us determine

an accurate approximation of x̂. The following result shows the matrix LT
μ Lμ

to be optimal in the Frobenius norm, which for a matrix M ∈ R
n×n is given by

‖M‖F = √
trace(MT M).

Theorem 2.1 Let M ∈ R
n×n be a symmetric matrix with spectral factorization

M = V�VT, where V ∈ R
n×n is orthonormal and � = diag[λ1, λ2, . . . , λn].
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Assume that μ≥min1≤ j≤n λ j. Let the diagonal matrix Cμ =diag[c1, c2, . . . , cn] ∈
R

n×n have the entries

c j = max{μ − λ j, 0}, j = 1, 2 . . . , n.

Then the matrix M + VCμVT has the smallest eigenvalue μ and the distance
in the Frobenius norm between M and the closest symmetric matrix with the
smallest eigenvalue μ is ‖Cμ‖F.

Proof Let N ∈ R
n×n be a symmetric matrix such that all eigenvalues of H =

M + N are larger than or equal to μ. Let the eigenvalues λ1, λ2, . . . , λn of
M and γ1, γ2, . . . , γn of H be arranged in nondecreasing order. Then by the
Wielandt-Hoffman theorem, see, e.g., [12, pp. 104–108], we have that

‖N‖2
F = ‖H − M‖2

F ≥
n∑

j=1

(γ j − λ j)
2.

The right-hand side is minimal when γ j = max{λ j, μ} for all j. Therefore

‖N‖2
F ≥

∑

λ j<μ

(μ − λ j)
2.

The theorem now follows from the observation that

‖VCμVT‖2
F = ‖Cμ‖2

F =
∑

λ j<μ

(μ − λ j)
2.

�	

Corollary 2.2 Let Lμ be def ined by (2.10) and assume that μ and σ1 are strictly
positive. Then

‖Lμ‖2
F < ‖μI‖2

F .

Proof We have

‖Lμ‖2
F = ‖Dμ‖2

F =
∑

σ 2
j <μ2

(μ2 − σ 2
j ) < nμ2 = ‖μI‖2

F .

�	

We recall that for Tikhonov regularization with the regularization matrices
Lμ = μI or (2.10), the value of the regularization parameter μ is determined
by the discrepancy principle based on the regularization matrix Lμ = μI as
described in Section 2.2. By Corollary 2.2, the matrix in the regularized normal
equations (2.7) with Lμ = μI differs more from AT A than the matrix in the
regularized normal equations (2.12) with the regularization matrix (2.10). This
suggests that the solution of (2.12) may be a better approximation of the
desired solution x̂ than the solution of (2.7). The numerical examples in Section
3 show this, indeed, often to be the case.
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It is informative to consider the filter factors for the methods discussed.
Investigations of regularization methods with the aid of filter factors can
be found in Hansen [7] for TSVD and Tikhonov regularization with Lμ =
μI. Donatelli and Serra-Capizzano [4] use filter factors to study multilevel
methods. The unregularized solution x = A†b of (1.1) can be expressed as

x =
�∑

j=1

uT
j b

σ j
v j.

The filter factors show how the components are modified by the regularization
method used. For instance, for the TSVD solution xk given by (2.3), we have

xk =
�∑

j=1

ϕ
(TSVD)

k, j

uT
j b

σ j
v j

with the filter factors

ϕ
(TSVD)

k, j =
{

1, 1 ≤ j ≤ k,

0, k < j ≤ �.

Similarly, the Tikhonov solution xμ = V x̃μ defined by (2.6) with Lμ = μI can
be written as

xμ =
�∑

j=1

ϕ
(Tikhonov)

μ, j

uT
j b

σ j
v j

with the filter factors

ϕ
(Tikhonov)

μ, j = σ 2
j

σ 2
j + μ2

, 1 ≤ j ≤ �.

Assume that σk >μ≥σk+1 and let μ>0; if k = n, then we define σn+1 = 0.
Our new Tikhonov regularization method with Lμ given by (2.10) can be
expressed as

xμ =
�∑

j=1

ϕ
(new)

μ, j

uT
j b

σ j
v j

with the filter factors

ϕ
(new)

μ, j =
⎧
⎨

⎩

1, 1 ≤ j ≤ k,

σ 2
j

μ2 , k < j ≤ �.

Thus, these filter factors are the same as ϕ
(TSVD)

k, j for 1 ≤ j ≤ k, and close to

ϕ
(Tikhonov)

μ, j for k < j ≤ �.
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3 Computed examples

The calculations of this section were carried out using the Python programming
language with the open source numerical computation modules NumPy and
SciPy. Floating point arithmetic was done with 64 bits, i.e., machine epsilon
was about 2.2 · 10−16. The computed examples are taken from the MATLAB
package Regularization Tools [8] and were imported into Python using Pytave,
an open source Python module wrapper for Octave.

All examples are obtained by discretizing Fredholm integral equations of
the first kind

∫ b

a
κ(s, t)x(t) dt = g(s), c ≤ s ≤ d, (3.1)

with a smooth kernel κ . The discretizations are carried out by Galerkin or
Nyström methods and yield linear discrete ill-posed problems (1.1). MATLAB
functions in [8] determine discretizations A ∈ R

n×n of the integral operators
and scaled discrete approximations x̂ ∈ R

n of the solution x of (3.1). We add an
error vector e ∈ R

n with normally distributed random entries with zero mean
to b̂ = Ax̂ to obtain the vector b in (1.1); cf. (1.2). The vector e is scaled to
yield a specified noise level ‖e‖/‖b̂‖. In particular, ‖e‖ is available and we can
apply the discrepancy principle with ε = ‖e‖ to determine the regularization
parameter μ in Tikhonov regularization and the truncation index k in TSVD.
We let η = 1 in (2.5) and (2.9) in the computed examples.

Let xcomp denote the computed solution using TSVD or Tikhonov regular-
ization with Lμ defined by (2.10) or with Lμ = μI. We are interested in the
relative error ‖xcomp − x̂‖/‖x̂‖ determined by these regularization methods.
This error depends on the entries of the error vector e. To gain insight into
the average behavior of the solution methods, we report in every example the
average of the relative errors in xcomp over 1,000 runs for each noise level. We
let n = 200 in all examples.

Example 3.1 We first consider the problem phillips from [8]. Let

φ(t) =
{

1 + cos( π t
3 ), |t| < 3,

0, |t| ≥ 3.

The kernel, right-hand side function, and solution of the integral equation (3.1)
are given by

κ(s, t) = φ(s − t), x(t) = φ(t),

g(s) = (6 − |s|)
(

1 + 1
2

cos
(πs

3

))
+ 9

2π
sin

(
π |s|

3

)
.
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Fig. 1 Example 3.1: the
computed solutions
determined with Lμ defined
by (2.10) (solid red graph),
with Lμ = μI (dashed green
graph), and with TSVD
(dash-dotted blue graph). The
vector b is contaminated by
10% noise. The solid blue
graph, which is flat near the
ends, displays x̂

and a = c = −6, b = d = 6. Figure 1 shows computed solutions determined by
TSVD and Tikhonov regularization using the regularization matrices Lμ = μI
and (2.10). Table 1 displays the averages of the relative errors in the computed
solutions over 1,000 runs for each noise level. Tikhonov regularization with the
regularization matrix (2.10) is seen to yield the smallest average errors for all
noise levels considered.

Example 3.2 The test problem shaw from [8] is an integral equation (3.1)
with

κ(s, t) = (cos(s) + cot(t))2
(

sin(u)

u

)2

, u = π(sin(s) + sin(t)),

x(t) = 2 exp

(
−6

(
t − 4

5

)2
)

+ exp

(
−2

(
t + 1

2

)2
)

.

and a = c = −π/2, b = d = π/2. Table 2 shows the average relative er-
rors in the computed solutions over 1,000 runs for each noise level.

Table 1 Example 3.1: average relative errors in the computed solutions for the phillips test
problem for several noise levels

Noise level Tikhonov regularization TSVD
% L defined by (2.10) L = μI

10.0 2.39 · 10−2 5.12 · 10−2 4.27 · 10−2

5.0 2.29 · 10−2 3.52 · 10−2 2.49 · 10−2

1.0 1.69 · 10−2 2.00 · 10−2 2.41 · 10−2

0.1 6.04 · 10−3 8.75 · 10−3 9.75 · 10−3
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Table 2 Example 3.2: average relative errors in the computed solutions for the shaw test problem
for several noise levels

Noise level Tikhonov regularization TSVD
% L defined by (2.10) L = μI

10.0 1.60 · 10−1 1.70 · 10−1 1.60 · 10−1

5.0 1.51 · 10−1 1.56 · 10−1 1.51 · 10−1

1.0 8.43 · 10−2 1.10 · 10−1 8.69 · 10−2

0.1 4.68 · 10−2 4.91 · 10−2 4.76 · 10−2

Tikhonov regularization with Lμ defined by (2.10) yields the smallest relative
errors.

Example 3.3 We consider the problem ilaplace from [8], which is a discretiza-
tion of an inverse Laplace transform with

κ(s, t) = exp(−st), x(t) = exp(−t/2), g(s) = 2
2s + 1

,

and a = c = 0, b = d = ∞. Table 3 displays the average relative errors in the
computed solutions for each noise level. Tikhonov regularization with Lμ

defined by (2.10) yields the smallest relative errors over 1,000 runs for each
noise level.

Example 3.4 This test problem uses the code deriv2 in [8]. The kernel, solu-
tion, and right-hand side of (3.1) are given by

κ(s, t) =
{

s(t − 1), s < t,
t(s − 1), s ≥ t,

x(t) = t,

g(s) = s3 − s
6

,

and a = c = 0, b = d = 1. Thus, the kernel k is the Green’s function for
the second derivative. Table 4 shows the average relative errors in the

Table 3 Example 3.3: average relative errors in the computed solutions for the ilaplace test
problem for several noise levels

Noise level Tikhonov regularization TSVD
% L defined by (2.10) L = μI

10.0 2.04 · 10−1 2.15 · 10−1 2.14 · 10−1

5.0 1.92 · 10−1 2.02 · 10−1 1.99 · 10−1

1.0 1.72 · 10−1 1.78 · 10−1 1.76 · 10−1

0.1 1.46 · 10−1 1.50 · 10−1 1.48 · 10−1
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Table 4 Example 3.4: average relative errors in the computed solutions for the deriv2 test problem
for several errors

Noise level Tikhonov regularization TSVD
% L defined by (2.10) L = μI

10.0 3.16 · 10−1 3.47 · 10−1 3.30 · 10−1

5.0 2.84 · 10−1 3.10 · 10−1 3.01 · 10−1

1.0 2.19 · 10−1 2.39 · 10−1 2.42 · 10−1

0.1 1.51 · 10−1 1.64 · 10−1 1.72 · 10−1

computed solutions over 1,000 runs for several noise levels. Tikhonov reg-
ularization with the regularization matrix (2.10) gives the smallest average
errors.

Example 3.5 In the above examples the regularization parameter μ for
Tikhonov regularization and the truncation index k for TSVD are determined
with the aid of the discrepancy principle. The present example compares
the performance of the methods when the optimal values of μ and the
truncation index are used, i.e., we use the values that give the most accurate
approximations of x̂. These values of μ and k generally are not available when
solving discrete ill-posed problems. This example illustrates that the superior
performance of Tikhonov regularization with the regularization matrix (2.10)
in Examples 3.1–3.4 does not depend on that the discrepancy principle was
used to compute μ and the truncation index k in these examples. Table 5 shows
average relative errors in the computed solutions for Tikhonov regularization
using the regularization matrices Lμ = μI and (2.10), as well as for TSVD, for
the test problem of Example 3.1. Tikhonov regularization with the regulariza-
tion matrix (2.10) is seen to yield the smallest average relative errors for all
noise levels.

The above example suggests that Tikhonov regularization with the regular-
ization matrix (2.10) may be attractive also when the regularization parameter
μ is determined by methods other than the discrepancy principle, such as by
extrapolation [1–3], generalized cross validation, or the L-curve [7].

Table 5 Example 3.5: average relative errors in the computed solutions for the phillips test
problem with optimal regularization parameter μ for several noise levels

Noise level Tikhonov regularization TSVD
% L defined by (2.10) L = μI

10.0 2.33 · 10−2 4.39 · 10−2 4.27 · 10−2

5.0 2.16 · 10−2 3.17 · 10−2 2.49 · 10−2

1.0 1.57 · 10−2 1.92 · 10−2 2.39 · 10−2

0.1 5.47 · 10−3 8.19 · 10−3 9.92 · 10−3
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4 Conclusion and extensions

In all examples of Section 3, as well as in many other computed examples,
Tikhonov regularization with the regularization matrix (2.10) yields a smaller
average error in the computed approximate solutions than Tikhonov regular-
ization with the regularization matrix Lμ = μI and TSVD. The regularization
matrix (2.10) therefore can be attractive to use when the SVD of the matrix
A in (1.1) can be computed. We remark that the regularization method of
the present paper can be applied to penalized least-squares problems (1.5)
with a fairly general (linear) regularization matrix Lμ after the least-squares
problem has been transformed into standard form. Transformation methods
are discussed, e.g., in [7, Sections 2.3.1 and 2.3.2] and [11]. The regularization
method can be applied to large-scale problems after these have been reduced
to small or moderate size by a Krylov subspace method.

Acknowledgement We would like to thank a referee for suggestions that improved the
presentation.
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