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Abstract We propose a prototypical Split Inverse Problem (SIP) and a new
variational problem, called the Split Variational Inequality Problem (SVIP),
which is a SIP. It entails finding a solution of one inverse problem (e.g., a
Variational Inequality Problem (VIP)), the image of which under a given
bounded linear transformation is a solution of another inverse problem such
as a VIP. We construct iterative algorithms that solve such problems, under
reasonable conditions, in Hilbert space and then discuss special cases, some of
which are new even in Euclidean space.
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1 Introduction

In this paper we introduce a new problem, which we call the Split Variational
Inequality Problem (SVIP). The connection of SVIP to inverse problems
and many relevant references to earlier work are presented in Section 2.
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Let H1 and H2 be two real Hilbert spaces. Given operators f : H1 → H1
and g : H2 → H2, a bounded linear operator A : H1 → H2, and nonempty,
closed and convex subsets C ⊆ H1 and Q ⊆ H2, the SVIP is formulated as
follows:

find a point x∗ ∈ C such that 〈 f (x∗), x − x∗〉 ≥ 0 for all x ∈ C (1.1)

and such that

the point y∗ = Ax∗ ∈ Q and solves 〈g(y∗), y − y∗〉 ≥ 0 for all y ∈ Q. (1.2)

When looked at separately, (1.1) is the classical Variational Inequality Prob-
lem (VIP) and we denote its solution set by SOL(C, f ). The SVIP constitutes
a pair of VIPs, which have to be solved so that the image y∗ = Ax∗, under
a given bounded linear operator A, of the solution x∗ of the VIP in H1, is a
solution of another VIP in another space H2.

SVIP is quite general and should enable split minimization between two
spaces so that the image of a solution point of one minimization problem,
under a given bounded linear operator, is a solution point of another min-
imization problem. Another special case of the SVIP is the Split Feasibility
Problem (SFP) which had already been studied and used in practice as a
model in intensity-modulated radiation therapy (IMRT) treatment planning;
see [11, 15].

We consider two approaches to the solution of the SVIP. The first approach
is to look at the product space H1 × H2 and transform the SVIP (1.1) and (1.2)
into an equivalent Constrained VIP (CVIP) in the product space. We study
this CVIP and devise an iterative algorithm for its solution, which becomes
applicable to the original SVIP via the equivalence between the problems.
Our new iterative algorithm for the CVIP, thus for the SVIP, is inspired by
an extension of the extragradient method of Korpelevich [30]. In the second
approach we present a method that does not require the translation to a
product space. This algorithm is inspired by the work of Censor and Segal [20]
and Moudafi [34].

Our paper is organized as follows. The connection of SVIP to inverse prob-
lems and many relevant references to earlier work are presented in Section 2.
In Section 3 we present some preliminaries. In Section 4 the algorithm for
the constrained VIP is presented. In Section 5 we analyze the SVIP and
present its equivalence with the CVIP in the product space. In Section 6
we first present our method for solving the SVIP, which does not rely on
any product space formulation, and then prove convergence. In Section 7 we
present some applications of the SVIP. It turns out that in addition to helping
us solve the SVIP, the CVIP unifies and improves several existing problems
and methods where a VIP has to be solved with some additional constraints.
Further relations of our results to previously published work are discussed in
detail after Theorems 4.5 and 6.3.
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2 The Split Variational Inequality Problem as a methodology
for inverse problems

Following the case which has already been studied and used in practice as a
model in intensity-modulated radiation therapy (IMRT) treatment planning;
see [11, 15], a prototypical Split Inverse Problem (SIP) concerns a model in
which there are two spaces X and Y and there is given a bounded linear
operator A : X → Y. Additionally, there are two inverse problems involved,
one inverse problem denoted IP1 formulated in the space X and another
inverse problem IP2 formulated in the space Y. The Split Inverse Problem
(SIP) is the following:

find a point x∗ ∈ X that solves IP1 (2.1)

such that

the point y∗ = Ax∗ ∈ Y solves IP2. (2.2)

Many models of inverse problems can be cast in this framework by choosing
different inverse problems for IP1 and IP2. The Split Convex Feasibility Prob-
lem (SCFP) first published in Numerical Algorithms [14] is the first instance
of a SIP in which the two problems IP1 and IP2 are CFPs each. This was used
for solving an inverse problem in radiation therapy treatment planning in [15].
More work on the SCFP can be found in [6, 15, 27, 34, 38, 40, 43, 44, 46, 48, 49].
Two candidates for IP1 and IP2 that come to mind are the mathematical models
of the Convex Feasibility Problem (CFP) and the problem of constrained
optimization. In particular, the CFP formalism is in itself at the core of the
modeling of many inverse problems in various areas of mathematics and the
physical sciences; see, e.g., [10] and references therein for an early example.
Over the past four decades, the CFP has been used to model significant real-
world inverse problems in sensor networks, in radiation therapy treatment
planning, in resolution enhancement, in wavelet-based denoising, in antenna
design, in computerized tomography, in materials science, in watermarking,
in data compression, in demosaicking, in magnetic resonance imaging, in
holography, in color imaging, in optics and neural networks, in graph matching
and in adaptive filtering, see [12] for exact references to all the above. More
work on the CFP can be found in [5, 7, 13].

It is therefore natural to investigate if other inversion models for IP1 and IP2,
besides CFP, can be embedded in the SIP methodology. For example, CFP in
the space X and constrained optimization in the space Y? In this paper we
make a step in this direction by formulating a SIP with Variational Inequality
Problems (VIP) in each of the two spaces of the SIP. Since, as is well-known,
both CFP and constrained optimization are special cases of VIP, our newly-
proposed SVIP covers the earlier SCFP and allows for new SIP situations. Such
new situations are described in Section 7 below.
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3 Preliminaries

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, and let
D be a nonempty, closed and convex subset of H. We write xk ⇀ x to indicate
that the sequence

{
xk

}∞
k=0 converges weakly to x, and xk → x to indicate that

the sequence
{

xk
}∞

k=0 converges strongly to x. For every point x ∈ H, there
exists a unique nearest point in D, denoted by PD(x). This point satisfies

‖x − PD (x)‖ ≤ ‖x − y‖ for all y ∈ D. (3.1)

The mapping PD is called the metric projection of H onto D. We know that
PD is a nonexpansive operator of H onto D, i.e.,

‖PD (x) − PD (y)‖ ≤ ‖x − y‖ for all x, y ∈ H. (3.2)

The metric projection PD is characterized by the fact that PD (x) ∈ D and

〈x − PD (x) , PD (x) − y〉 ≥ 0 for all x ∈ H, y ∈ D, (3.3)

and has the property

‖x − y‖2 ≥ ‖x − PD (x)‖2 + ‖y − PD (x)‖2 for all x ∈ H, y ∈ D. (3.4)

It is known that in a Hilbert space H,

‖λx + (1 − λ)y‖2 = λ‖x‖2 + (1 − λ)‖y‖2 − λ(1 − λ)‖x − y‖2 (3.5)

for all x, y ∈ H and λ ∈ [0, 1].
The following lemma was proved in [42, Lemma 3.2].

Lemma 3.1 Let H be a Hilbert space and let D be a nonempty, closed and
convex subset of H. If the sequence

{
xk

}∞
k=0 ⊂ H is Fejér-monotone with

respect to D, i.e., for every u ∈ D,
∥∥xk+1 − u

∥∥ ≤ ∥∥xk − u
∥∥ for all k ≥ 0, (3.6)

then
{

PD
(
xk

)}∞
k=0 converges strongly to some z ∈ D.

The next lemma is also known (see, e.g., [35, Lemma 3.1]).

Lemma 3.2 Let H be a Hilbert space, {αk}∞k=0 be a real sequence satisfying 0 <

a ≤ αk ≤ b < 1 for all k ≥ 0, and let
{
vk

}∞
k=0 and

{
wk

}∞
k=0 be two sequences in

H such that for some σ ≥ 0,

lim sup
k→∞

∥∥vk
∥∥ ≤ σ, and lim sup

k→∞

∥∥wk
∥∥ ≤ σ. (3.7)

If

lim
k→∞

∥∥αkv
k + (1 − αk)w

k
∥∥ = σ, (3.8)

then

lim
k→∞

∥∥vk − wk
∥∥ = 0. (3.9)
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Definition 3.3 Let H be a Hilbert space, D a closed and convex subset of H,

and let M : D → H be an operator. Then M is said to be demiclosed at
y ∈ H if for any sequence

{
xk

}∞
k=0 in D such that xk ⇀ x ∈ D and M(xk) → y,

we have M(x) = y.

Our next lemma is the well-known Demiclosedness Principle [4].

Lemma 3.4 Let H be a Hilbert space, D a closed and convex subset of H, and
N : D → H a nonexpansive operator. Then I − N (I is the identity operator on
H) is demiclosed at y ∈ H.

For instance, the orthogonal projection P onto a closed and convex set is a
demiclosed operator everywhere because I − P is nonexpansive [28, p. 17].

The next property is known as the Opial condition [36, Lemma 1]. It
characterizes the weak limit of a weakly convergent sequence in Hilbert space.

Condition 3.5 (Opial) For any sequence
{

xk
}∞

k=0 in H that converges weakly
to x,

lim inf
k→∞

∥∥xk − x
∥∥ < lim inf

k→∞
∥∥xk − y

∥∥ for all y = x. (3.10)

Definition 3.6 Let h : H → H be an operator and let D ⊆ H.

(i) h is called inverse strongly monotone (ISM) with constant α on
D ⊆ H if

〈h(x) − h(y), x − y〉 ≥ α‖h(x) − h(y)‖2 for all x, y ∈ D. (3.11)

(ii) h is called monotone on D ⊆ H if

〈h(x) − h(y), x − y〉 ≥ 0 for all x, y ∈ D. (3.12)

Definition 3.7 An operator h : H → H is called Lipschitz continuous
on D ⊆ H with constant κ > 0 if

‖h(x) − h(y)‖ ≤ κ‖x − y‖ for all x, y ∈ D. (3.13)

Definition 3.8 Let S : H ⇒ 2H be a point-to-set operator defined on a real
Hilbert space H. S is called a maximal monotone operator if S is
monotone, i.e.,

〈u − v, x − y〉 ≥ 0, for all u ∈ S(x) and for all v ∈ S(y), (3.14)

and the graph G(S) of S,

G(S) := {(x, u) ∈ H × H | u ∈ S(x)} , (3.15)

is not properly contained in the graph of any other monotone operator.
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It is clear that a monotone operator S is maximal if and only if, for each
(x, u) ∈ H × H, 〈u − v, x − y〉 ≥ 0 for all (v, y) ∈ G(S) implies that u ∈ S(x).

Definition 3.9 Let D be a nonempty, closed and convex subset of H. The
normal cone of D at the point w ∈ D is defined by

ND (w) := {d ∈ H | 〈d, y − w〉 ≤ 0 for all y ∈ D}. (3.16)

Let h be an α-ISM operator on D ⊆ H, define the following point-to-set
operator:

S(w) :=
{

h(w) + ND (w) , w ∈ C,

∅, w /∈ C.
(3.17)

In these circumstances, it follows from [39, Theorem 3] that S is maximal
monotone. In addition, 0 ∈ S(w) if and only if w ∈ SOL(D, h).

For T : H → H, denote by Fix(T) the fixed point set of T, i.e.,

Fix(T) := {x ∈ H | T(x) = x}. (3.18)

It is well-known that

x∗ ∈ SOL(D, h) ⇔ x∗ = PD(x∗ − λh(x∗)), (3.19)

i.e., x∗ ∈ Fix(PD(I − λh)). It is also known that every nonexpansive operator
T : H → H satisfies, for all (x, y) ∈ H × H, the inequality

〈(x−T(x))−(y−T(y)), T(y)−T(x)〉≤(1/2)‖(T(x)−x)−(T(y)−y)‖2 (3.20)

and therefore we get, for all (x, y) ∈ H × Fix(T),

〈x − T(x), y − T(x)〉 ≤ (1/2)‖T(x) − x‖2; (3.21)

see, e.g., [26, Theorem 3] and [25, Theorem 1].
In the next lemma we collect several important properties that will be

needed in the sequel.

Lemma 3.10 Let D ⊆ H be a nonempty, closed and convex subset and let h :
H → H be an α-ISM operator on H. If λ ∈ [0, 2α], then

(i) the operator PD(I − λh) is nonexpansive on D.

If, in addition, for all x∗ ∈ SOL(D, h),

〈h(x), PD(I − λh)(x) − x∗〉 ≥ 0 for all x ∈ H, (3.22)

then the following inequalities hold:
(ii) for all x ∈ H and q ∈ Fix(PD(I − λh)),

〈PD(I − λh)(x) − x, PD(I − λh)(x) − q〉 ≤ 0; (3.23)

(iii) for all x ∈ H and q ∈ Fix(PD(I − λh)),

‖PD(I − λh)(x) − q‖2 ≤ ‖x − q‖2 − ‖PD(I − λh)(x) − x‖2 . (3.24)
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Proof

(i) Let x, y ∈ H. Then

‖PD(I − λh)(x) − PD(I − λh)(y)‖2

= ‖PD(x − λh(x)) − PD(y − λh(y))‖2

≤ ‖x − λh(x) − (y − λh(y))‖2

= ‖(x − y) − λ(h(x) − h(y))‖2

= ‖x − y‖2 − 2λ〈x − y, h(x) − h(y)〉 + λ2‖h(x) − h(y)‖2

≤ ‖x − y‖2 − 2λα‖h(x) − h(y)‖2 + λ2‖h(x) − h(y)‖2

= ‖x − y‖2 + λ(λ − 2α)‖h(x) − h(y)‖2

≤ ‖x − y‖2. (3.25)

(ii) Let x ∈ H and q ∈ Fix(PD(I − λh)). Then

〈PD(x − λh(x)) − x, PD(x − λh(x)) − q〉
= 〈PD(x − λh(x)) − x + λh(x) − λh(x), PD(x − λh(x)) − q〉
= 〈PD(x − λh(x)) − (x − λh(x)), PD(x − λh(x)) − q〉

− λ〈h(x), PD(x − λh(x)) − q〉. (3.26)

By (3.3), (3.19) and (3.22), we get

〈PD(x − λh(x)) − x, PD(x − λh(x)) − q〉 ≤ 0. (3.27)

(iii) Let x ∈ H and q ∈ Fix(PD(I − λh)). Then

‖q − x‖2 = ‖(PD(I − λh)(x) − x) − (PD(I − λh)(x) − q)‖2

= ‖PD(I − λh)(x) − x‖2 + ‖PD(I − λh)(x) − q‖2

− 2〈PD(I − λh)(x) − x, PD(I − λh)(x) − q〉. (3.28)

By (ii), we get

−2〈PD(I − λh)(x) − x, PD(I − λh)(x) − q〉 ≥ 0. (3.29)

Thus,

‖q − x‖2 ≥ ‖PD(I − λh)(x) − x‖2 + ‖PD(I − λh)(x) − q‖2 (3.30)

or

‖PD(I − λh)(x) − q‖2 ≤ ‖q − x‖2 − ‖PD(I − λh)(x) − x‖2 , (3.31)

as asserted. ��

Observe that, under the additional condition (3.22), (3.23) means that the
operator PD(I − λh) belongs to the class of operators called the T -class.
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This class T of operators was introduced and investigated by Bauschke and
Combettes in [2, Definition 2.2] and by Combettes in [24]. Operators in this
class were named directed operators by Zaknoon [47] and further studied
under this name by Segal [41] and by Censor and Segal [20–22]. Cegielski [8,
Definition 2.1] studied these operators under the name separating operators.
Since both directed and separating are key words of other, widely-used, mathe-
matical entities, Cegielski and Censor have recently introduced the term cutter
operators [9]. This class coincides with the class F ν for ν = 1 [25] and with the
class DC p for p = −1 [32]. The term firmly quasi-nonexpansive (FQNE) for
T -class operators was used by Yamada and Ogura [45] because every firmly
nonexpansive (FNE) mapping [28, p. 42] is obviously FQNE.

4 An algorithm for solving the Constrained Variational Inequality Problem

Let f : H → H, and let C and � be nonempty, closed and convex subsets of
H. The Constrained Variational Inequality Problem (CVIP) is:

find x∗ ∈ C ∩ � such that
〈
f (x∗), x − x∗〉 ≥ 0 for all x ∈ C. (4.1)

The iterative algorithm for this CVIP, presented next, is inspired by our earlier
work [16, 17] in which we modified the extragradient method of Korpelevich
[30]. The following conditions are needed for the convergence theorem.

Condition 4.1 f is monotone on C.

Condition 4.2 f is Lipschitz continuous on H with constant κ > 0.

Condition 4.3 � ∩ SOL(C, f ) = ∅.

Let {λk}∞k=0 ⊂ [
a, b

]
for some a, b ∈ (0, 1/κ), and let {αk}∞k=0 ⊂ [

c, d
]

for
some c, d ∈ (0, 1). Then the following algorithm generates two sequences that
converge to a point z ∈ � ∩ SOL(C, f ), as the convergence theorem that
follows shows.

Algorithm 4.4

Initialization: Select an arbitrary starting point x0 ∈ H.
Iterative step: Given the current iterate xk, compute

yk = PC
(
xk − λk f

(
xk)) , (4.2)

construct the half-space Tk the bounding hyperplane of which supports C at
yk,

Tk := {w ∈ H | 〈(
xk − λk f

(
xk)) − yk, w − yk〉 ≤ 0}, (4.3)

and then calculate the next iterate by

xk+1 = αkxk + (1 − αk)P�

(
PTk

(
xk − λk f

(
yk))) . (4.4)
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Theorem 4.5 Let f : H → H, and let C and � be nonempty, closed and convex
subsets of H. Assume that Conditions 4.1–4.3 hold, and let

{
xk

}∞
k=0 and

{
yk

}∞
k=0

be any two sequences generated by Algorithm 4.4 with {λk}∞k=0 ⊂ [
a, b

]
for some

a, b ∈ (0, 1/κ) and {αk}∞k=0 ⊂ [
c, d

]
for some c, d ∈ (0, 1). Then

{
xk

}∞
k=0 and

{
yk

}∞
k=0 converge weakly to the same point z ∈ � ∩ SOL(C, f ) and

z = lim
k→∞

P�∩SOL(C, f )
(
xk) . (4.5)

Proof For the special case of fixed λk = τ for all k ≥ 0 this theorem is a direct
consequence of our [17, Theorem 7.1] with the choice of the nonexpansive
operator S there to be P�. However, a careful inspection of the proof of [17,
Theorem 7.1] reveals that it also applies to a variable sequence {λk}∞k=0 as used
here. ��

To relate our results to some previously published works we mention two
lines of research related to our notion of the CVIP. Takahashi and Nadezhkina
[35] proposed an algorithm for finding a point x∗ ∈ Fix(N)∩SOL(C, f ), where
N : C → C is a nonexpansive operator. The iterative step of their algorithm is
as follows. Given the current iterate xk, compute

yk = PC
(
xk − λk f

(
xk)) (4.6)

and then

xk+1 = αkxk + (1 − αk)N
(
PC

(
xk − λk f

(
yk))) . (4.7)

The restriction P�|C of our P� in (4.4) is, of course, nonexpansive, and so it is a
special case of N in [35]. But a significant advantage of our Algorithm 4.4 lies in
the fact that we compute PTk onto a half-space in (4.4) whereas the authors of
[35] need to project onto the convex set C. Various ways have been proposed
in the literature to cope with the inherent difficulty of calculating projections
(onto closed convex sets) that do not have a closed-form expression; see, e.g.,
He et al. [29], or [18].

Bertsekas and Tsitsiklis [3, p. 288] consider the following problem in Euclid-
ean space: given f : Rn → Rn, polyhedral sets C1 ⊂ Rn and C2 ⊂ Rm, and an
m × n matrix A, find a point x∗ ∈ C1 such that Ax∗ ∈ C2 and

〈
f (x∗), x − x∗〉 ≥ 0 for all x ∈ C1 ∩ {y | Ay ∈ C2}. (4.8)

Denoting � = A−1(C2), we see that this problem becomes similar to, but not
identical with a CVIP. While the authors of [3] seek a solution in SOL(C1 ∩
�, f ), we aim in our CVIP at �∩SOL(C, f ). They propose to solve their
problem by the method of multipliers, which is a different approach than ours,
and they need to assume that either C1 is bounded or At A is invertible, where
At is the transpose of A.
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5 The Split Variational Inequality Problem as a Constrained Variational
Inequality Problem in a product space

Our first approach to the solution of the SVIP (1.1) and (1.2) is to look at the
product space H = H1 × H2 and introduce in it the product set D := C × Q
and the set

V := {x = (x, y) ∈ H | Ax = y}. (5.1)

We adopt the notational convention that objects in the product space are
represented in boldface type. We transform the SVIP (1.1) and (1.2) into the
following equivalent CVIP in the product space:

Find a point x∗ ∈ D ∩ V, such that
〈
h(x∗), x − x∗〉 ≥ 0

for all x = (x, y) ∈ D, (5.2)

where h : H → H is defined by

h(x, y) = ( f (x), g(y)). (5.3)

A simple adaptation of the decomposition lemma [3, Proposition 5.7, p. 275]
shows that problems (1.1), (1.2) and (5.2) are equivalent, and, therefore, we
can apply Algorithm 4.4 to the solution of (5.2).

Lemma 5.1 A point x∗ = (x∗, y∗) solves (5.2) if and only if x∗ and y∗ solve (1.1)
and (1.2).

Proof If (x∗, y∗) solves (1.1) and (1.2), then it is clear that (x∗, y∗) solves (5.2).
To prove the other direction, suppose that (x∗, y∗) solves (5.2). Since (5.2)
holds for all (x, y) ∈ D, we may take (x∗, y) ∈ D and deduce that

〈
g(Ax∗), y − Ax∗〉 ≥ 0 for all y ∈ Q. (5.4)

Using a similar argument with (x, y∗) ∈ D, we get
〈
f (x∗), x − x∗〉 ≥ 0 for all x ∈ C, (5.5)

which means that (x∗, y∗) solves (1.1) and (1.2). ��

Using this equivalence, we can now employ Algorithm 4.4 in order to solve
the SVIP. The following conditions are needed for the convergence theorem.

Condition 5.2 f is monotone on C and g is monotone on Q.

Condition 5.3 f is Lipschitz continuous on H1 with constant κ1 > 0 and g is
Lipschitz continuous on H2 with constant κ2 > 0.
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Condition 5.4 V ∩ SOL(D, h) = ∅.

Let {λk}∞k=0 ⊂ [
a, b

]
for some a, b ∈ (0, 1/κ), where κ = min{κ1, κ2}, and let

{αk}∞k=0 ⊂ [
c, d

]
for some c, d ∈ (0, 1). Then the following algorithm generates

two sequences that converge to a point z ∈ V ∩ SOL(D, h), as the conver-
gence theorem given below shows.

Algorithm 5.5

Initialization: Select an arbitrary starting point x0 ∈ H.
Iterative step: Given the current iterate xk, compute

yk = P D
(
xk − λkh

(
xk)) , (5.6)

construct the half-space Tk the bounding hyperplane of which supports D
at yk,

Tk := {w ∈ H | 〈(
xk − λkh

(
xk)) − yk, w − yk〉 ≤ 0}, (5.7)

and then calculate

xk+1 = αkxk + (1 − αk)PV
(
PTk

(
xk − λkh

(
yk))) . (5.8)

Our convergence theorem for Algorithm 5.5 follows from Theorem 4.5.

Theorem 5.6 Consider f : H1 → H1 and g : H2 → H2, a bounded linear operator
A : H1 → H2, and nonempty, closed and convex subsets C⊆ H1 and Q⊆ H2.
Assume that Conditions 5.2–5.4 hold, and let

{
xk

}∞
k=0 and

{
yk

}∞
k=0 be any

two sequences generated by Algorithm 5.5 with {λk}∞k=0 ⊂ [
a, b

]
for some

a, b ∈ (0, 1/κ), where κ = min{κ1, κ2}, and let {αk}∞k=0 ⊂ [
c, d

]
for some c, d ∈

(0, 1). Then
{
xk

}∞
k=0 and

{
yk

}∞
k=0 converge weakly to the same point z ∈ V ∩

SOL(D, h) and

z = lim
k→∞

PV∩SOL(D,h)

(
xk) . (5.9)

The value of the product space approach, described above, depends on the
ability to “translate” Algorithm 5.5 back to the original spaces H1 and H2.

Observe that due to [37, Lemma 1.1] for x=(x, y) ∈ D, we have P D(x) =
(PC(x), PQ(y)) and a similar formula holds for PTk . The potential difficulty
lies in PV of (5.8). In the finite-dimensional case, since V is a subspace,
the projection onto it is easily computable by using an orthogonal basis. For
example, if U is a k-dimensional subspace of Rn with the basis {u1, u2, ..., uk},
then for x ∈ Rn, we have

PU (x) =
k∑

i=1

〈x, ui〉
‖ui‖2 ui. (5.10)
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6 Solving the Split Variational Inequality Problem without a product space

In this section we present a method for solving the SVIP, which does not
need a product space formulation as in the previous section. Recalling that
SOL(C, f ) and SOL(Q, g) are the solution sets of (1.1) and (1.2), respectively,
we see that the solution set of the SVIP is


 := 
(C, Q, f, g, A) := {z ∈ SOL(C, f ) | Az ∈ SOL(Q, g)} . (6.1)

Using the abbreviations T := PQ(I − λg) and U := PC(I − λ f ), we propose
the following algorithm.

Algorithm 6.1

Initialization: Let λ > 0 and select an arbitrary starting point x0 ∈ H1.
Iterative step: Given the current iterate xk, compute

xk+1 = U
(
xk + γ A∗(T − I)

(
Axk)) , (6.2)

where γ ∈ (0, 1/L), L is the spectral radius of the operator A∗ A, and A∗ is the
adjoint of A.

The following lemma, which asserts Fejér-monotonicity, is crucial for the
convergence theorem.

Lemma 6.2 Let H1 and H2 be real Hilbert spaces and let A : H1 → H2 be a
bounded linear operator. Let f : H1 → H1 and g : H2 → H2 be α1-ISM and
α2-ISM operators on H1 and H2, respectively, and set α := min{α1, α2}. Assume
that 
 = ∅ and that γ ∈ (0, 1/L). Consider the operators U = PC(I − λ f ) and
T = PQ(I − λg) with λ ∈ [0, 2α]. Then any sequence

{
xk

}∞
k=0 , generated by

Algorithm 6.1, is Fejér-monotone with respect to the solution set 
.

Proof Let z ∈ 
. Then z ∈ SOL(C, f ) and, therefore, by (3.19) and Lemma
3.10(i), we get

∥∥xk+1 − z
∥∥2 = ∥∥U

(
xk + γ A∗(T − I)

(
Axk)) − z

∥∥2

= ∥∥U
(
xk + γ A∗(T − I)

(
Axk)) − U(z)

∥∥2

≤ ∥∥xk + γ A∗(T − I)
(

Axk) − z
∥∥2

= ∥∥xk − z
∥∥2 + γ 2

∥∥A∗(T − I)
(

Axk)∥∥2

+ 2γ
〈
xk − z, A∗(T − I)

(
Axk)〉 . (6.3)

Thus
∥∥xk+1 − z

∥∥2 ≤ ∥∥xk − z
∥∥2 + γ 2 〈

(T − I)
(

Axk) , AA∗(T − I)
(

Axk)〉

+ 2γ
〈
xk − z, A∗(T − I)

(
Axk)〉 . (6.4)
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From the definition of L it follows, by standard manipulations, that

γ 2 〈
(T − I)

(
Axk) , AA∗(T − I)

(
Axk)〉 ≤ Lγ 2 〈

(T − I)
(

Axk) , (T − I)
(

Axk)〉

= Lγ 2
∥∥(T − I)

(
Axk)∥∥2

. (6.5)

Denoting � := 2γ
〈
xk − z, A∗(T − I)(Axk)

〉
and using (3.21), we obtain

� = 2γ
〈
A

(
xk − z

)
, (T − I)

(
Axk)〉

= 2γ
〈
A

(
xk − z

) + (T − I)
(

Axk) − (T − I)
(

Axk) , (T − I)
(

Axk)〉

= 2γ
(〈

T
(

Axk) − Az, (T − I)
(

Axk)〉 − ∥∥(T − I)
(

Axk)∥∥2
)

≤ 2γ
(
(1/2)

∥∥(T − I)
(

Axk)∥∥2 − ∥∥(T − I)
(

Axk)∥∥2
)

≤ −γ
∥∥(T − I)

(
Axk)∥∥2

. (6.6)

Applying (6.5) and (6.6) to (6.4), we see that
∥∥xk+1 − z

∥∥2 ≤ ∥∥xk − z
∥∥2 + γ (Lγ − 1)

∥∥(T − I)
(

Axk)∥∥2
. (6.7)

From the definition of γ, we get
∥∥xk+1 − z

∥∥2 ≤ ∥∥xk − z
∥∥2

, (6.8)

which completes the proof. ��

Now we present our convergence result for Algorithm 6.1.

Theorem 6.3 Let H1 and H2 be real Hilbert spaces and let A : H1 → H2 be a
bounded linear operator. Let f : H1 → H1 and g : H2 → H2 be α1-ISM and
α2-ISM operators on H1 and H2, respectively, and set α := min{α1, α2}. Assume
that γ ∈ (0, 1/L). Consider the operators U = PC(I − λ f ) and T = PQ(I − λg)

with λ ∈ [0, 2α]. Assume further that 
 = ∅ and that, for all x∗ ∈ SOL(C, f ),

〈 f (x), PC(I − λ f )(x) − x∗〉 ≥ 0 for all x ∈ H1. (6.9)

Then any sequence
{

xk
}∞

k=0 , generated by Algorithm 6.1, converges weakly to a
solution point x∗ ∈ 
.

Proof Let z ∈ 
. It follows from (6.8) that the sequence
{∥∥xk − z

∥∥}∞
k=0 is

monotonically decreasing and therefore convergent, which shows, by (6.7),
that,

lim
k→∞

∥∥(T − I)
(

Axk)∥∥ = 0. (6.10)

Fejér-monotonicity implies that
{

xk
}∞

k=0 is bounded, so it has a weakly con-
vergent subsequence

{
xk j

}∞
j=0 such that xk j ⇀ x∗. By the assumptions on λ
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and g, we get from Lemma 3.10(i) that T is nonexpansive. Applying the
demiclosedness of T − I at 0 to (6.10), we obtain

T(Ax∗) = Ax∗, (6.11)

which means that Ax∗ ∈ SOL(Q, g). Denote

uk := xk + γ A∗(T − I)
(

Axk) . (6.12)

Then

uk j = xk j + γ A∗(T − I)
(

Axk j
)
. (6.13)

Since xk j ⇀ x∗, (6.10) implies that uk j ⇀ x∗ too. It remains to be shown that
x∗ ∈ SOL(C, f ). Assume, by negation, that x∗ /∈ SOL(C, f ), i.e., Ux∗ = x∗.
By the assumptions on λ and f, we get from Lemma 3.10(i) that U is nonex-
pansive and, therefore, U − I is demiclosed at 0. So, the negation assumption
must lead to

lim
j→∞

∥∥U
(
uk j

) − uk j
∥∥ = 0. (6.14)

Therefore, there exists an ε > 0 and a subsequence
{
uk js

}∞
s=0 of

{
uk j

}∞
j=0 such

that
∥∥U

(
uk js

) − uk js
∥∥ > ε for all s ≥ 0. (6.15)

Condition (6.9) justifies the use of Lemma 3.10 by supplying (3.22). Therefore,
inequality (3.24) now yields, for all s ≥ 0,

∥∥U
(
uk js

) − U(z)
∥∥2 = ∥∥U

(
uk js

) − z
∥∥2 ≤ ∥∥uk js − z

∥∥2 − ∥∥U
(
uk js

) − uk js
∥∥2

<
∥∥uk js − z

∥∥2 − ε2. (6.16)

By arguments similar to those in the proof of Lemma 6.2, we have
∥∥uk − z

∥∥ = ∥∥(
xk + γ A∗(T − I)

(
Axk)) − z

∥∥ ≤ ∥∥xk − z
∥∥ . (6.17)

Since U is nonexpansive,
∥∥xk+1 − z

∥∥ = ∥∥U
(
uk) − z

∥∥ ≤ ∥∥uk − z
∥∥ . (6.18)

Combining (6.17) and (6.18), we get
∥∥xk+1 − z

∥∥ ≤ ∥∥uk − z
∥∥ ≤ ∥∥xk − z

∥∥ , (6.19)

which means that the sequence {x1, u1, x2, u2, . . .} is Fejér-monotone with
respect to 
. Since xk js+1 = U(uk js ), we obtain

∥∥∥uk js+1 − z
∥∥∥

2 ≤ ∥∥uk js − z
∥∥2

. (6.20)
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Hence
{
uk js

}∞
s=0 is also Fejér-monotone with respect to 
. Now, (6.16) and

(6.19) imply that

∥∥∥uk js+1 − z
∥∥∥

2
<

∥∥uk js − z
∥∥2 − ε2 for all s ≥ 0, (6.21)

which leads to a contradiction. Therefore x∗ ∈ SOL(C, f ) and finally, x∗ ∈ 
.
Since the subsequence

{
xk j

}∞
j=0 was arbitrary, we get that xk ⇀ x∗. ��

Relations of our results to some previously published works are as follows.
In [20] an algorithm for the Split Common Fixed Point Problem (SCFPP) in
Euclidean spaces was studied. Later Moudafi [34] presented a similar result for
Hilbert spaces. In this connection, see also [33].

To formulate the SCFPP, let H1 and H2 be two real Hilbert spaces. Given
operators Ui : H1 → H1, i = 1, 2, . . . , p, and T j : H2 → H2, j = 1, 2, . . . , r,
with nonempty fixed point sets Ci, i = 1, 2, . . . , p, and Q j, j = 1, 2, . . . , r,
respectively, and a bounded linear operator A : H1 → H2, the SCFPP is
formulated as follows:

find a point x∗ ∈ C := ∩p
i=1Ci such that Ax∗ ∈ Q := ∩r

j=1 Q j. (6.22)

Our result differs from those in [20] and [34] in several ways. Firstly, the
spaces in which the problems are formulated. Secondly, the operators U and T
in [20] are assumed to be firmly quasi-nonexpansive (FQNE; see the comments
after Lemma 3.10 above), where in our case here only U is FQNE, while
T is just nonexpansive. Lastly, Moudafi [34] obtains weak convergence for
a wider class of operators, called demicontractive. The iterative step of his
algorithm is

xk+1 = (1 − αk)uk + αkU(uk), (6.23)

where uk := xk + γ A∗(T − I)(Axk) for αk ∈ (0, 1). If αk = 1, which is not
allowed there, were possible, then the iterative step of [34] would coincide
with that of [20].

6.1 A parallel algorithm for solving the Multiple Set Split Variational
Inequality Problem

We extend the SVIP to the Multiple Set Split Variational Inequality Problem
(MSSVIP), which is formulated as follows. Let H1 and H2 be two real Hilbert
spaces. Given a bounded linear operator A : H1 → H2, functions fi : H1 →
H1, i = 1, 2, . . . , p, and g j : H2 → H2, j = 1, 2, . . . , r, and nonempty, closed
and convex subsets Ci ⊆ H1, Q j ⊆ H2 for i = 1, 2, . . . , p and j = 1, 2, . . . , r,
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respectively, the Multiple Set Split Variational Inequality Problem (MSSVIP)
is formulated as follows:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

find a point x∗ ∈ C := ∩p
i=1Ci such that 〈 fi(x∗), x − x∗〉 ≥ 0 for all x ∈ Ci

and for all i = 1, 2, . . . , p, and such that

the point y∗ = Ax∗ ∈ Q := ∩r
i=1 Q j solves

〈
g j(y∗), y − y∗〉 ≥ 0 for all y ∈ Q j

and for all j = 1, 2, . . . , r.
(6.24)

For the MSSVIP we do not yet have a solution approach which does not use
a product space formalism. Therefore we present a simultaneous algorithm for
the MSSVIP the analysis of which is carried out via a certain product space.
Let � be the solution set of the MSSVIP:

� := {
z ∈ ∩p

i=1SOL(Ci, fi) | Az ∈ ∩r
i=1SOL(Q j, g j)

}
. (6.25)

We introduce the spaces W 1 : =H1 and W 2 := H p
1 × Hr

2, where r and p are
the indices in (6.24). Let {αi}p

i=1 and
{
β j

}r
j=1 be positive real numbers. Define

the following sets in their respective spaces:

C: = H1 and (6.26)

Q: =
( p∏

i=1

√
αiCi

)

×
⎛

⎝
r∏

j=1

√
β jQ j

⎞

⎠ , (6.27)

and the operator

A: =
(√

α1 I, . . . ,
√

αp I,
√

β1 A∗, . . . ,
√

βr A∗
)∗

, (6.28)

where A∗ stands for adjoint of A. Denote Ui := PCi(I − λ fi) and T j :=
PQ j(I − λg j) for i = 1, 2, . . . , p and j = 1, 2, . . . , r, respectively. Define the
operator T : W 2→W 2 by

T(y) = T

⎛

⎜⎜⎜
⎝

y1
y2
...

yp+r

⎞

⎟⎟⎟
⎠

= (
(U1 (y1))

∗ , . . . ,
(
U p

(
yp

))∗
,
(
T1

(
yp+1

))∗
, . . . ,

(
Tr(yp+r)

)∗)∗
, (6.29)

where y1, y2, ..., yp ∈ H1 and yp+1, yp+2, ..., yp+r ∈ H2.
This leads to an SVIP with just two operators F and G and two sets C and

Q, respectively, in the product space, when we take C=H1, F ≡ 0, Q⊆W 2,
G(y) = (

f1(y1), f2(y2) . . . , fp(yp), g1(yp+1), g2(yp+2), . . . , gr(yp+r)
)
, and the

operator A : H1→W 2. It is easy to verify that the following equivalence
holds:

x ∈ � if and only if Ax ∈ Q. (6.30)
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Therefore we may apply Algorithm 6.1 ,

xk+1 = xk + γ A∗(T − I)(Axk) for all k ≥ 0, (6.31)

to the problem (6.26)–(6.29) in order to obtain a solution of the original
MSSVIP. We translate the iterative step (6.31) to the original spaces H1 and
H2 using the relation

T(Ax) =
(√

α1U1(x), . . . ,
√

αpU p(x),
√

β1 AT1(x), . . . ,
√

βr ATr(x)
)∗

(6.32)

and obtain the following algorithm.

Algorithm 6.4

Initialization: Select an arbitrary starting point x0 ∈ H1.
Iterative step: Given the current iterate xk, compute

xk+1 = xk + γ

⎛

⎝
p∑

i=1

αi(Ui − I)
(
xk) +

r∑

j=1

β j A∗(T j − I)
(

Axk)
⎞

⎠ , (6.33)

where γ ∈ (0, 1/L), with L = ∑p
i=1 αi + ∑r

j=1 β j‖A‖2.

The following convergence result follows from Theorem 6.3.

Theorem 6.5 Let H1 and H2 be two real Hilbert spaces and let A : H1 → H2
be a bounded linear operator. Let fi : H1 → H1, i = 1, 2, . . . , p, and g j : H2 →
H2, j = 1, 2, . . . , r, be α-ISM operators on nonempty, closed and convex subsets
Ci ⊆ H1, Q j ⊆ H2 for i = 1, 2, . . . , p, and j = 1, 2, . . . , r, respectively. Assume
that γ ∈ (0, 1/L) and � = ∅. Set Ui := PCi(I − λ fi) and T j := PQ j(I − λg j) for
i = 1, 2, . . . , p and j = 1, 2, . . . , r, respectively, with λ ∈ [0, 2α]. If, in addition,
for each i = 1, 2, . . . , p and j = 1, 2, . . . , r we have

〈 fi(x), PCi(I − λ fi)(x) − x∗〉 ≥ 0 for all x ∈ H1 (6.34)

for all x∗ ∈ SOL(Ci, fi) and

〈g j(x), PQ j(I − λg j)(x) − x∗〉 ≥ 0 for all x ∈ H2, (6.35)

for all x∗ ∈ SOL(Ci, fi), then any sequence
{

xk
}∞

k=0 , generated by Algorithm 6.1,
converges weakly to a solution point x∗ ∈ �.

Proof Apply Theorem 6.3 to the two-operator SVIP in the product space
setting with U = I : H1 → H1, Fix U = C, T = T : W → W , and Fix T = Q.

��

Remark 6.6 Observe that conditions (6.34) and (6.35) imposed on Ui and T j

for i = 1, 2, . . . , p and j = 1, 2, . . . , r, respectively, in Theorem 6.5, which are
necessary for our treatment of the problem in a product space, ensure that
these operators are firmly quasi-nonexpansive (FQNE). Therefore, the SVIP
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under these conditions may be considered a Split Common Fixed Point
Problem (SCFPP), first introduced in [20], with C, Q, A and T : W 2 → W 2
as above, and the identity operator I : C → C. Therefore, we could also apply
[20, Algorithm 4.1]. If, however, we drop these conditions, then the operators
are nonexpansive, by Lemma 3.10(i), and the result of [34] would apply.

7 Applications

The following problems are special cases of the SVIP. They are listed here
because their analysis can benefit from our algorithms for the SVIP and
because known algorithms for their solution may be generalized in the future
to cover the more general SVIP. The list includes known problems such as the
Split Feasibility Problem (SFP) and the Convex Feasibility Problem (CFP). In
addition, we introduce two new “split” problems that have, to the best of our
knowledge, never been studied before. These are the Common Solutions to
Variational Inequalities Problem (CSVIP) and the Split Zeros Problem (SZP).

7.1 The Split Feasibility and Convex Feasibility Problems

The Split Feasibility Problem (SFP) in Euclidean space is formulated as
follows:

find a point x∗ such that x∗ ∈ C ⊆ Rn and Ax∗ ∈ Q ⊆ Rm, (7.1)

where C ⊆ Rn, Q ⊆ Rm are nonempty, closed and convex sets, and A : Rn →
Rm is given. Originally introduced in Censor and Elfving [14], it was later
used in the area of intensity-modulated radiation therapy (IMRT) treatment
planning; see [11, 15]. Obviously, it is formally a special case of the SVIP
obtained from (1.1) and (1.2) by setting f ≡ g ≡ 0. The Convex Feasibility
Problem (CFP) in a Euclidean space is:

find a point x∗ such that x∗ ∈ ∩m
i=1Ci = ∅, (7.2)

where Ci, i = 1, 2, . . . , m, are nonempty, closed and convex sets in Rn. This,
in its turn, becomes a special case of the SFP by taking in (7.1) n = m, A =
I, Q = Rn and C = ∩m

i=1Ci. Many algorithms for solving the CFP have been
developed; see, e.g., [1, 23]. Byrne [5] established an algorithm for solving the
SFP, called the CQ-Algorithm, with the following iterative step:

xk+1 = PC
(
xk + γ At(PQ − I)Axk) , (7.3)

which does not require calculation of the inverse of the operator A, as in [14],
but needs only its transpose At. A recent excellent paper on the multiple-sets
SFP which contains many references that reflect the state-of-the-art in this area
is [31].
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It is of interest to note that looking at the SFP from the point of view of the
SVIP enables us to find the minimum-norm solution of the SFP, i.e., a solution
of the form

x∗ = argmin{‖x‖ | x solves the SFP (7.1)}. (7.4)

This is done, and easily verified, by solving (1.1) and (1.2) with f = I and g ≡ 0.

7.2 The Common Solutions to Variational Inequalities Problem

The Common Solutions to Variational Inequalities Problem (CSVIP), newly
introduced here, is defined in Euclidean space as follows. Let { fi}m

i=1 be a family
of functions from Rn into itself and let {Ci}m

i=1 be nonempty, closed and convex
subsets of Rn with ∩m

i=1Ci = ∅. The CSVIP is formulated as follows:

find a point x∗ ∈ ∩m
i=1Ci such that

〈
fi(x∗), x − x∗〉 ≥ 0

for all x ∈ Ci, i = 1, 2, . . . , m. (7.5)

This problem can be transformed into a CVIP in an appropriate product space
(different from the one in Section 5). Let Rmn be the product space and define
F : Rmn → Rmn by

F
((

x1, x2, . . . , xm)) = (
f1

(
x1) , . . . , fm

(
xm))

, (7.6)

where xi ∈ Rn for all i = 1, 2, . . . , m. Let the diagonal set in Rmn be

� := {x ∈ Rmn | x=(a, a, . . . , a), a ∈ Rn} (7.7)

and define the product set

C := �m
i=1Ci. (7.8)

The CSVIP in Rn is equivalent to the following CVIP in Rmn:

find a point x∗ ∈ C ∩ � such that
〈
F(x∗), x − x∗〉 ≥ 0

for all x = (x1, x2, . . . , xm) ∈ C. (7.9)

So, this problem can be solved by using Algorithm 4.4 with � = �. A new
algorithm specifically designed for the CSVIP appears in [19].

7.3 The Split Minimization and the Split Zeros Problems

From optimality conditions for convex optimization (see, e.g., Bertsekas and
Tsitsiklis [3, Proposition 3.1, p. 210]) it is well-known that if F : Rn → Rn is
a continuously differentiable convex function on a closed and convex subset
X ⊆ Rn, then x∗ ∈ X minimizes F over X if and only if

〈∇F(x∗), x − x∗〉 ≥ 0 for all x ∈ X, (7.10)



320 Numer Algor (2012) 59:301–323

where ∇F is the gradient of F. Since (7.10) is a VIP, we make the following ob-
servation. If F : Rn → Rn and G : Rm → Rm are continuously differentiable
convex functions on closed and convex subsets C ⊆ Rn and Q ⊆ Rm, respec-
tively, and if in the SVIP we take f = ∇F and g = ∇G, then we obtain the
following Split Minimization Problem (SMP):

find a point x∗ ∈ C such that x∗ = argmin{ f (x) | x ∈ C} (7.11)

and such that

the point y∗ = Ax∗ ∈ Q and solves y∗ = argmin{g(y) | y ∈ Q}. (7.12)

The Split Zeros Problem (SZP), newly introduced here, is defined as follows.
Let H1 and H2 be two Hilbert spaces. Given operators B1 : H1 → H1 and B2 :
H2 → H2, and a bounded linear operator A : H1 → H2, the SZP is formulated
as follows:

find a point x∗ ∈ H1 such that B1(x∗) = 0 and B2(Ax∗) = 0. (7.13)

This problem is a special case of the SVIP if A is a surjective operator. To see
this, take in (1.1) and (1.2) C = H1, Q = H2, f = B1 and g = B2, and choose
x := x∗ − B1(x∗) ∈ H1 in (1.1) and x ∈ H1 such that Ax := Ax∗ − B2(Ax∗) ∈
H2 in (1.2).

The next lemma shows when the only solution of an SVIP is a solution of
an SZP. It extends a similar result concerning the relationship between the
(un-split) zero finding problem and the VIP.

Lemma 7.1 Let H1 and H2 be real Hilbert spaces, and C ⊆ H1 and Q ⊆ H2
nonempty, closed and convex subsets. Let B1 : H1 → H1 and B2 : H2 → H2 be
α-ISM operators and let A : H1 → H2 be a bounded linear operator. Assume
that C ∩ {x ∈ H1 | B1(x) = 0} = ∅ and that Q ∩ {y ∈ H2 | B2(y) = 0} = ∅, and
denote


 := 
(C, Q, B1, B2, A) := {z ∈ SOL(C, B1) | Az ∈ SOL(Q, B2)} . (7.14)

Then, for any x∗ ∈ C with Ax∗ ∈ Q, x∗ solves (7.13) if and only if x∗ ∈ 
.

Proof First assume that x∗ ∈ C with Ax∗ ∈ Q and that x∗ solves (7.13). Then
it is clear that x∗ ∈ 
. In the other direction, assume that x∗ ∈ C with Ax∗ ∈ Q
and that x∗ ∈ 
. Applying (3.4) with C as D there, (I − λB1) (x∗) ∈ H1, for any
λ ∈ (0, 2α], as x there, and q1 ∈ C ∩ Fix(I − λB1), with the same λ, as y there,
we get

∥∥q1 − PC(I − λB1)
(
x∗)∥∥2 + ∥∥(I − λB1)

(
x∗) − PC(I − λB1)

(
x∗)∥∥2

≤ ∥∥(I − λB1)
(
x∗) − q1

∥∥2
, (7.15)
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and, similarly, applying (3.4) again, we obtain
∥∥q2 − PQ(I − λB2)

(
Ax∗)∥∥2 + ∥∥(I − λB2)

(
Ax∗) − PQ(I − λB2)

(
Ax∗)∥∥2

≤ ∥∥(I − λB2)
(

Ax∗) − q2
∥∥2

. (7.16)

Using the characterization of (3.19), we get
∥∥q1 − x∗∥∥2 + ∥∥(I − λB1)

(
x∗) − x∗∥∥2 ≤ ∥∥(I − λB1)

(
x∗) − q1

∥∥2 (7.17)

and
∥∥q2 − Ax∗∥∥2 + ∥∥(I − λB2)

(
Ax∗) − x∗∥∥2 ≤ ∥∥(I − λB2)

(
Ax∗) − q2

∥∥2
. (7.18)

It can be seen from the proof of Lemma 3.10(i) that the operators I − λB1
and I − λB2 are nonexpansive for every λ ∈ [0, 2α], so with q1 ∈ C ∩ Fix(I −
λB1) and q2 ∈ Q ∩ Fix(I − λB2),

∥∥(I − λB1)
(
x∗) − q1

∥∥2 ≤ ∥∥x∗ − q1
∥∥2 (7.19)

and
∥∥(I − λB2)

(
Ax∗) − q2

∥∥2 ≤ ∥∥Ax∗ − q2
∥∥2

. (7.20)

Combining the above inequalities, we obtain
∥∥q1 − x∗∥∥2 + ∥∥(I − λB1)

(
x∗) − x∗∥∥2 ≤ ∥∥x∗ − q1

∥∥2 (7.21)

and
∥∥q2 − Ax∗∥∥2 + ∥∥(I − λB2)

(
Ax∗) − x∗∥∥2 ≤ ∥∥Ax∗ − q2

∥∥2
. (7.22)

Hence, ‖(I − λB1) (x∗) − x∗‖2 = 0 and ‖(I − λB2) (Ax∗) − Ax∗‖2 = 0. Since
λ > 0, we get that B1(x∗) = 0 and B2(Ax∗) = 0, as claimed. ��
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