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Abstract We propose a preconditioned variant of the modified HSS (MHSS)
iteration method for solving a class of complex symmetric systems of linear
equations. Under suitable conditions, we prove the convergence of the precon-
ditioned MHSS (PMHSS) iteration method and discuss the spectral properties
of the PMHSS-preconditioned matrix. Numerical implementations show that
the resulting PMHSS preconditioner leads to fast convergence when it is used
to precondition Krylov subspace iteration methods such as GMRES and its
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restarted variants. In particular, both the stationary PMHSS iteration and
PMHSS-preconditioned GMRES show meshsize-independent and parameter-
insensitive convergence behavior for the tested numerical examples.

Keywords Complex symmetric linear system · MHSS iteration ·
Preconditioning · Convergence theory · Spectral properties

Mathematics Subject Classifications (2010) 65F10 · 65F50 · CR: G1.3

1 Introduction

Consider the iterative solution of the system of linear equations

Ax = b, A ∈ C
n×n and x, b ∈ C

n, (1.1)

where A ∈ C
n×n is a complex symmetric matrix of the form

A = W + ı T, (1.2)

and W, T ∈ R
n×n are real, symmetric, and positive semidefinite matrices with

at least one of them, e.g., W, being positive definite. Here and in the sequel, we
use ı = √−1 to denote the imaginary unit. For more details about the practical
backgrounds of this class of problems, we refer to [1, 4, 9, 10] and the references
therein.

The Hermitian and skew-Hermitian parts of the complex symmetric matrix
A ∈ C

n×n are given by

H = 1
2
(A + A∗) = W and S = 1

2
(A − A∗) = ı T,

respectively. Hence, when W is symmetric positive definite, A ∈ C
n×n is a

non-Hermitian, but positive definite matrix. Here A∗ is used to denote the
conjugate transpose of the matrix A. Based on the Hermitian and skew-
Hermitian splitting (HSS)

A = H + S

of the matrix A ∈ C
n×n, we can straightforwardly employ the HSS iteration

method, introduced in Bai et al. [6], to compute an approximate solution for
the complex symmetric linear system (1.1) and (1.2). Recently, by making
use of the special structure of the coefficient matrix A ∈ C

n×n, Bai et al.
designed in [4] a modif ied HSS (MHSS) iteration method, which is much more
efficient than the HSS iteration method for solving the complex symmetric
linear system (1.1) and (1.2). This MHSS iteration method is algorithmically
described in the following.

Method 1.1 (The MHSS iteration method) Let x(0) ∈ C
n be an arbitrary

initial guess. For k = 0, 1, 2, . . . until the sequence of iterates {x(k)}∞k=0 ⊂
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C
n converges, compute the next iterate x(k+1) according to the following

procedure: {
(αI + W)x(k+ 1

2 ) = (αI − ı T)x(k) + b,

(αI + T)x(k+1) = (αI + ı W)x(k+ 1
2 ) − ı b,

where α is a given positive constant and I represents the identity matrix.

As W ∈ R
n×n is symmetric positive definite, T ∈ R

n×n is symmetric positive
semidefinite, and α ∈ R is positive, we see that both matrices αI + W and
αI + T are symmetric positive definite. Hence, the two linear sub-systems
involved in each step of the MHSS iteration can be solved effectively using
mostly real arithmetic either exactly by a Cholesky factorization or inexactly
by some conjugate gradient or multigrid scheme. This is different from the
HSS iteration method, in which a shifted skew-Hermitian linear sub-system
with coefficient matrix αI + ı T needs to be solved at every iteration step;
see [6, 7]. If sparse triangular factorizations are used to solve the linear
sub-systems involved at each step, the MHSS iteration method is likely to
require considerably less storage than the HSS iteration method since only
two triangular factors rather than three have to be computed and stored. For
more details, we refer to [4, 6, 7].

Theoretical analysis in [4] has indicated that the MHSS iteration converges
to the unique solution of the complex symmetric linear system (1.1) and (1.2)
for any initial guess, and its asymptotic convergence rate is bounded by

σ(α)≡ max
λ j∈sp(W)

√
α2+λ2

j

α+λ j
· max
μ j∈sp(T)

√
α2+μ2

j

α+μ j
≤ max

λ j∈sp(W)

√
α2+λ2

j

α+λ j
< 1, ∀α > 0,

where sp(W) and sp(T) denote the spectra of the matrices W and T, respec-
tively. Note that this bound only depends on the eigenvalues of the symmetric
positive definite matrix W and/or the symmetric positive semidefinite matrix
T. In particular, for the choice α� = √

γminγmax, with γmin and γmax being the
smallest and the largest eigenvalues of the matrix W, it holds that

σ(α�) ≤
√

κ2(W) + 1√
κ2(W) + 1

.

Here and in the sequel, κ2(·) is used to represent the spectral condition number
of the corresponding matrix.

To further generalize the MHSS iteration method and accelerate its con-
vergence rate, in this paper we propose a preconditioned MHSS (PMHSS)
iteration method for solving the complex symmetric linear system (1.1) and
(1.2). This iteration scheme is, in spirit, analogous to the preconditioned HSS
iteration methods discussed in [5, 8] for solving the non-Hermitian positive
definite linear systems. We establish the convergence theory for the PMHSS
iteration method under the condition that both W and T are symmetric
positive semidefinite and, at least, one of them is positive definite. The PMHSS
iteration method naturally leads to a preconditioning matrix for the complex
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symmetric matrix A. For some special cases of the PMHSS iteration method,
we prove their convergence theorems under the weaker condition that both
matrices W and T are symmetric positive semidefinite satisfying null(W) ∩
null(T) = {0}, where null(·) represents the null space of the corresponding
matrix. Moreover, for these special PMHSS preconditioners, we investigate
the spectral properties of the preconditioned matrices in detail, which show
that the eigenvalues of the preconditioned matrices are clustered within
complex disks centered at 1 with radii

√
α2+1
α+1 , and the condition numbers of

the corresponding eigenvectors are equal to
√

κ2(αW + T), where α > 0 is
the iteration parameter.1 Numerical results show that the PMHSS iteration
methods, when used to precondition the Krylov subspace methods such as
GMRES and its restarted variants, say, GMRES(#), can lead to satisfactory
experimental results, and they have higher computing efficiency than the
MHSS preconditioner proposed in [4]. Moreover, as both solver and precondi-
tioner, the PMHSS iteration method shows mesh-independent and parameter-
insensitive convergence behavior for the tested numerical examples.

The organization of the paper is as follows. In Section 2 we describe the
PMHSS iteration method. In Section 3, we establish the convergence theory of
the PMHSS iteration method and discuss the spectral properties of the PMHSS
preconditioning matrix under suitable conditions. Numerical results are given
in Section 4 to show the effectiveness of this PMHSS iteration method as well
as the corresponding PMHSS preconditioner. Finally, in Section 5 we put forth
some conclusions and remarks to end the paper.

2 The PMHSS iteration method

In order to further accelerate the convergence rate of Method 1.1, we may
precondition the complex symmetric linear system (1.1) and (1.2) by choosing
a symmetric positive definite matrix, say, V ∈ R

n×n. More concretely, with the
notations

W̃ = V− 1
2 WV− 1

2 , T̃ = V− 1
2 TV− 1

2 , Ã = V− 1
2 AV− 1

2 (2.1)

and

x̃ = V
1
2 x, b̃ = V− 1

2 b, (2.2)

the system of linear equations (1.1) and (1.2) can be equivalently transformed
into the preconditioned variant

Ãx̃ = b̃, (2.3)

where Ã ∈ C
n×n is a complex symmetric matrix of the form

Ã = W̃ + ı T̃, (2.4)

1See Remark 3.1 for a discussion of the condition number of the eigenvector matrix.
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and W̃, T̃ ∈ R
n×n are real, symmetric, and positive semidefinite matrices, with

W̃ being positive definite.
Now, we can first apply Method 1.1 directly to the preconditioned linear

system (2.3) and (2.4) defined through (2.1) and (2.2), and then recover the
resulting iteration scheme to the original variable, obtaining the precondi-
tioned MHSS (PMHSS) iteration method described as follows:

Method 2.1 (The PMHSS iteration method) Let x(0) ∈ C
n be an arbitrary

initial guess. For k = 0, 1, 2, . . . until the sequence of iterates {x(k)}∞k=0 ⊂ C
n

converges, compute the next iterate x(k+1) according to the following proce-
dure: {

(αV + W)x(k+ 1
2 ) = (αV − ı T)x(k) + b,

(αV + T)x(k+1) = (αV + ı W)x(k+ 1
2 ) − ı b,

where α is a given positive constant and V ∈ R
n×n is a prescribed symmetric

positive definite matrix.

Note that Method 1.1 is a special case of Method 2.1 when V = I.
As V, W ∈ R

n×n are symmetric positive definite, T ∈ R
n×n is symmetric

positive semidefinite, and α ∈ R is positive, we see that both matrices αV + W
and αV + T are symmetric positive definite. Hence, the two linear sub-systems
involved in each step of the PMHSS iteration can also be solved effectively
using mostly real arithmetic either exactly by a Cholesky factorization or
inexactly by some conjugate gradient or multigrid scheme.

After straightforward derivations we can reformulate the PMHSS iteration
scheme into the standard form

x(k+1) = L(V; α)x(k) + R(V; α)b, k = 0, 1, 2, . . . ,

where

L(V; α) = (αV + T)−1(αV + ı W)(αV + W)−1(αV − ı T)

and

R(V; α) = (1 − ı)α(αV + T)−1V(αV + W)−1.

Note that L(V; α) is the iteration matrix of the PMHSS iteration method.
In addition, if we introduce matrices

F(V; α) = 1 + ı
2α

(αV + W)V−1(αV + T) (2.5)

and

G(V; α) = 1 + ı
2α

(αV + ı W)V−1(αV − ı T),

then it holds that

A = F(V; α) − G(V; α) and L(V; α) = F(V; α)−1G(V; α). (2.6)
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Therefore, the PMHSS iteration scheme is induced by the matrix splitting A =
F(V; α) − G(V; α) defined in (2.6). It follows that the splitting matrix F(V; α)

can be used as a preconditioner for the complex symmetric matrix A ∈ C
n×n,

which is referred as the PMHSS preconditioner.
In particular, when V = W, we have

L(α) := L(W; α) = α + ı
α + 1

(αW + T)−1(αW − ı T)

and

R(α) := R(W; α) = α(1 − ı)
α + 1

(αW + T)−1;

and the PMHSS iteration scheme is now induced by the matrix splitting

A = F(α) − G(α),

with

F(α) := F(W; α) = (α + 1)(1 + ı)
2α

(αW + T) (2.7)

and

G(α) := G(W; α) = (α + ı)(1 + ı)
2α

(αW − ı T).

3 Theoretical results

Because W̃ and T̃ defined in (2.1) are similar to V−1W and V−1T, respectively,
analogously to Theorem 2.1 in [4] we can prove that the PMHSS iteration
converges to the unique solution of the complex symmetric linear system (1.1)
and (1.2) for any initial guess, and its convergence rate is bounded by

σ(α) ≡ max
λ̃ j∈sp(V−1W)

√
α2 + λ̃2

j

α + λ̃ j
· max

μ̃ j∈sp(V−1T)

√
α2 + μ̃2

j

α + μ̃ j

≤ max
λ̃ j∈sp(V−1W)

√
α2 + λ̃2

j

α + λ̃ j
< 1, ∀α > 0. (3.1)

In particular, for the choice α� = √
γ̃minγ̃max, with γ̃min and γ̃max being the

smallest and the largest eigenvalues of the matrix V−1W, it holds that

σ(α�) ≤
√

κ2(V−1W) + 1√
κ2(V−1W) + 1

.

Evidently, the smaller the condition number of the matrix V−1W is, the faster
the asymptotic convergence rate of the PMHSS iteration will be.
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Moreover, when V = W it holds that

ρ(L(α)) ≤
√

α2 + 1
α + 1

< 1, ∀α > 0.

Here and in the sequel, we use ρ(·) to denote the spectral radius of the
corresponding matrix. Note that this upper bound is a constant independent
of both data and size of the problem. It implies that when F(α) defined in
(2.7) is used to precondition the matrix A ∈ C

n×n, the eigenvalues of the
preconditioned matrix F(α)−1A are clustered within the complex disk centered
at 1 with radius

√
α2+1
α+1 due to F(α)−1A = I − L(α); see [2, 3]. When α = 1, this

radius becomes
√

2
2 .

For the above-mentioned special case, we can further prove the conver-
gence of the PMHSS iteration method under weaker conditions without
imposing the restriction that the matrix W ∈ R

n×n is positive definite. This
result is stated in the following theorem.

Theorem 3.1 Let A = W + ı T ∈ C
n×n, with W ∈ R

n×n and T ∈ R
n×n being

symmetric positive semidef inite matrices, and let α be a positive constant. Then
the following statements hold true:

(i) A is nonsingular if and only if null(W) ∩ null(T) = {0};
(ii) if null(W) ∩ null(T) = {0}, the spectral radius of the PMHSS iteration

matrix L(α) satisf ies ρ(L(α)) ≤ σ(α), with

σ(α) =
√

α2 + 1
α + 1

· max
μ(α)∈sp(Z̃(α))

√
1 + |μ(α)|2

2
,

where Z̃(α) = (αW + T)−1(αW − T). Therefore, it holds that

ρ(L(α)) ≤ σ(α) ≤
√

α2 + 1
α + 1

< 1, ∀α > 0,

i.e., the PMHSS iteration converges unconditionally to the unique solution
of the complex symmetric linear system (1.1) and (1.2) for any initial guess.

Proof Note that the matrix A is nonsingular if and only if the matrix Â =
(1 − ı)A is nonsingular. Evidently, Â = (W + T) − ı(W − T), with its
Hermitian part being given by W + T. Hence, when both matrices W
and T are symmetric positive semidefinite, we know that Â is nonsingular if
and only if null(W) ∩ null(T) = {0}. This shows the validity of (i).

We now turn to the proof of (ii). For all α > 0, W and T being symmetric
positive semidefinite matrices and null(W) ∩ null(T) = {0} readily imply that
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the matrix αW + T is symmetric positive definite. Therefore, by straightfor-
ward computations we have

ρ(L(α)) =
√

α2 + 1
α + 1

· ρ((αW + T)−1(αW − ı T))

=
√

α2 + 1
2(α + 1)

· ρ((1 − ı)(αW + T)−1(αW − ı T)(1 + ı))

=
√

α2 + 1
2(α + 1)

· ρ((1 − ı)(αW + T)−1[(αW + T) + ı(αW − T)])

=
√

α2 + 1
2(α + 1)

· ρ((1 − ı)[I + ı(αW + T)−1(αW − T)])

=
√

α2 + 1
α + 1

· max
μ(α)∈sp(Z̃(α))

∣∣∣∣1 + ıμ(α)

1 + ı

∣∣∣∣
=

√
α2 + 1
α + 1

· max
μ(α)∈sp(Z̃(α))

√
1 + |μ(α)|2

2

= σ(α).

It easily follows from μ(α) ∈ [−1, 1] that 1
2 (1 + |μ(α)|2) ≤ 1 and, therefore,

σ(α) ≤
√

α2 + 1
α + 1

< 1.

��

The spectral properties of the preconditioning matrix F(α) are established
in the following theorem.

Theorem 3.2 Let A = W + ı T ∈ C
n×n, with W ∈ R

n×n and T ∈ R
n×n being

symmetric positive semidef inite matrices satisfying null(W) ∩ null(T) = {0}, and
let α be a positive constant. Def ine Z(α) = (αW + T)− 1

2 (W − αT)(αW + T)− 1
2 .

Denote by μ
(α)
1 , μ

(α)
2 , . . . , μ(α)

n the eigenvalues of the symmetric matrix Z(α) ∈
R

n×n, and by q(α)
1 , q(α)

2 , . . . , q(α)
n the corresponding orthogonal eigenvectors.

Then the eigenvalues of the matrix F(α)−1A are given by

λ
(α)

j = α[(α + 1) − ı(α − 1)](1 − ıμ(α)

j )

(α + 1)(α2 + 1)
, j = 1, 2, . . . , n,

and the corresponding eigenvectors are given by

x(α)

j = (αW + T)−
1
2 q(α)

j , j = 1, 2, . . . , n.

Therefore, it holds that F(α)−1A=X(α)	(α)X(α)−1
, where X(α) = (x(α)

1 , x(α)
2 , . . . ,

x(α)
n ) ∈ R

n×n and 	(α) = diag(λ
(α)
1 , λ

(α)
2 , . . . , λ(α)

n ) ∈ C
n×n, with κ2(X(α)) =√

κ2(αW + T).
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Proof Define matrices

Q(α) =
(

q(α)
1 , q(α)

2 , . . . , q(α)
n

)
∈ R

n×n

and


(α) = diag
(
μ

(α)
1 , μ

(α)
2 , . . . , μ(α)

n

)
∈ R

n×n.

Then it holds that

Z(α) = Q(α)
(α)Q(α)T
.

Here and in the sequel, (·)T denotes the transpose of a real matrix or vector.
By straightforward computations we have

F(α)−1A= 2α

(α + 1)(1 + ı)
· (αW + T)−1(W + ı T)

= 2α

(α + 1)(1 + ı)(α − ı)
· (αW + T)−1[(αW + T) − ı(W − αT)]

= 2α

(α + 1)[(α + 1) + ı(α − 1)] · [I − ı(αW + T)−1(W − αT)]

= 2α

(α + 1)[(α + 1) + ı(α − 1)] · (αW + T)−
1
2 (I − ı Z(α))(αW + T)

1
2

= 2α

(α+1)[(α+1)+ı(α−1)] · (αW+T)−
1
2 Q(α)(I−ı 
(α))Q(α)T

(αW+T)
1
2

=X(α)	(α)X(α)−1
.

Hence, the eigenvalues of the matrix F(α)−1A are given by

λ
(α)

j = α[(α + 1) − ı(α − 1)](1 − ıμ(α)

j )

(α + 1)(α2 + 1)
, j = 1, 2, . . . , n,

and the corresponding eigenvectors are given by x(α)

j = (αW + T)− 1
2 q(α)

j , j =
1, 2, . . . , n.

Besides, as X(α) = (αW + T)− 1
2 Q(α) and Q(α) ∈ R

n×n is orthogonal, we can
obtain

‖X(α)‖2 = ‖(αW + T)−
1
2 Q(α)‖2 = ‖(αW + T)−

1
2 ‖2 = ‖(αW + T)−1‖ 1

2
2

and

‖X(α)−1‖2 = ‖Q(α)T
(αW + T)

1
2 ‖2 = ‖(αW + T)

1
2 ‖2 = ‖αW + T‖ 1

2
2 .

It then follows that

κ2(X(α)) = ‖X(α)‖2‖X(α)−1‖2 = ‖(αW + T)−1‖ 1
2
2 ‖αW + T‖ 1

2
2 = √

κ2(αW + T).

��
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Remark 3.1 The previous result requires some comments. Because of the
non-uniqueness of the eigenvectors, the condition number κ2(X(α)) of the
eigenvector matrix is also not uniquely defined. One possibility is to replace
it with the infimum over all possible choices of the eigenvector matrix X(α).
However, this quantity is not easily computable. As an approximation, we will
use instead the condition number of the matrix formed with the normalized
eigenvectors returned by the eig function in Matlab. When the eigenvectors
are normalized in the 2-norm, X(α) is replaced by

X̃(α) = X(α)D(α)−1
,

with

D(α) = diag
(
‖x(α)

1 ‖2, ‖x(α)
2 ‖2, . . . , ‖x(α)

n ‖2

)
,

leading to

D(α) =
(
diag(q(α)T

1 (αW+T)−1q(α)
1 , q(α)T

2 (αW+T)−1q(α)
2 ,. . . ,q(α)T

n (αW+T)−1q(α)
n )

) 1
2

and

κ2
(
X̃(α)

) = κ2

(
D(α)Q(α)T

(αW + T)1/2
)

.

In the special case when the coefficient matrix A = W + ı T ∈ C
n×n is

normal, we can easily see that the PMHSS-preconditioned matrix F(α)−1A is
also normal. In this case the condition number of the normalized eigenvector
matrix X̃(α) is of course exactly equal to one. This property is formally stated
in the following theorem.

Theorem 3.3 Let the conditions of Theorem 3.2 be satisf ied, and the eigenvector
matrix X(α) be normalized as in Remark 3.1 with X̃(α) being the normalized
matrix. Assume that the matrix A = W + ı T ∈ C

n×n is normal. Then it holds
that κ2(X̃(α)) = 1. Moreover, the orthogonal eigenvectors q(α)

1 , q(α)
2 , . . . , q(α)

n of
the matrix Z(α) ∈ R

n×n are independent of the positive parameter α.

Proof Because A = W + ı T ∈ C
n×n is normal, the matrices W, T ∈ R

n×n com-
mute, i.e., it holds that WT = TW. Hence, there exists an orthogonal matrix
Q ∈ R

n×n such that

W = Q�QT and T = Q�QT ,

where

� = diag(ω1, ω2, . . . , ωn) and � = diag(γ1, γ2, . . . , γn)

are diagonal matrices with ω j, γ j ≥ 0, j = 1, 2, . . . , n. It follows that

αW + T = Q(α� + �)QT and W − αT = Q(� − α�)QT .
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As

(αW + T)
1
2 = Q(α� + �)

1
2 QT ,

we obtain

Z(α) = (αW + T)−
1
2 (W − αT)(αW + T)−

1
2 = Q
(α)QT ,

with


(α) = (α� + �)−1(� − α�).

Therefore, the eigenvectors of the matrix Z(α) are given by the columns of the
orthogonal matrix Q ∈ R

n×n, say, q1, q2, . . . , qn, which are independent of the
positive parameter α.

In addition, by straightforward computations we find

qT
j (αW + T)−1q j = qT

j Q(α� + �)−1QTq j = eT
j (α� + �)−1e j = (αω j + γ j)

−1,

where e j denotes the j-th unit vector in R
n. Therefore, it holds that D(α) =

(α� + �)− 1
2 and(

D(α)QT(αW + T)
1
2

) (
D(α)QT(αW + T)

1
2

)T = D(α)QT(αW + T)QD(α) = I,

which immediately results in κ2(X̃(α)) = 1. ��

Remark 3.2 If α = 1, then Theorem 3.1(ii) leads to σ(1) ≤
√

2
2 . This shows that

when

F := (1 + ı)(W + T)

is used to precondition the matrix A ∈ C
n×n, the eigenvalues of the precon-

ditioned matrix F−1A are clustered within the complex disk centered at 1
with radius

√
2

2 . Moreover, Theorem 3.2 indicates that the matrix F−1A is
diagonalizable, with the matrix X(1), formed by its eigenvectors, satisfying
κ2(X(1)) = √

κ2(W + T). Hence, the preconditioned Krylov subspace iteration
methods, when employed to solve the complex symmetric linear system (1.1)
and (1.2), can be expected to converge rapidly, at least when

√
κ2(W + T) is

not too large. As the previous theorem shows, this is guaranteed in the normal
case.

4 Numerical results

In this section we use three test problems from [1, 4, 9] to assess the feasibility
and effectiveness of the PMHSS iteration method in terms of both iteration
count (denoted as IT) and computing time (in seconds, denoted as CPU),
when it is employed either as a solver or as a preconditioner for solving the
system of linear equations (1.1) and (1.2). Besides comparing the efficiency of
the PMHSS and the MHSS iteration methods, we also examine their numerical
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behavior as preconditioners for the (full) GMRES method and its restarted
variants, say, GMRES(#); see [11].

In our implementations, the initial guess is chosen to be x(0) = 0 and the
iteration is terminated once the current iterate x(k) satisfies

‖b − Ax(k)‖2

‖b‖2
≤ 10−6.

To accelerate the convergence rates of GMRES(#) and GMRES, we adopt the
MHSS preconditioner defined by

F(I; α) = 1 + ı
2α

(αI + W)(αI + T)

and the PMHSS preconditioner defined by

F(α) = (α + 1)(1 + ı)
2α

(αW + T),

respectively; see (2.5) and (2.7).
In both MHSS and PMHSS iteration methods, the two half-steps comprising

each iteration are computed exactly by the sparse Cholesky factorization
incorporated with the symamd.m ordering algorithm. This technique is equally
applied to the actions of the MHSS and the PMHSS preconditioners F(I; α)

and F(α), respectively.
The iteration parameters used in both MHSS and PMHSS iteration methods

as well as the corresponding MHSS and PMHSS preconditioners are the
experimentally found ones, which minimize the numbers of iteration steps; see
Tables 7 and 8. Moreover, if these optimal iteration parameters form intervals,
then they are further optimized according to the lest computing times; see
Tables 1, 2, 3, 4, 5 and 6. We remark that when the right endpoints of the
optimal parameter intervals obtained from minimizing the iteration steps are
larger than 1000.0, we just cut off and set them as 1000.0 and, by noticing
that all left endpoints of such intervals are less than 3.65, we then search
the optimal iteration parameters by minimizing the computing times from
the left endpoints of the intervals to 10.0. The optimal iteration parameters
determined in such a manner are denoted as αexp.

Table 1 IT and CPU for MHSS, PMHSS, GMRES and GMRES(20) methods for Example 4.1

Method m × m 16×16 32 × 32 64 × 64 128 × 128 256 × 256

MHSS αexp 1.16 0.78 0.55 0.40 0.30
IT 39 53 72 98 133
CPU 0.012 0.067 0.577 4.327 34.022

PMHSS αexp 1.09 1.36 1.35 1.05 1.44
IT 21 21 21 21 21
CPU 0.008 0.035 0.240 1.099 6.188

GMRES IT 34 53 81 112 155
CPU 0.027 0.148 1.397 10.625 94.164

GMRES(20) IT 39 62 91 136 214
CPU 0.022 0.083 0.505 2.723 22.469
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Table 2 IT and CPU for preconditioned GMRES and GMRES(10) for Example 4.1

Method Prec m × m 16 × 16 32 × 32 64 × 64 128 × 128 256 × 256

GMRES MHSS αexp 1.65 1.06 0.74 0.57 0.40
IT 9 12 15 19 22
CPU 0.006 0.029 0.206 1.586 10.446

PMHSS αexp 0.52 1.82 1.48 1.20 1.60
IT 6 7 8 8 8
CPU 0.003 0.010 0.062 0.354 2.045

PMHSS α 1.00 1.00 1.00 1.00 1.00
IT 6 7 8 8 8
CPU 0.003 0.013 0.075 0.372 2.114

GMRES(10) MHSS αexp 2.03 0.94 0.79 0.49 0.36
IT 9 12 15 19 22
CPU 0.006 0.029 0.212 1.537 10.148

PMHSS αexp 0.56 1.64 3.67 0.86 1.19
IT 6 7 8 8 8
CPU 0.003 0.010 0.060 0.347 2.019

PMHSS α 1.00 1.00 1.00 1.00 1.00
IT 6 7 8 8 8
CPU 0.003 0.012 0.074 0.377 2.149

In addition, all codes were run in MATLAB (version R2009a) in double
precision and all experiments were performed on a personal computer with
2.96GHz central processing unit (Intel(R) Core(TM)2 Duo CPU L9400),
1.86G memory and Windows operating system.

Example 4.1 (See [1, 4]) The system of linear equations (1.1) and (1.2) is of the
form [(

K + 3 − √
3

τ
I

)
+ ı

(
K + 3 + √

3
τ

I

)]
x = b, (4.1)

where τ is the time step-size and K is the five-point centered difference
matrix approximating the negative Laplacian operator L = −� with ho-
mogeneous Dirichlet boundary conditions, on a uniform mesh in the unit
square [0, 1] × [0, 1] with the mesh-size h = 1

m+1 . The matrix K ∈ R
n×n

Table 3 IT and CPU for MHSS, PMHSS, GMRES and GMRES(20) methods for Example 4.2

Method m × m 16 × 16 32 × 32 64 × 64 128 × 128 256 × 256

MHSS αexp 0.21 0.09 0.04 0.02 0.01
IT 34 37 50 81 139
CPU 0.011 0.050 0.434 3.903 35.421

PMHSS αexp 0.68 0.98 0.93 1.10 0.97
IT 34 37 38 38 38
CPU 0.013 0.052 0.449 1.755 10.451

GMRES IT 26 52 102 196 379
CPU 0.018 0.144 2.290 31.617 932.419

GMRES(20) IT 39 128 412 1297 4369
CPU 0.032 0.149 1.950 27.477 467.754
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Table 4 IT and CPU for preconditioned GMRES and GMRES(10) for Example 4.2

Method Prec m × m 16 × 16 32 × 32 64 × 64 128 × 128 256 × 256

GMRES MHSS αexp 0.28 0.17 0.05 0.03 0.03
IT 8 10 13 18 25
CPU 0.006 0.028 0.217 1.553 14.831

PMHSS αexp 12.09 8.90 1.46 6.95 7.23
IT 6 7 7 7 7
CPU 0.003 0.011 0.057 0.322 1.818

PMHSS α 1.00 1.00 1.00 1.00 1.00
IT 7 7 7 7 7
CPU 0.004 0.013 0.059 0.336 1.796

GMRES(10) MHSS αexp 0.29 0.19 0.08 0.02 0.01
IT 8 10 13 21 35
CPU 0.006 0.028 0.219 1.845 19.147

PMHSS αexp 8.90 4.65 2.45 7.15 6.23
IT 6 7 7 7 7
CPU 0.003 0.011 0.058 0.323 1.771

PMHSS α 1.00 1.00 1.00 1.00 1.00
IT 7 7 7 7 7
CPU 0.004 0.012 0.067 0.355 1.813

possesses the tensor-product form K = I ⊗ Bm + Bm ⊗ I, with Bm = h−2 ·
tridiag(−1, 2, −1) ∈ R

m×m. Hence, K is an n × n block-tridiagonal matrix, with
n = m2. We take

W = K + 3 − √
3

τ
I and T = K + 3 + √

3
τ

I,

and the right-hand side vector b with its jth entry [b] j being given by

[b] j = (1 − ı) j
τ( j + 1)2 , j = 1, 2, . . . , n.

Furthermore, we normalize coefficient matrix and right-hand side by multiply-
ing both by h2.

Table 5 IT and CPU for MHSS, PMHSS, GMRES and GMRES(20) methods for Example 4.3

Method m × m 16 × 16 32 × 32 64 × 64 128 × 128 256 × 256

MHSS αexp 1.79 1.05 0.55 0.27 0.14
IT 51 75 128 241 458
CPU 0.026 0.182 1.965 22.959 221.55

PMHSS αexp 0.61 0.42 0.57 0.78 0.73
IT 30 30 30 30 30
CPU 0.018 0.095 0.623 3.519 19.568

GMRES IT 35 70 138 263 –
CPU 0.039 0.272 4.308 59.031 –

GMRES(20) IT 65 184 414 1295 2840
CPU 0.045 0.239 2.094 27.761 305.224
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Table 6 IT and CPU for preconditioned GMRES and GMRES(10) for Example 4.3

Method Prec m × m 16 × 16 32 × 32 64 × 64 128 × 128 256 × 256

GMRES MHSS αexp 4.16 2.52 1.25 0.61 0.34
IT 10 14 19 27 38
CPU 0.008 0.045 0.361 3.304 28.250

PMHSS αexp 4.37 7.06 2.71 4.84 7.22
IT 5 6 7 9 11
CPU 0.003 0.012 0.078 0.657 4.024

PMHSS α 1.00 1.00 1.00 1.00 1.00
IT 5 6 8 9 11
CPU 0.003 0.018 0.097 0.738 4.151

GMRES(10) MHSS αexp 6.13 1.93 1.05 0.79 0.28
IT 10 14 24 39 51
CPU 0.008 0.045 0.483 4.780 33.806

PMHSS αexp 6.62 6.82 8.67 1.34 2.06
IT 5 6 7 9 11
CPU 0.003 0.012 0.079 0.638 4.241

PMHSS α 1.00 1.00 1.00 1.00 1.00
IT 5 6 8 9 11
CPU 0.003 0.016 0.100 0.759 4.300

In our tests we take τ = h. Numerical results for Example 4.1 are listed in
Tables 1 and 2. In Table 1 we show IT and CPU for MHSS, PMHSS, GMRES
and GMRES(20) methods, while in Table 2 we show results for MHSS- and
PMHSS-preconditioned GMRES and GMRES(10) methods, respectively.

From Table 1 we see that the iteration counts with the MHSS, GMRES and
GMRES(20) methods grow rapidly with problem size, while that of PMHSS
method remains constant. In other words the PMHSS iteration method shows
h-independent convergence, unlike the other schemes. Moreover, PMHSS
considerably outperforms MHSS, GMRES and GMRES(20), both in terms
of iteration counts and in terms of CPU times.

In Table 2 we report results for GMRES and GMRES(10) preconditioned
with MHSS and PMHSS. From these results we observe that when used
as a preconditioner, PMHSS performs much better than MHSS in both
iteration steps and CPU times, especially when the mesh-size h becomes
small. While the number of iterations with the MHSS preconditioner increases
with problem size, those for the PMHSS preconditioner is almost constant.
Thus, the PMHSS-preconditioned GMRES and GMRES(10) methods show h-
independent convergence property, whereas the MHSS-preconditioned GM-
RES and GMRES(10) methods do not; see Fig. 1 (left). In particular, when
we set the iteration parameter α to be 1, we see that the iteration counts for
the PMHSS-preconditioned GMRES and GMRES(10) methods are almost
identical to those obtained with the experimentally found optimal parameters
αexp. This shows that in actual implementations of the PMHSS preconditioning
matrix one should simply take the iteration parameter α to be 1, resulting in a
parameter-free method.
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Fig. 1 Pictures of IT versus m for MHSS- and PMHSS-preconditioned GMRES(10) and GMRES
methods with α = αexp; left: Example 4.1, middle: Example 4.2, and right: Example 4.3

Example 4.2 (See [4, 9]) The system of linear equations (1.1) and (1.2) is of the
form [(−ω2M + K

) + ı (ωCV + CH)
]

x = b, (4.2)

where M and K are the inertia and the stiffness matrices, CV and CH are
the viscous and the hysteretic damping matrices, respectively, and ω is the
driving circular frequency. We take CH = μK with μ a damping coefficient,
M = I, CV = 10I, and K the five-point centered difference matrix approximat-
ing the negative Laplacian operator with homogeneous Dirichlet boundary
conditions, on a uniform mesh in the unit square [0, 1] × [0, 1] with the mesh-
size h = 1

m+1 . The matrix K ∈ R
n×n possesses the tensor-product form K = I ⊗

Bm + Bm ⊗ I, with Bm = h−2 · tridiag(−1, 2, −1) ∈ R
m×m. Hence, K is an n × n

block-tridiagonal matrix, with n = m2. In addition, we set ω = π , μ = 0.02, and
the right-hand side vector b to be b = (1 + ı)A1, with 1 being the vector of all
entries equal to 1. As before, we normalize the system by multiplying both
sides through by h2.

Numerical results for Example 4.2 are listed in Tables 3 and 4. In Table 3 we
show IT and CPU for MHSS, PMHSS, GMRES and GMRES(20) methods,
while in Table 4 we show results for MHSS- and PMHSS-preconditioned
GMRES and GMRES(10) methods, respectively.

From Table 3 we see that the iteration counts for MHSS, GMRES and
GMRES(20) increase rapidly with problem size, while those for PMHSS
method are essentially constant after a slight increase when going from m = 16
to m = 64. Therefore, the PMHSS iteration method shows h-independent
convergence, whereas the other iteration methods do not. Moreover, PMHSS
considerably outperforms MHSS, GMRES and GMRES(20) both in terms of
iteration counts and in terms of CPU times.
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In Table 4 we report results for GMRES and GMRES(10) preconditioned
with MHSS and PMHSS. From these results we observe that when used as a
preconditioner, PMHSS performs much better than MHSS in both iteration
counts and CPU times, especially when the mesh-size h becomes small.
While the iteration counts for the MHSS preconditioner grow with problem
size, those for the PMHSS preconditioner remain nearly constants. Again,
the PMHSS-preconditioned GMRES and GMRES(10) methods show h-
independent convergence property, whereas the convergence rates for MHSS-
preconditioned GMRES and GMRES(10) are h-dependent; see Fig. 1 (mid-
dle). As before, using α = 1 gives nearly optimal results and this value should
be used in practice.

Example 4.3 (See [4]) The system of linear equations (1.1) and (1.2) is of the
form (W + ı T)x = b, with

T = I ⊗ B + B ⊗ I and W = 10(I ⊗ Bc + Bc ⊗ I) + 9
(
e1eT

m + emeT
1

) ⊗ I,

where B = tridiag(−1, 2, −1) ∈ R
m×m, Bc = B − e1eT

m − emeT
1 ∈ R

m×m, and e1
and em are the first and the mth unit basis vectors in R

m, respectively. We take
the right-hand side vector b to be of the form b = (1 + ı)A1, with 1 being the
vector of all entries equal to 1.

Numerical results for Example 4.3 are listed in Tables 5 and 6. In Table 5 we
show IT and CPU for MHSS, PMHSS, GMRES and GMRES(20) methods,
while in Table 6 we show results for MHSS- and PMHSS-preconditioned
GMRES and GMRES(10) methods, respectively.

From Table 5 we see that the iteration counts for MHSS, GMRES and
GMRES(20) increase rapidly with problem size, while the rate of convergence
with PMHSS is essentially constant. Moreover, PMHSS vastly outperforms
MHSS, GMRES and GMRES(20) in terms of both iteration counts and CPU
times.

In Table 6 we report results for GMRES and GMRES(10) preconditioned
with MHSS and PMHSS. From these results we observe that when used as
a preconditioner, PMHSS performs considerably better than MHSS in both
iteration counts and CPU times, especially when the mesh-size h becomes
small. Similar observations to the ones made for the other two examples apply.

In Table 7 we list the experimentally found optimal parameters αexp for the
MHSS and PMHSS iterations, and in Table 8 we list those for the MHSS- and
PMHSS-preconditioned GMRES and GMRES(10) methods. These optimal
parameters are obtained by minimizing the numbers of iterations with respect
to each test example and each spatial mesh-size.

From Table 7 we observe that for both Examples 4.1 and 4.2 the optimal
parameters of the PMHSS iteration method form intervals including 1.0 as an
interior point, and for Example 4.3 they form intervals of large widths. This im-
plies that the PMHSS iteration method is insensitive to the iteration parameter
α and, in actual implementations, for Examples 4.1 and 4.2 we can always take
α = 1.0 to obtain essentially optimal convergence rates. The situation for the
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Table 7 The experimental optimal parameters αexp for MHSS and PMHSS iteration methods by
minimizing iteration steps

Example Method Grid
16 × 16 32 × 32 64 × 64 128 × 128 256 × 256

No. 4.1 MHSS [1.11, 1.16] [0.78, 0.81] [0.55, 0.57] [0.40, 0.41] [0.29, 0.30]
PMHSS [0.97, 1.55] [0.94, 1.51] [0.87, 1.49] [0.80, 1.48] [0.75, 1.47]

No. 4.2 MHSS [0.17, 0.27] 0.09 0.04 0.02 0.01
PMHSS [0.55, 1.04] [0.64, 1.16] [0.68, 1.18] [0.74, 1.12] [0.77, 1.10]

No. 4.3 MHSS [1.69, 1.88] [1.03, 1.05] [0.55, 0.57] [0.27, 0.28] 0.14
PMHSS [0.24, 0.78] [0.31, 0.78] [0.40, 0.79] [0.52, 0.80] [0.73, 0.75]

MHSS iteration method is quite different. Its optimal parameter forms very
narrow intervals with respect to different spatial mesh-sizes for Examples 4.1
and 4.3 with the exception m = 256 for Examples 4.3, and it is a single point
with respect to almost all spatial mesh-sizes for Example 4.2 except for m = 16.
This shows that the MHSS iteration method is quite sensitive to the iteration
parameter α. Note that the optimal parameters of the MHSS iteration method
are always either less than or larger than 1.0, and just setting α = 1.0 in the
MHSS iteration method will not produce optimal results. See Fig. 2.

From Table 8 we see that similar conclusions hold relative to the optimal pa-
rameters for the PMHSS-preconditioned GMRES and GMRES(10) iteration
methods. Note that for Examples 4.2 and 4.3 the intervals containing optimal
values of α are very wide. This implies that the PMHSS preconditioner is not
sensitive to the iteration parameter α and PMHSS-preconditioned GMRES
and GMRES(10) are, roughly speaking, α-independent iteration methods for
almost all cases of the spatial mesh-sizes and, in actual implementations, we can
always take α = 1.0 to obtain essentially optimal results. On the other hand,
the MHSS preconditioner is relatively sensitive to the choice of α, and just
setting α = 1 will not perform well in practice. See Fig. 3.

Table 8 The experimental optimal parameters αexp for preconditioned GMRES and GMRES(10)
by minimizing iteration steps

Example Method Prec Grid
16 × 16 32 × 32 64 × 64 128 × 128 256 × 256

No. 4.1 GMRES MHSS [1.40, 2.18] [0.87, 1.49] [0.69, 0.88] [0.40, 0.69] [0.35, 0.40]
PMHSS [0.13, 2.67] [0.01, 3.13] [0.01, 4.02] [0.01, 2.10] [0.01, 1.81]

GMRES(10) MHSS [1.40, 2.18] [0.90, 1.46] [0.72, 0.80] [0.43, 0.64] [0.35, 0.40]
PMHSS [0.13, 2.67] [0.01, 3.13] [0.01, 4.02] [0.01, 2.10] [0.01, 1.81]

No. 4.2 GMRES MHSS [0.09, 0.48] [0.08, 0.24] [0.05, 0.11] [0.03, 0.06] [0.02, 0.03]
PMHSS [3.65, 1000] [0.68, 1000] [0.72, 1000] [0.73, 1000] [0.73, 1000]

GMRES(10) MHSS [0.09, 0.48] [0.08, 0.24] [0.06, 0.10] 0.02 0.01
PMHSS [3.65 1000] [0.68, 1000] [0.72, 1000] [0.73 1000] [0.73, 1000]

No. 4.3 GMRES MHSS [3.28, 6.71] [1.77, 3.95] [1.20, 1.79] [0.60, 0.94] [0.31, 0.42]
PMHSS [0.90, 1000] [0.92, 1000] [1.40, 1000] [0.77, 1000] [0.69, 1000]

GMRES(10) MHSS [3.28, 6.71] [1.88, 1.97] [1.05, 1.12] [0.79, 0.83] [0.28, 0.30]
PMHSS [0.90, 1000] [0.92, 1000] [1.40, 1000] [0.77, 1000] [0.75, 30.75]
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Fig. 2 Pictures of IT versus α for MHSS and PMHSS iteration methods with m = 64; left:
Example 4.1, middle: Example 4.2, and right: Example 4.3

Note that in the three examples the matrices W, T ∈ R
n×n are symmetric

positive definite. Moreover, for Examples 4.1 and 4.2 they are simultaneously
orthogonally similar to diagonal matrices and therefore the coefficient ma-
trices A ∈ C

n×n are normal. From Theorem 3.3 we see that the Euclidean
condition numbers of the normalized matrices X̃(α) from the eigenvector
matrices X(α) of the PMHSS-preconditioned matrices F(α)−1A are equal to
1, i.e., κ2(X̃(α)) = 1; see Remark 3.1 and Theorem 3.2. Recall that in this case
F(α)−1A in both Examples 4.1 and 4.2 are normal matrices. The situation for
Example 4.3 is different, since the matrices W, T ∈ R

n×n do not commute, so
that F(α)−1A is not a normal matrix. As a result, we cannot expect κ2(X̃(α)) to
be 1, or even to remain bounded as the problem size increases. We found,
however, that for mesh sizes m = 16, m = 32 and m = 64, the condition
numbers for the experimentally optimal values of α are κ2(X̃(αexp)) = 11.86,
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Fig. 3 Pictures of IT versus α for MHSS- and PMHSS-preconditioned GMRES(10) and GMRES
methods; left: Example 4.1, middle: Example 4.2, and right: Example 4.3
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20.41 and 20.58, respectively. This suggests that for the optimal value of α the
eigenvector condition numbers remain bounded as the mesh size increases.

5 Concluding remarks

In this paper we have studied a preconditioned variant of the modified
Hermitian and skew-Hermitian splitting iteration method for a class of com-
plex symmetric linear systems. The PMHSS iteration method not only presents
a more general framework, but also yields much better theoretical and numer-
ical properties than the MHSS iteration method. In particular, the PMHSS
iteration results in asymptotically h-independent convergence rates when it is
employed either as a solver or as a preconditioner.

Using PMHSS as a preconditioner for GMRES always results in faster
solution times than using PMHSS as a stationary (fixed point) iteration.
However, GMRES acceleration requires additional operations, such as inner
products and orthogonalization steps, which may be difficult to implement
efficiently on parallel architectures. Hence, it may be better to use PMHSS
alone in some cases.

Our analysis shows that when V = W we obtain PMHSS preconditioners for
which the eigenvalues of the preconditioned matrices are clustered within com-
plex disks centered at 1 with radii δ(α) :=

√
α2+1
α+1 , and the condition numbers

of the corresponding eigenvector matrices are equal to γ (α) := √
κ2(αW + T),

where α > 0 is the iteration parameter. Note that when α = 1, it holds that
δ(1) =

√
2

2 and γ (1) = √
κ2(W + T). In actual implementations of the PMHSS

preconditioner we can simply take the iteration parameter α to be 1, resulting
in a parameter-free method.

In this paper we have limited ourselves to “exact” variants of the PMHSS
iteration. In practice, using V = W is likely to be too costly, especially when
solving problems arising from the discretization of 3D partial differential
equations. In this case, inexact solve should be used instead, that is, one should
use V ≈ W. For the problems considered in this paper, exact solves can be
replaced with a single multigrid V-cycle or any other spectrally equivalent
preconditioner. We leave the investigation of inexact variants of PMHSS for
future work.
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