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Abstract We provide an overview of matrix decomposition algorithms
(MDAs) for the solution of systems of linear equations arising when various
discretization techniques are applied in the numerical solution of certain
separable elliptic boundary value problems in the unit square. An MDA is
a direct method which reduces the algebraic problem to one of solving a
set of independent one-dimensional problems which are generally banded,
block tridiagonal, or almost block diagonal. Often, fast Fourier transforms
(FFTs) can be employed in an MDA with a resulting computational cost of
O(N2 log N) on an N × N uniform partition of the unit square. To formulate
MDAs, we require knowledge of the eigenvalues and eigenvectors of matrices
arising in corresponding two–point boundary value problems in one space
dimension. In many important cases, these eigensystems are known explicitly,
while in others, they must be computed. The first MDAs were formulated
almost fifty years ago, for finite difference methods. Herein, we discuss more
recent developments in the formulation and application of MDAs in spline
collocation, finite element Galerkin and spectral methods, and the method
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of fundamental solutions. For ease of exposition, we focus primarily on the
Dirichlet problem for Poisson’s equation in the unit square, sketch extensions
to other boundary conditions and to more involved elliptic problems, including
the biharmonic Dirichlet problem, and report extensions to three dimensional
problems in a cube. MDAs have also been used extensively as preconditioners
in iterative methods for solving linear systems arising from discretizations of
non-separable boundary value problems.

Keywords Elliptic boundary value problems · Poisson’s equation ·
Biharmonic equation · Matrix decomposition algorithms ·
Fast Fourier transforms · Finite difference methods ·
Finite element Galerkin methods · Spline collocation methods ·
Spectral methods · Method of fundamental solutions

AMS 2000 Subject Classifications 65F05 · 65N22 · 65N30 · 65N35

1 Introduction

When applied to the numerical solution of certain elliptic boundary value
problems (BVPs) in the unit square, various discretization techniques give rise
to systems of linear algebraic equations of the form

(
A1 ⊗ B2 + B1 ⊗ A2

)
u = f, (1.1)

where the matrices A1, B1 are M1 × M1 and A2, B2 are M2 × M2, and ⊗
denotes the matrix tensor product.1 For the efficient solution of such sys-
tems, matrix decomposition algorithms (MDAs) have been proposed. Such an
algorithm is a direct method which reduces the problem of solving (1.1) to one
of solving a set of independent one-dimensional problems. Often, fast Fourier
transforms (FFTs) can be employed in MDAs with a resulting computational
cost of O(M1 M2 log M1) on a uniform partition of the unit square. In the
literature, an MDA in which FFTs are employed is often referred to as a
Fourier algorithm.

To formulate an MDA, we require nonsingular matrices Y and Z such that

Y A1 Z = �A, Y B1 Z = �B, (1.2)

where �A and �B are diagonal matrices. System (1.1) is then equivalent to
(
Y ⊗ I

)(
A1 ⊗ B2 + B1 ⊗ A2

)(
Z ⊗ I

)(
Z −1 ⊗ I

)
u = (Y ⊗ I

)
f,

1If the matrix A = (ai, j) is MA × NA and B is MB × NB, then the matrix A ⊗ B is the MA MB ×
NA NB block matrix whose (i, j) block is ai, j B.
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which, on using (1.2) and a property of the matrix tensor product,2 can be
written as

(
�A ⊗ B2 + �B ⊗ A2

)
ũ = f̃, (1.3)

where

ũ = (Z −1 ⊗ I
)
u, f̃ = (Y ⊗ I

)
f.

If �A = diag(λA
i )

M1
i=1 and �B = diag(λB

i )
M1
i=1, the solution of (1.3) reduces to the

solution of the M2 × M2 independent systems
(
λA

i B2 + λB
i A2

)
ũi = f̃i, i = 1, 2, . . . , M1,

where

ũi = [ũi,1, . . . , ũi,M2

]T
, f̃i = [ f̃i,1, . . . , f̃i,M2

]T
. (1.4)

We thus have the following algorithm for solving (1.1):

Algorithm MDA

Step 1. Compute f̃ = (Y ⊗ I)f.
Step 2. Solve

(
λA

i B2 + λB
i A2

)
ũi = f̃i, i = 1, 2, . . . , M1.

Step 3. Compute u = (Z ⊗ I)ũ.

Frequently, the elements of the matrix Z are sines and/or cosines and Y can
be expressed in terms of Z or Z T . Then, in steps 1 and 3, FFT routines can be
employed to perform the matrix multiplications at a cost of O(M1 M2 log M1).
Step 2 comprises M1 independent systems of order M2 which are often banded,
block tridiagonal, or almost block diagonal [4, 89], and can be solved at a cost
of O(M1 M2). Thus the total cost of Algorithm MDA is O(M1 M2 log M1); that
is, O(N2 log N) when M1, M2 = O(N).

MDAs were first considered for the solution of the standard five–point finite
difference approximation to Poisson’s equation in the unit square subject to
homogeneous Dirichlet boundary conditions (BCs),

−�u = f (x, y), (x, y) ∈ �, u(x, y) = 0, (x, y) ∈ ∂�, (1.5)

where � ≡ D2
x + D2

y denotes the Laplacian3 and � = (0, 1) × (0, 1) with
boundary ∂�. The early history of MDAs is quite convoluted. The first
such method similar to Algorithm MDA was presented in 1960 in [47]; see
also [158]. Tensor product methods were introduced in 1964 by Lynch et al.
[149, 150], for the solution of finite difference approximations of (1.5) and

2(A ⊗ B)(C ⊗ D) = AC ⊗ BD.
3Differentiation with respect to x and y is denoted by D2

x = ∂2/∂x2, D2
y = ∂2/∂y2, etc.
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other separable problems, but without any mention of [47]. In these methods,
the diagonalization is performed in both variables so that in Step 2 of the
algorithm the systems are diagonal. According to [150], tensor product meth-
ods of this type were developed in 1960 in [82] for the five–point finite
difference approximation of (1.5) but an inefficient solution procedure was for-
mulated. In 1965, Hockney [112] introduced a method which combines cyclic
reduction with an MDA. He claimed that the method of [150] was essentially
that proposed by Hyman [116] in 1951. Subsequent developments of MDAs
for finite difference methods are described in [61, 79, 121, 162, 188, 189, 197].

The purpose of this paper is to provide an overview of the extensive
literature on the development and application of MDAs for the efficient
implementation of various discretization techniques with emphasis on works
appearing over the last two decades. Most of the discussion centers on the
solution of (1.5). Methods for solving this problem easily extend to Neumann,
mixed, and periodic BCs on the vertical sides of � and general linear BCs
on the horizontal sides, and to elliptic partial differential equations (PDEs) of
the form

−D2
xu + Lyu = f (x, y), (x, y) ∈ �, (1.6)

with

Lyu = −a(y)D2
yu + b(y)

∂u
∂y

+ c(y)u. (1.7)

Note that Eq. 1.6 includes (1.5) in polar coordinates and in axisymmetric
cylindrical and spherical coordinate systems.

An outline of the paper is as follows. In Section 2, by way of introduction
and for later reference, we consider MDAs for the five-point and nine-point
finite difference methods for solving (1.5). This is followed in Section 3 by
a description of MDAs in the orthogonal spline collocation approximation
of second order elliptic problems, biharmonic problems and related time
dependent problems. In Section 4, we describe MDAs for finite element
Galerkin methods, including recent work on the determination of eigensys-
tems when the spaces of C0 piecewise biquadratic functions and piecewise
Hermite bicubics are employed. C2 cubic and C1 quadratic spline collocation
methods are frequently used techniques in the numerical solution of BVPs for
ordinary and partial differential equations and for the spatial discretization in
time dependent problems [29]. When used in their basic form, these methods
are suboptimal and yield approximations which are no more than second
order accurate (cf. [57]) although they are often used in practice; see, for
example, [58, 59, 130, 195, 196]. In Section 5, we describe MDAs for cubic
and quadratic spline collocation methods, in particular, methods developed
recently in [3, 31, 32] for the cubic case and in [33–35, 151] for the quadratic
case which are globally optimal and possess superconvergence properties. In
Section 6, MDAs for various spectral methods for Poisson and biharmonic
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problems are described. Section 7 is devoted to a discussion of the use of
MDAs to solve the linear systems arising when the method of fundamental so-
lutions [90] and related methods are applied to certain axisymmetric problems.
Concluding remarks are given in Section 8. We make no attempt to conduct a
rigorous comparison of the various methods; the only comparison reported is
based on computational cost. The choice of method in a particular situation is
invariably dictated by the user’s likes and dislikes.

While the emphasis throughout is on two-dimensional problems, we do
make mention of methods that have been developed for three-dimensional
problems in a cube. These methods give rise to linear systems of the form

(
A1⊗B2⊗B3 + B1⊗A2⊗B3 + B1⊗B2⊗A3

)
u = f. (1.8)

If A1 and B1 satisfy (1.2), then (1.8) can be transformed in an obvious way to
obtain

(
�A⊗B2⊗B3 + �B⊗A2⊗B3 + �B⊗B2⊗A3

)
ũ = f̃,

or
(
λB

i A2⊗B3 + B2⊗
{
λA

i B3 + λB
i A3

})
ũi = f̃i, i = 1, . . . , M1. (1.9)

Each system in (1.9) can then be solved using Algorithm MDA provided A2

and B2 (or A3 and B3) are simultaneously diagonalizable as in (1.2).
Throughout this paper, we use the following. Suppose I, J , M, N are finite

sets of increasing indices. Without loss of generality, we assume that

I = {1, . . . , I′}, J = {1, . . . , J′}, M = {1, . . . , M′}, N = {1, . . . , N′}.
Then the matrix form of

φi, j =
∑

m∈M
c(1)

i,m

∑

n∈N
c(2)

j,nψm,n, i ∈ I, j ∈ J , (1.10)

is

	 = (C1 ⊗ C2)
, (1.11)

where

C1 =
[
c(1)

i,m

]

i∈I, m∈M
, C2 =

[
c(2)

j,n

]

j∈J , n∈N
,

and

� = [
φ1,1, . . . , φ1,J′ , . . . , φI′,1, . . . , φI′,J′

]T
,

� = [
ψ1,1, . . . , ψ1,N′ , . . . , ψM′,1, . . . , ψM′,N′

]T
.
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2 Finite difference methods

First we consider the basic five–point finite difference approximation of (1.5).
To describe this method, let

ρ = {ti}N+1
i=0 , ti = ih, h = 1/(N + 1), (2.1)

where N is a positive integer, be a uniform partition of [0, 1], and set xi = ti,
y j = t j, i, j = 0, . . . , N + 1. Denote by Ui, j an approximation to u(xi, y j)

defined by the standard second order accurate finite difference equations

−
(
�2

x + �2
y

)
Ui, j = f (xi, y j), i, j = 1, . . . , N, (2.2)

Ui,0 = Ui,N+1 = 0, i = 0, . . . , N + 1,

U0, j = UN+1, j = 0, j = 1, . . . , N, (2.3)

where

�2
xUi, j = Ui−1, j − 2Ui, j + Ui+1, j

h2
,

and �2
yUi, j is defined similarly. If u and f are given by

u = [
U1,1, . . . , U1,N, . . . , UN,1, . . . , UN,N

]T
,

f = [
f (x1, y1), . . . , f (x1, yN), . . . , f (xN, y1), . . . , f (xN, yN)

]T
, (2.4)

then, on using (1.10) and (1.11), the difference equations (2.2) can be written
in the form

(
J ⊗ I + I ⊗ J

)
u = h2f, (2.5)

where J is the N × N tridiagonal matrix

J =

⎡

⎢
⎢
⎢⎢
⎢
⎣

2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2

⎤

⎥
⎥
⎥⎥
⎥
⎦

. (2.6)

Clearly, (2.5) is of the form (1.1) with A1 = A2 = J, and B1 = B2 = I. More-
over, it is well known that (1.2) holds with �A = �J , �B = I and Y = Z ,
where

�J = diag
(
λJ

i

)N
i=1, λJ

i = 4 sin2 iπ
2(N + 1)

, (2.7)
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and Z is the symmetric orthogonal matrix given by

Z =
(

2

N + 1

)1/2 [
sin

mnπ

N + 1

]N

m,n=1

. (2.8)

With these matrices, system (2.5) can be solved using Algorithm MDA. In
this case, steps 1 and 3 of the algorithm can be carried out using FFTs at a
cost of O(N2 log N). Step 2 consists of N tridiagonal linear systems, each of
which can be solved in O(N) operations. The total cost of the algorithm is thus
O(N2 log N).

The difference equations arising from the fourth order accurate nine–point
difference approximation to (1.5) [46], can be solved in a similar manner,
cf. [161]. In this method, the difference approximation {Ui, j}N+1

i, j=0 is defined by

−
(

�2
x + �2

y + h2

6
�2

x�
2
y

)
Ui, j =

(
1 + h2

12
�

)
f (xi, y j), i, j = 1, . . . , N,

together with (2.3). These equations can be written in the form
(

J ⊗ I + 1

6
(6I − J) ⊗ J

)
u = f, (2.9)

where

f = [ f1,1, . . . , f1,N, . . . , fN,1, . . . , fN,N
]T

, fi, j = h2

(
1 + h2

12
�

)
f (xi, y j).

Comparing (2.9) with (1.1), we have

A1 = A2 = J, B1 = 1

6
(6I − J), B2 = I, Y = Z , �B = 1

6
(6I − �J),

with �J and Z defined by (2.7) and (2.8), respectively. Note that step 2 again
involves the solution of tridiagonal linear systems.

For the constant coefficient Helmholtz equation on rectangular domains
in two and three dimensions subject to Dirichlet, Neumann, and periodic
BCs, Boisvert [52–54] derived fourth order finite difference methods, and
developed a software package for the solution of the resulting linear systems
using MDAs with FFTs [55, 56]. A method claimed to be fourth order for
solving the Helmholtz equation in three dimensions which also involves solving
tridiagonal systems is described in [152].

In [172, 173], a variant of the cyclic reduction method is developed for the
solution of (1.5) using the standard five–point difference approximation, and
the finite element Galerkin method with piecewise bilinear functions which is
described in Section 4 of the present paper. In this method, the block reduction
step is performed in such a way that the resulting system of equations has
a sparse right–hand side and this sparsity is then exploited in an MDA–type
method known as the partial solution technique; cf. [16, 133–135, 199, 200].
The parallel implementation of this method is discussed in [1, 159, 173]. In
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[102], this approach is used in the solution of the Helmholtz equation in two
and three dimensions with piecewise bilinear and piecewise trilinear functions,
respectively.

In [107], Hendrickx and Van Barel developed a method for solving (1.5) in
Cartesian and polar coordinates, called a Kronecker product method, which
is equivalent to the MDA. The approach adopted in [107] is the same as that
formulated in [63, 64] for a domain decomposition method and is also used
in [98].

When Robin BCs are imposed on one or both vertical sides of the unit
square, the linear system resulting from the finite difference methods cannot
be reduced to a collection of smaller independent linear systems as in step 2
of Algorithm MDA. In this case, iterative methods have been employed to
solve the system corresponding to (1.1). Such methods involving MDA–type
techniques have been developed in [163–165], and in [111, 115] an MDA
is used as a preconditioner. In [108], the approach of [107] is extended to
Neumann problems and used in an algorithm for solving the Robin problem
for the Helmholtz equation. Preconditioners involving MDAs for the solution
of Helmholtz problems in two and three dimensions are also discussed in
[85, 86, 101, 118, 141, 167, 173].

MDAs have also been employed in finite difference methods for the
solution of various other problems. Their use in the solution of Helmholtz
problems with nonlocal boundary conditions arising in electromagnetic scat-
tering from a large cavity is discussed in [18, 202–204]. For their application in
the solution of the Navier–Stokes equations in two and three dimensions, see
[95, 201]. For the polar form of Poisson’s equation on a disk,

r2 D2
r u + rDru + D2

θu = f (r, θ), (r, θ) ∈ (0, 1) × (0, 2π), (2.10)

fourth order finite difference–Fourier spectral schemes and a fourth order
finite difference scheme and their solutions by MDA-type methods are consid-
ered in [138, 140, 156]. Extensions of the fourth order finite difference–Fourier
spectral scheme to cylindrical and spherical coordinates are discussed in [139].
The basic second order finite difference method is used in [49] to discretize the
biharmonic problem

�2u = f (x, y), (x, y) ∈ �, u = Dnu = 0, (x, y) ∈ ∂�, (2.11)

where Dn is the outward normal derivative on ∂�, a problem of considerable
practical interest particularly in elasticity and fluid dynamics. The resulting
linear system is solved using the Sherman-Morrison formula in which the
auxiliary problem corresponds to the biharmonic problem with �u rather
than Dnu specified on two opposite sides of �. The auxiliary problem can
be solved using a variant of Algorithm MDA at a cost of O(N2 log N). The
Sherman-Morrison approach of [49] was used recently in [19] for the fourth
order Stephenson type discretization [183] of (2.11). However, in contrast to
[49], diagonalization is performed in both directions when solving the auxiliary
problem. The cost of this algorithm is also O(N2 log N).
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3 Orthogonal spline collocation methods

With the partition ρ defined in (2.1), let

Mr
k(ρ) = {ν ∈ Ck[0, 1] : ν|[xi−1,xi] ∈ Pr, i = 1, . . . , N + 1

}
, (3.1)

and

Mr,0
k (ρ) = {ν ∈ Mr

k(ρ) : ν(0) = ν(1) = 0
}
,

where Pr denotes the set of all polynomials of degree ≤ r. Note that

dim Mr,0
k (ρ) = (N + 1)(r − k) ≡ M. (3.2)

Let {σk}r−1
k=1 be the nodes of the (r − 1)-point Gauss-Legendre quadrature rule

on [0, 1], and let the Gauss points in [0, 1] be defined by

ξ(i−1)(r−1)+k = xi−1 + hσk, k = 1, 2, . . . , r − 1, i = 1, . . . , N + 1. (3.3)

Then the orthogonal spline collocation (OSC) method for solving (1.5) consists
in finding U ∈ Mr,0

1 (ρ)⊗Mr,0
1 (ρ),4 r ≥ 3, such that

−�U(ξi, ξ j) = f (ξi, ξ j), i, j = 1, . . . , M. (3.4)

Consider the case in which r = 3; that is, the space of piecewise Hermite
bicubics. Then M = 2N + 2 from (3.2), and from (3.3),

ξ2i−1 = xi−1 + hσ1, ξ2i = xi−1 + hσ2, i = 1, . . . , N + 1, (3.5)

where σ1 = (3 − √
3)/6 and σ2 = (3 + √

3)/6.
Define vi, si ∈ M3,0

1 (ρ) as follows: for i = 1, . . . , N,

vi(x j) = δi, j, v′
i(x j) = 0, j = 0, . . . , N + 1,

and, for i = 0, . . . , N + 1,

si(x j) = 0, s′
i(x j) = h−1δi, j, j = 0, . . . , N + 1,

where δi, j denotes the Kronecker delta. Explicit expressions for these functions
are given in [87]. With

{φm}M
m=1 = {

v1, . . . , vN, s0, . . . , sN+1
}
,

{ψn}M
n=1 = {

s0, v1, s1, . . . , vN, sN+1
}

(3.6)

4For two spaces V and W of functions, V ⊗ W denotes the space of functions consisting of all finite
linear combinations of products ψ1(x)ψ2(y) with ψ1 ∈ V and ψ2 ∈ W.
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as bases for M3,0
1 (ρ), we write the piecewise Hermite bicubic approximation in

the form

U(x, y) =
M∑

m=1

M∑

n=1

Um,nφm(x)ψn(y). (3.7)

Substituting (3.7) in (3.4) and using (1.10) and (1.11), we obtain the system
(1.1) with

A1 =
[
a(1)

i,m

]M

i,m=1
, a(1)

i,m = −φ′′
m(ξi), B1 =

[
b (1)

j,n

]M

j,n=1
, b (1)

j,n = φn(ξ j), (3.8)

A2 =
[
a(2)

i,m

]M

i,m=1
, a(2)

i,m = −ψ ′′
m(ξi), B2 =

[
b (2)

j,n

]M

j,n=1
, b (2)

j,n = ψn(ξ j), (3.9)

u = [
U1,1, . . . , U1,M, . . . , UM,1, . . . , UM,M

]T
,

f = [
f (ξ1, ξ1), . . . , f (ξ1, ξM), . . . , f (ξi, ξ1), . . . , f (ξM, ξM)

]T
. (3.10)

Explicit expressions for the matrices A1, A2, B1 and B2 are given in [20]. In
[30], real nonsingular matrices � = diag(λ j)

M
j=1 and Z are determined such that

Z T BT
1 A1 Z = �, Z T BT

1 B1 Z = I, (3.11)

where

� = diag
(
λ−

1 , . . . , λ−
N, λ0, λ

+
1 , . . . , λ+

N, λN+1
)

with

λ±
j = 12

(
8 + η j ± μ j

7 − η j

)
h−2, j = 1, . . . , N, λ0 = 36h−2, λN+1 = 12h−2,

and

η j = cos

(
jπ

N + 1

)
, μ j =

√
43 + 40η j − 2η2

j ,

Z = 3
√

3

[
S�−

α 0|S�+
α |0

C̃�−
β C�+

β

]
, (3.12)

where 0 is the N−dimensional zero column vector, S is given by (2.8),

C =
(

2

N + 1

)1/2 [
cos

mnπ

N + 1

]N+1

m,n=0

,

C̃ =
(

2

N + 1

)1/2 [
cos

mnπ

N + 1

]N+1,N

m=0,n=1

,

and �±
α , �±

β are diagonal matrices. On comparing (3.11) with (1.2), we see that
the system (1.1) with (3.8)–(3.10) can be solved using Algorithm MDA with
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�A = � and �B = I, and Y = Z T BT
1 . Since Z is a matrix of sines and cosines,

FFTs can be used in steps 1 and 3. The linear systems in step 2 are almost block
diagonal and can be solved at a cost of O(N2) [4, 89], which is also the cost of
the multiplications by B1. Thus the total cost of the algorithm is O(N2 log N).

Earlier, Sun and Zamani [187] developed an MDA for solving the OSC
equations (3.4). Their algorithm is based on the fact that the eigenvalues of
the matrix B−1

1 A1 are real and distinct [81] and hence there exists a real non-
singular matrix Q and a diagonal matrix � such that B−1

1 A1 = Q�Q−1. They
determine Q which is essentially the inverse of the matrix Z of (3.12). While
the resulting algorithm also requires O(N2 log N) operations, it is arguably
more complicated than Algorithm MDA which hinges on the existence of a
real nonsingular matrix Z satisfying (3.11). In particular, the utilization of the
second equation in (3.11) distinguishes Algorithm MDA and makes it not only
more straightforward but also more efficient.

Algorithm MDA can be generalized to problems in which, on the sides
y = 0, 1 of ∂�, u satisfies either the Robin BCs,

α0u(x, 0) + β0 Dyu(x, 0) = g0(x),

α1u(x, 1) + β1 Dyu(x, 1) = g1(x), x ∈ [0, 1],
where αi, βi, i = 0, 1, are constants, or the periodic BCs,

u(x, 0) = u(x,1), Dyu(x, 0) = Dyu(x, 1), x ∈ [0, 1].
On the sides x = 0, 1 of ∂�, u may be subject to either Dirichlet, Neumann,
mixed Dirichlet-Neumann or periodic BCs. Details are given in [20, 37, 88].
Other extensions have been considered, to problems in three dimensions [168]
and to OSC with higher degree piecewise polynomials [186]. For the case of
Poisson’s equation with pure Neumann or pure periodic BCs, Bialecki and
Remington [44] formulated a matrix decomposition approach for determining
the least squares solution of the singular OSC equations when r = 3. Algo-
rithm MDA can also be generalized to elliptic equations of the form (1.6)
and (1.7) [27].

Applications of Algorithm MDA to computing OSC approximations of
certain separable BVPs with variable coefficients are described in [27]. MDAs
similar to those of [28] which require the solution of an eigenvalue problem are
described in [166] for the OSC solution of Poisson’s equation and Helmholtz
equation in three dimensions using both C1 cubics and C2 quintics. The authors
claim that these algorithms are competitive with FFT–based methods since
the cost of solving one-dimensional collocation eigenvalue problems is low
compared to the total cost.

In [174], an eigenvalue analysis is presented for spline collocation differen-
tiation matrices corresponding to periodic BCs. In particular, the circulant
structure of piecewise Hermite cubic matrices is used to develop a matrix
decomposition FFT algorithm for the OSC solution of a general second
order PDE with constant coefficients. The proposed algorithm, whose cost is
O(N2 log N), requires the use of complex arithmetic.
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In [23], Algorithm MDA is extended to the OSC solution of (2.10) with
Dirichlet or Neumann BCs. For the homogeneous Dirichlet BC, the starting
point in [23] is the problem

Lu = f (r, θ), (r, θ) ∈ (0, 1) × (0, 2π),

u(0, θ) = u0, u(1, θ) = 0, θ ∈ [0, 2π ],

u(r, 0) = u(r, 2π), Dθu(r, 0) = Dθu(r, 2π), r ∈ (0, 1),

∫ 2π

0
Dru(0, θ)dθ = 0,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.13)

where

Lu = r2 D2
r u + rDru + D2

θu, (3.14)

and u0 is the unknown value of u at the center of the disk. A derivation of the
integral condition in (3.13) is given in [23, 42]. To describe an OSC method for
the solution of this problem, we introduce the following notation. For positive
integers Nr and Nθ , let ρr = {ri}Nr+1

i=0 and ρθ = {θ j}Nθ +1
j=0 be uniform partitions of

[0, 1] and [0, 2π ], respectively. With Vr = M3
1(ρr) and

Vθ = {ν ∈ M3
1(ρθ ) : ν(0) = ν(2π), ν ′(0) = ν ′(2π)

}
,

let V and Ṽ be the spaces of piecewise Hermite bicubics given by

V = Vr⊗Vθ , Ṽ = {ν ∈ V : ν(0, θ) = c, θ ∈ [0, 2π ]},

where c is a constant. Also, let {ξ (r)
i }Mr

i=1 and {ξ (θ)

j }Mθ

j=1, where Mr = 2Nr + 2 and
Mθ = 2Nθ + 2, be the sets of collocation points in the r and θ coordinates,
respectively, corresponding to (3.5). The piecewise Hermite bicubic OSC
method for the solution of (3.13) consists in finding U ∈ Ṽ such that

LU
(
ξ

(r)
i , ξ

(θ)

j

)
= f

(
ξ

(r)
i , ξ

(θ)

j

)
, i = 1, . . . , Mr, j = 1, . . . Mθ ,

U
(

1, ξ
(θ)

j

)
= 0, j = 1, . . . Mθ ,

∫ 2π

0
DrU(0, θ) dθ = 0.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.15)

We seek the solution U in the form (cf. [190])

U = U (1) + cU (2), (3.16)
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where c is to be determined, and where U (1), U (2) ∈ V are such that

LU (1)
(
ξ

(r)
i , ξ

(θ)

j

)
= f

(
ξ

(r)
i , ξ

(θ)

j

)
, i = 1, . . . , Mr, j = 1, . . . Mθ ,

U (1)
(

0, ξ
(θ)

j

)
= U (1)

(
1, ξ

(θ)

j

)
= 0, j = 1, . . . Mθ ,

⎫
⎪⎪⎬

⎪⎪⎭
(3.17)

and

LU (2)
(
ξ

(r)
i , ξ

(θ)

j

)
= 0, i = 1, . . . , Mr, j = 1, . . . Mθ ,

U (2)
(

0, ξ
(θ)

j

)
= 1, U (2)

(
1, ξ

(θ)

j

)
= 0, j = 1, . . . Mθ .

⎫
⎪⎪⎬

⎪⎪⎭
(3.18)

Clearly, in order for U of (3.16) to satisfy the last equation in (3.15), c must be
determined from

c = −
∫ 2π

0
DrU (1)(0, θ) dθ

/∫ 2π

0
DrU (2)(0, θ) dθ. (3.19)

Let {φm}Mr
m=1 and {ψn}Mθ

n=1 be basis functions for M3,0
1 (ρr) and Vθ , respectively.

If the solution U (1) of (3.17) has the form

U (1)(r, θ) =
Mr∑

m=1

Mθ∑

n=1

Um,nφm(r)ψn(θ), (3.20)

then, on substituting (3.20) into the first equation of (3.17) and using (3.14), we
obtain

(
Ar ⊗ Bθ + Br ⊗ Aθ

)
u = f, (3.21)

where

Ar =
[
a(r)

i,m

]Mr

i,m=1
, a(r)

i,m =
(
ξ

(r)
i

)2
φ′′

m

(
ξ

(r)
i

)
+ ξ

(r)
i φ′

m

(
ξ

(r)
i

)
,

Br =
[
b (r)

i,m

]Mr

i,m=1
, b (r)

i,m = φm

(
ξ

(r)
i

)
,

Aθ =
[
a(θ)

j,n

]Mθ

j,n=1
, a(θ)

j,n = ψ ′′
n

(
ξ

(θ)

j

)
,

Bθ =
[
b (θ)

j,n

]Mθ

j,n=1
, b (θ)

j,n = ψn

(
ξ

(θ)

j

)
,

and

u = [
U1,1, . . . , U1,Mθ

, . . . , UMr,1, . . . , UMr,Mθ

]T
,

f = [
f1,1, . . . , f1,Mθ

, . . . , fMr,1, . . . , fMr,Mθ

]T
, fi, j = f

(
ξ

(r)
i , ξ

(θ)

j

)
.
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The system (3.21) is solved by Algorithm MDA, with the diagonalization in the
θ variable, at a cost of O(Mr Mθ log Mθ ). This requires the OSC eigensystem for
periodic BCs given in [44]. Now define the function z by

z(r) =
{

g1(1 − r/h) − 6g2(1 − r/h), r ∈ [0, h],
0, r ∈ [h, 1],

where g1(r) = −2r3 + 3r2 and g2(r) = r3 − r2. Then it is easy to verify that
z ∈ Vr and

ξ
(r)
i z′′

(
ξ

(r)
i

)
+ z′

(
ξ

(r)
i

)
= 0, i = 1, . . . , Mr, z(0) = 1, z(1) = 0.

Therefore, U (2)(r, θ) = z(r) is a solution of (3.18). (It appears that there is
no corresponding analytical formula for U (2) for the finite difference scheme
of [190].) Using (3.19), (3.20), the fact that z′(0) = −6/h, and properties of
{ψn}Mθ

n=1, it can be shown that

c = h
12π

Nθ∑

j=1

U1,2 j−1.

The total cost of the algorithm is O(Mr Mθ log Mθ ). Numerical experiments in
[23] indicate that the OSC solution U is a fourth order approximation to the
exact solution u.

For Neumann BCs, the corresponding OSC problem in [23] is singular.
Therefore, the MDA is modified to obtain an OSC approximation correspond-
ing to the particular continuous solution u with a specified value at the center
of the disk. The cost of this algorithm is the same as in the Dirichlet case.

Earlier, Sun [185] considered the piecewise Hermite bicubic OSC solution
of (2.10) on an annulus and on a disk with Dirichlet BCs based on the MDA
approach of [187] with the corresponding periodic eigensystem. For the disk,
the approach of [190] is used to derive an additional equation corresponding to
the center of the disk. The cost of the resulting MDA is also O(Mr Mθ log Mθ ).

Bialecki [21] used a domain decomposition approach to develop an algo-
rithm for the piecewise Hermite bicubic OSC solution of (1.5). The square
� is divided into parallel strips and the OSC solution is first obtained on the
interfaces by solving a collection of independent tridiagonal linear systems.
Algorithm MDA is then used to compute the OSC solution on each strip.
Assuming that the strips have the same width and that their number is
proportional to N/ log N, the cost of the domain decomposition solver is
O(N2 log(log N)). For the same problem as in [21], Bialecki and Dillery [25]
analyzed the convergence rates of two Schwarz alternating methods. In the
first method, � is divided into two overlapping subrectangles, while three
overlapping subrectangles are used in the second method. Fourier analysis is
used to obtain explicit formulas for the convergence factors by which the H1

norm of the error is reduced in one iteration of each of the Schwarz methods. It
is shown numerically that, while these factors depend on the size of the overlap,
they are independent of h.
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In [24], an overlapping domain decomposition method is considered for
the solution of the piecewise Hermite bicubic OSC problem corresponding to
(1.5). The square is divided into overlapping squares and the additive Schwarz,
conjugate gradient method involves solving independent OSC problems using
Algorithm MDA.

Bialecki and Dryja [26] considered the piecewise Hermite bicubic OSC
solution of (1.5) where � is the L-shaped region given by

� = (0, 2) × (0, 1) ∪ (0, 1) × (1, 2). (3.22)

The region is partitioned into three non-overlapping squares with two inter-
faces. On each square, the approximate solution is a piecewise Hermite bicubic
that satisfies Poisson’s equation at the collocation points in the subregion.
The approximate solution is continuous throughout the region and its normal
derivatives are equal at the collocation points on the interfaces, but continuity
of the normal derivatives across the interfaces is not guaranteed. The solution
of the collocation problem is first reduced to finding the approximate solution
on the interfaces. The discrete Steklov-Poincaré operator corresponding to
the interfaces is self-adjoint and positive definite with respect to the discrete
inner product associated with the collocation points on the interfaces. The
approximate solution on the interfaces is computed using the preconditioned
conjugate gradient (PCG) method with the preconditioner obtained from
two discrete Steklov-Poincaré operators corresponding to two pairs of the
adjacent squares. Once the solution of the discrete Steklov-Poincaré equation
is obtained, the collocation solutions on the subregions are computed using
Algorithm MDA. On a uniform partition, the total cost of the algorithm is
O(N2 log N), where the number of unknowns is proportional to N2.

A common approach to solving the biharmonic problem (2.11) is to use the
mixed approach in which an auxiliary function v = �u is introduced to obtain

−�u + v = 0, −�v = − f (x, y), (x, y) ∈ �. (3.23)

Using this approach, Lou et al. [146] derived existence, uniqueness and con-
vergence results for piecewise Hermite bicubic OSC methods and developed
implementations of these methods for the solution of three biharmonic prob-
lems. The first problem comprises (3.23) subject to the BCs

u = g1(x, y), v = g2(x, y), (x, y) ∈ ∂�, (3.24)

and the problem becomes one of solving two non–homogeneous Dirichlet
problems for Poisson’s equation. The resulting linear systems can be solved
with cost O(N2 log N) on a uniform partition using Algorithm MDA. In the
second problem, the boundary condition in the first problem on the horizontal
sides of ∂�, v = g2, is replaced by Dyu = g3, so that

u = g1(x, y), (x, y) ∈ ∂�,

v = g2(α, y), y ∈ [0, 1],
Dyu = g3(x, α), x ∈ (0, 1), α = 0, 1. (3.25)
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A variant of Algorithm MDA is formulated for the solution of the corre-
sponding algebraic problem. This algorithm also has cost O(N2 log N). The
third problem is the biharmonic Dirichlet problem comprising (3.23) subject
to the BCs

u = g1(x, y), Dnu = g2(x, y), (x, y) ∈ ∂�. (3.26)

In this case, the OSC linear system is solved by a direct method which is based
on the capacitance matrix technique with the second problem, comprising
(3.23) and (3.25), as the auxiliary problem. The total cost of the capacitance
matrix method for computing the OSC solution is O(N3) since the capacitance
system is first formed explicitly and then solved by Gauss elimination. A
piecewise Hermite bicubic OSC method for the biharmonic Dirichlet problem
was developed by Sun [184] who presented an algorithm which uses a Schur
complement approach involving the MDA of [187], the total cost of which is
O(N3 log N).

In [22], Bialecki developed a Schur complement method for obtaining the
piecewise Hermite bicubic OSC solution to the biharmonic Dirichlet problem.
In this approach, which is similar to that of Knudson [131] for the finite element
Galerkin solution with piecewise Hermite bicubics, the discrete biharmonic
Dirichlet problem is reduced to a Schur complement system involving the
approximation to v on the vertical sides of ∂� and to an auxiliary discrete
problem for the biharmonic problem comprising (3.23) and (3.25). The Schur
complement system with a symmetric and positive definite matrix is solved by
the PCG method with a preconditioner obtained from the discrete problem
for a related biharmonic problem with v, instead of Dnu, specified on the two
horizontal sides of ∂�; cf. (3.25). The cost of solving the preconditioned system
and the cost of multiplying the Schur complement matrix by a vector are each
O(N2). With the number of PCG iterations proportional to log N, the cost
of solving the Schur complement system is O(N2 log N). The solution of the
auxiliary discrete problem is obtained using a variant of Algorithm MDA at
a cost of O(N2 log N). Thus the total cost of solving the discrete biharmonic
Dirichlet problem using this approach is O(N2 log N).

Li et al. [142] considered the OSC solution of the following problem
governing the transverse vibrations of a thin square plate clamped at its edges:

D2
t u + �2u = f (x, y, t), (x, y, t) ∈ � × (0, T],
u(x, y, 0) = g0(x, y), Dtu(x, y, 0) = g1(x, y), (x, y) ∈ �,

u(x, t) = 0, Dnu(x, y, t) = 0, (x, y, t) ∈ ∂� × (0, T].
With u1 = Dtu, and u2 =�u, and U=[u1, u2]T , F=[ f, 0]T , and G=[g1, �g0]T ,

this problem can be reformulated as the Schrödinger-type problem

DtU − H�U = F, (x, y, t) ∈ � × (0, T],
U(x, y, 0) = G(x, y), (x, y) ∈ �,

u1(x, y, t) = Dnu1(x, y, t) = 0, (x, y, t) ∈ ∂� × (0, T],
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where

H =
[

0 1
−1 0

]
.

An approximation to the solution U is determined using the Crank–Nicolson
OSC scheme with r = 3. To solve the linear systems arising at each time, a vari-
ant of the capacitance matrix method of [146] for biharmonic Dirichlet prob-
lems is employed. The cost per time step of this method is then O(N2 log N).
For the other choices of BCs considered in [146], which correspond to (3.24)
and (3.25), alternating direction implicit methods are employed in [142].

4 Finite element Galerkin methods

To describe the finite element Galerkin (FEG) approximation of (1.5), let
H1

0(�) = {ν ∈ H1(�) : ν|∂� = 0}, where H1(�) is the standard Sobolev space.
Then the weak form of (1.5) is

(∇u, ∇ν)L2(�) = ( f, ν)L2(�), ν ∈ H1
0(�), (4.1)

where ∇ is the gradient operator and (·, ·)L2(�) denotes the usual L2 inner
product on �. Suppose Sh is a finite dimensional subspace of H1

0(�) of
dimension M. Then the FEG approximation, U ∈ Sh ⊗ Sh, is defined by

(∇U, ∇νh)L2(�) = ( f, νh)L2(�), νh ∈ Sh ⊗ Sh. (4.2)

If {φm}M
m=1 is a basis for Sh and we write

U(x, y) =
M∑

m=1

M∑

n=1

Um,nφm(x)φn(y), (4.3)

then the Galerkin equations (4.2) with νh(x, y) = φi(x)φ j(y) become

M∑

i=m

M∑

n=1

Um,n

[(
φ′

m, φ′
i

)(
φn, φ j

)+ (φm, φi
)(

φ′
n, φ

′
j

)] = ( f, φiφ j
)

L2(�)
, (4.4)

where

(φ, ψ) =
∫ 1

0
φ(s)ψ(s)ds.

If u and f are as in (3.10) with fi, j = ( f, φiφ j)L2(�), then, using (1.10) and (1.11),
we obtain the linear system (1.1) with

A1 = A2 = [
ai,m
]M

i,m=1, ai,m = (φ′
i, φ

′
m

)
,

B1 = B2 = [
b j,n
]M

j,n=1, b j,n = (φ j, φn
)
. (4.5)

First we consider the case in which Sh = M1,0
0 (ρ), the space of piecewise

linear functions, and choose the standard basis {φm}N
m=1 defined by

φm(x j) = δm, j, j = 1, . . . , N.
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Then it can be shown that A1 = h−1 J and B1 = h
6 (6I − J), where J is given

by (2.6). Thus the Galerkin equations can be solved using Algorithm MDA
with �J and Z defined by (2.7) and (2.8), respectively, and Y = Z . In [153],
MDAs are developed for the FEG method with piecewise bilinear functions
for solving certain types of problems arising in fluid dynamics, linear elasticity
and electromagnetics.

In the biquadratic case with Sh = M2,0
0 (ρ), we choose the basis {φm}2N−1

m=1
defined by

φm( jh/2) = δmj, m, j = 1, ..., 2N − 1. (4.6)

Then, for this case, it is shown in [80] by considering S2N−1 A1S2N−1 and
S2N−1 B1S2N−1, where S2N−1 is given by (2.8) with N replaced by 2N − 1, that
the problem of determining the matrices � and Z reduces to N − 1 generalized
eigenvalue problems of order 2 from which analytical expressions for the
matrices � and Z are determined.

Now consider the FEG approximation of (1.5) using piecewise Hermite
bicubics. For bases for M3,0

1 (ρ), we take {φm}M
m=1 and {ψn}M

n=1 given in (3.6).
Then the piecewise Hermite bicubic FEG approximation

U(x, y) =
M∑

m=1

M∑

n=1

Um,nφm(x)ψn(y) (4.7)

is obtained by substituting (4.7) in (4.2) with Sh = M3,0
1 (ρ) and νh(x, y) =

φi(x)ψ j(y). Then, on using (1.10) and (1.11), we obtain the linear system (1.1)
with

A1 =
[
a(1)

i,m

]M

i,m=1
, a(1)

i,m = (φ′
i, φ

′
m

)
, B1 =

[
b (1)

i,m

]M

i,m=1
, b (1)

i,m = (φi, φm) ,

A2 =
[
a(2)

j,n

]M

j,n=1
, a(2)

j,n =
(
ψ ′

j, ψ
′
n

)
, B2 =

[
b (2)

j,n

]M

j,n=1
, b (2)

j,n = (ψ j, ψn
)
,

u is as in (3.10), and

f = [ f1,1, . . . , f1,M, . . . , fM,1, . . . , fM,M
]T

, fi, j = ( f, φiψ j)L2(�),

In [131], real nonsingular matrices � = diag(λ j)
M
j=1 and Z are determined such

that

Z T A1 Z = �, Z T B1 Z = I. (4.8)

Hence the system (1.1) can be solved using Algorithm MDA with �A = �,
�B = I and Y = Z T . In this case, the linear systems in step 2 of Algorithm
MDA are block tridiagonal with 2 × 2 blocks. In [36], explicit formulas for the
matrices � and Z satisfying (4.8) for Neumann, mixed and periodic BCs as well
as those derived in [131] for the Dirichlet case are presented. In contrast to the
OSC approach for piecewise Hermite cubics [20], there does not appear to be
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a systematic way to determine the FEG piecewise Hermite cubic eigensystems.
However, from [131], it was found that the structure of the matrix Z for each
choice of BCS when the FEG approximation satisfies the natural as well as
essential BCs is similar to that arising in the corresponding OSC problem.
This observation enabled the determination of the matrix � and the exact
specification of Z .

For the solution of (1.5), Bank [17] formulated matrix decomposition-like
algorithms for solving the FEG linear systems (4.4) arising from tensor product
C0 quadratics and piecewise Hermite bicubics. These algorithms are examples
of methods that involve matrix block diagonalization rather than standard
diagonalization which is used in Algorithm MDA. While the total cost of each
of Bank’s methods is O(N2 log N), they require twice as much work as the
corresponding methods of [36] and [80].

In [148], explicit formulas are given for the matrix � resulting from the
piecewise Hermite bicubic FEG discretization and a method for solving (1.1)
corresponding to (1.5) is developed. This method, whose cost is claimed to
be half of that in [17], is based on the preliminary elimination of half of the
unknowns and the use of the FACR(l) method with l = O(log log N) [188], or
the marching algorithm. No numerical evidence is provided to demonstrate the
efficacy of this approach. Moreover, there is no mention of how this approach
could be extended to other BCs.

Kaufman and Warner [128, 129] developed and implemented MDAs based
on (4.8) for the FEG method applied to more general elliptic problems in
which the eigensystems cannot be determined explicitly. These problems are
such that the matrices A1 and B1 are symmetric and positive definite, and
hence there exist a real diagonal matrix � and a real nonsingular matrix Z
satisfying (4.8). However, in general, � and Z are not known explicitly and
must be computed. Since FFTs cannot be used, the total cost of the algorithm
is O(N3) on an N × N partition, which, however, can be nonuniform.

The Schur complement approach and an MDA were employed in [131]
to solve the linear system resulting from the Hermite bicubic finite element
approximation of the biharmonic Dirichlet problem comprising (3.23) and
(3.26), at a cost of O(N2 log N).

5 Optimal superconvergent spline collocation methods

5.1 Nodal cubic spline collocation methods

Let ρ be the partition defined by (2.1). For the space of cubic splines, M3
2(ρ),

we choose the standard B–spline basis which we denote by {Bm}N+2
m=−1; see, for

example, [31]. Then, as a basis for M3,0
2 (ρ), we choose {φm}N+1

m=0 , where

φ0 = B0 − 4B−1, φ1 = B1 − B−1,

φm = Bm−1, m = 2, . . . , N − 1,

φN = BN − BN+2, φN+1 = BN+1 − 4BN+2.

⎫
⎬

⎭
(5.1)
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In the nodal cubic spline collocation (NCSC) method for the solution of
(1.5), we seek U ∈ M3,0

2 (ρ) ⊗ M3,0
2 (ρ) such that

−�U(xi, y j) = f (xi, y j), (5.2)

for i = 0, N + 1, 1 ≤ j ≤ N, and 1 ≤ i ≤ N, 0 ≤ j ≤ N + 1, and

−D2
x D2

yU(xi, y j) = D2
y f (xi, y j), i, j = 0, N + 1. (5.3)

With

U(x, y) =
N+1∑

m=0

N+1∑

n=0

Um,nφm(x)φn(y), (5.4)

Equation 5.2 together with (5.3) comprise (N + 2)2 equations in the (N + 2)2

unknown coefficients {Um,n}N+1
m,n=0. Using (5.2) with i = 0, N + 1 and 1 ≤ j ≤

N, and (5.3), we can determine {Um,n}N+1
n=0 , m = 0, N + 1, by solving two

tridiagonal systems with the same coefficient matrix at a cost of O(N). Once
this is done, on substituting (5.4) into (5.2) with 1 ≤ i ≤ N, 0 ≤ j ≤ N + 1, and
using (1.10) and (1.11), we obtain (1.1) with

u = [
U1,0, . . . , U1,N+1, . . . , UN,0, . . . , UN,N+1

]T
,

f = [
f1,0, . . . , f1,N+1, . . . , fN,0, . . . , fN,N+1

]T
, (5.5)

where

fi, j = f (xi, y j) +
∑

m=0,N+1

N+1∑

n=0

Um,n
{
φ′′

m(xi)φn(y j) + φm(xi)φ
′′
n(y j)

}
, (5.6)

A1 = 6

h2
J, B1 = 6I − J, (5.7)

with J defined in (2.6), and

A2 = 6

h2

⎡

⎣
6 0T 0

−e1 J −eN

0 0T 6

⎤

⎦ , B2 =
⎡

⎣
0 0T 0
e1 B1 eN

0 0T 0

⎤

⎦ , (5.8)

where e1 = [1, 0, . . . , 0]T , eN = [0, . . . , 0, 1]T . The system (1.1) can be solved
using Algorithm MDA with �A = 6�J/h2, �B = 6I − �J , and Y = Z , where
�J and Z are given in (2.7) and (2.8), respectively. Note that step 2 of
Algorithm MDA involves solving a set of tridiagonal systems.

It is well known that the NCSC method is suboptimal, in fact, only second
order accurate and no better [57]. Optimal methods were first derived by
Houstis et al. [114] by extending methods for two–point boundary value
problems (TPBVPs). Specifically, they formulated a one–step method (OSM)
based on work of Archer [7, 8] and Daniel and Swartz [71] which involves
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perturbing the differential operator in the governing equation, and a two-step
method (TSM) based on a deferred corrections approach of Fyfe [93]. In
[31], MDAs are formulated and implemented for the OSM and TSM of [114]
applied to the Helmholtz problem. Since a TSM is twice as expensive as the
corresponding OSM because it requires twice as many FFTs, we focus on
OSMs in the following.

In the optimal (fourth order) OSM for (1.5) (see [114], p. 61), we seek
uh ∈ M3,0

2 (ρ) ⊗ M3,0
2 (ρ) of the form (5.4) by collocating an equation which

is obtained by suitably perturbing the Laplacian in (1.5). As in the NCSC
method, it is possible to first determine, at a cost of O(N), the coefficients
{Um,n}N

n=1, m = 0, N + 1, in U(x, y) of (5.4) using (5.2) for i = 0, N + 1 and
1 ≤ j ≤ N, and (5.3). Once this is done, the remaining collocation equations
can be written as a system of equations of the form (1.1), where

A1 = 1

2h2
J(12I − J), A2 = 1

h2

⎡

⎣
36 0 0

a h2 A1 b
0 0 36

⎤

⎦ , (5.9)

with

a = [−2, −1/2, 0, . . . , 0]T , b = [0, . . . , 0, −1/2, −2]T , (5.10)

B1 and B2 are as in (5.7) and (5.8), respectively, and u and f are as in (5.5) with
the elements of f given in terms of the f (xi, y j) and the previously determined
coefficients, {Um,n}N

n=1, m = 0, N + 1; cf. (5.6). See [31] for details. Thus the
system (1.1) can be solved using Algorithm MDA with

�A = 1

2h2
�J(12I − �J), �B = 6I − �J, (5.11)

and Y = Z , where �J and Z are given in (2.7) and (2.8), respectively. Note
that the linear systems in step 2 of the algorithm are pentadiagonal. In [45], this
MDA is used as a preconditioner in the iterative solution of an optimal NCSC
scheme for a very general variable coefficient Dirichlet BVP on a rectangle.

The OSM has two undesirable features. First, unlike the TSM, it does not
possess superconvergence properties, and secondly, when the same approach is
applied to problems with BCs other than Dirichlet, it is suboptimal, providing
approximations that are no better than third order accurate. (One would not
expect optimality for the Neumann, mixed and periodic problems because the
method of Archer [7, 8] applied to TPBVPs with such BCs has been shown to
be only third order accurate.) Moreover, it is possible to formulate an MDA
for the OSM only for Dirichlet BCs whereas for the TSM, MDAs have been
developed for all four types of BCs. However, for these BCs, Bialecki et al. [32]
formulated and implemented optimal superconvergent OSMs for which the
collocation equations can be solved using MDAs. These OSMs differ from that
of [31, 114] in that they are constructed by judiciously perturbing not only the
differential operator but also the right hand side of the differential equation.
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In the OSM of [32] for (1.5) with U of the form (5.4), we can again determine
the coefficients {Um,n}N+1

n=0 , m = 0, N + 1, in U(x, y) of (5.4) at a cost of O(N).
Then we obtain a system of the form (1.1) in which A1, B2, B1 are as in (5.9),
(5.8), (5.7), respectively, and

A2 = 1

h2

⎡

⎣
40 c 0

a h2 A1 b
0 d 40

⎤

⎦ ,

with c = [−5/2, 2, −1/2, 0, . . . , 0], d = [0, . . . , −1/2, 2, −5/2], and a and b are
given in (5.10). Hence Algorithm MDA is applicable with �A and �B as in
(5.11) and Y = Z of (2.8). When Neumann, Dirichlet–Neumann, Neumann-
Dirichlet or periodic BCs are specified on the vertical sides of the unit square,
the matrices A1 and B1 are expressed in terms of the corresponding finite
difference tridiagonal matrices.

In [3], a different type of OSM is derived for (1.5). In it, we seek U ∈
M3,0

2 (ρ) ⊗ M3,0
2 (ρ) satisfying

−�U(xi, y j) + h2

6
D2

x D2
yU(xi, y j) = fh(xi, y j), 0 ≤ i, j ≤ N + 1, (5.12)

where

fh(xi, y j) = f (xi, y j) + h2

12
� f (xi, y j). (5.13)

Using (5.12) with i = 0, N + 1 and 0 ≤ j ≤ N + 1, and with 1 ≤ i ≤ N and
j = 0, N + 1, it is possible to determine {Um,n}N+1

n=0 , m = 0, N + 1, and
{Um,n}N

m=1, n = 0, N + 1, in U(x, y) of (5.4) at a cost of O(N). Then we obtain
(

J ⊗ I + 1

6
(6I − J) ⊗ J

)
u = h2

36
f, (5.14)

where
u = [

U1,1, . . . , U1,N, . . . , UN,1, . . . , UN,N
]T

,

f = [
f1,1, . . . , f1,N, . . . , fN,1, . . . , fN,N

]T
,

and the elements of f are given in terms of the fh(xi, y j) of (5.13) and the
previously determined coefficients, {Um,n}N+1

n=0 , m = 0, N + 1, and {Um,n}N
m=1,

n = 0, N + 1. The system (5.14) has the same coefficient matrix as that in (2.9)
and can be solved by Algorithm MDA in a similar way at a cost of O(N2 log N).
The method has the advantage that, in contrast to the OSMs of [31, 32], step 2
of the MDA involves the solution of tridiagonal systems instead of penta-
diagonal systems. This scheme is used in [2] to approximate the biharmonic
Dirichlet problem comprising (3.23) and (3.26), and the resulting linear system
is solved using the Schur complement approach and an MDA. This algorithm
costs O(N2 log N + mN2) with m iterations of the preconditioned conjugate
gradient method.
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One practical advantage of optimal NCSC methods over OSC methods is
that, for a given partition, there are fewer unknowns with the same degree
of piecewise polynomials, thereby reducing the size of the linear systems.
However, in contrast to the optimal NCSC methods, OSC methods do not
require a uniform partition of the domain and can also be used with higher
degree splines [28, 186].

5.2 Quadratic spline collocation

With the partition ρ of (2.1), let {τi}N+1
i=1 be the set of midpoints of the

subintervals [ti−1, ti], that is, τi = (ti−1 + ti) /2. In the following, the collocation
points are {(τi, τ j)}N+1

i, j=1.
As a basis for M2

1(ρ), we choose the standard B-splines, {Bm}N+2
m=0 ; cf. [113,

Section 2]. Then, as a basis for M2,0
1 (ρ), we choose {φm}N+1

m=1 , where

φ1 = B1 − B0, φm = Bm, m = 2, . . . , N, φN+1 = BN+1 − BN+2.

Houstis et al. [113] formulated optimal quadratic spline collocation (QSC)
TSMs and OSMs for second order TPBVPs. Based on this work, Christara
[68] developed biquadratic collocation TSMs and OSMs for elliptic problems
with Dirichlet and Neumann BCs, and obtained optimal global accuracy and
superconvergence results. Constas [70] implemented the TSM of [68] for
Helmholtz problems with Dirichlet, Neumann, and periodic BCs, and solved
the linear systems using MDAs; see also [69].

Superconvergent QSC OSMs for the solution of (1.5) are considered in
[33–35]. These methods involve perturbations of the right hand side of the
differential equation as well as the differential operator, and the resulting
collocation equations can be solved using an MDA. If we seek an approximate
solution U ∈ M2,0

1 (ρ) ⊗ M2,0
1 (ρ) with

U(x, y) =
N+1∑

m=1

N+1∑

n=1

Um,nφm(x)φn(y), (5.15)

the collocation equations can be written in the form (1.1) where

A1 = 1

24h2
(24I − T)T, B1 = B2 = 1

8
(8I − T), (5.16)

with T = TN+1(3, 3), where

TN+1(a, b) =

⎡

⎢
⎢⎢
⎢
⎢
⎣

a −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 b

⎤

⎥
⎥⎥
⎥
⎥
⎦

, (5.17)



276 Numer Algor (2011) 56:253–295

and

A2 = 1

24h2

⎡

⎢⎢
⎢
⎢⎢
⎢
⎢⎢
⎢
⎣

48 −24 0 0
−20 42 −20 −1
−1 −20 42 −20 −1

. . .
. . .

. . .
. . .

. . .

−1 −20 42 −20 −1
−1 −20 42 −20

0 0 −24 48

⎤

⎥⎥
⎥
⎥⎥
⎥
⎥⎥
⎥
⎦

,

u = [
U1,1, . . . , U1,N+1, . . . , UN+1,1, . . . , UN+1,N+1

]T
,

f = [
fD1,1, . . . , fD1,N+1, . . . , fDN+1,1, . . . , fDN+1,N+1

]T]
,

with

fDi, j =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f (τi, τ j) − 1

12
f (0, τ j), i = 1,

f (τi, τ j), 2 ≤ i ≤ N,

f (τi, τ j) − 1

12
f (1, τ j), i = N + 1.

If �T = diag(λi)
N+1
i=1 with

λi = 4 sin2 iπ
2(N + 1)

, i = 1, . . . , N + 1,

and Z = [zi, j]N+1
i, j=1 with

zi, j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

√
2

N + 1
sin

(2i − 1) jπ
2(N + 1)

, i = 1, . . . , N + 1, j = 1, . . . , N,

√
1

N + 1
(−1)i−1, i = 1, . . . , N + 1, j = N + 1,

then, from [68, Lemma 4.1], Z T T Z = �T . Thus, from (5.16), it follows that
the linear system (1.1) can be solved using Algorithm MDA with

�A = 1

24h2
(24I − �T)�T , �B = 1

8
(8I − �T),

and Y = Z T . This approach can be extended to other BCs with one major
difference from the cubic case. When a Neumann boundary condition is
specified, in the corresponding QSC method, this boundary condition must
be perturbed to maintain the optimal global accuracy and superconvergence
properties. In [35], a method is formulated for the solution of (1.6), (1.7)
subject to non–homogeneous BCs. It should be noted that, while the optimal
QSC methods possess third order global accuracy, they yield fourth order
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accurate approximations at the nodal points, the same nodal accuracy as their
cubic spline counterparts.

Corresponding to method (5.12), Maack [151] formulated the following
OSM QSC method. Define U ∈ M2,0

1 (ρ) ⊗ M2,0
1 (ρ) by

−�U(τi, τ j) + h2

12
D2

x D2
yU(τi, τ j)

= f (τi, τ j) + h2

24
� f (τi, τ j) i, j = 1, . . . , N + 1. (5.18)

With U as in (5.15), the collocation equations can be written in the form
(

T ⊗ I + 1

6
(6I − T) ⊗ T

)
u = h2f,

where T = TN+1(3, 3), and

u = [
U1,1, . . . , U1,N+1, . . . , UN+1,1, . . . , UN+1,N+1

]T
,

f = [
f1,1, . . . , f1,N+1, . . . , fN+1,1, . . . , fN+1,N+1

]T
,

with

fi, j = f (τi, τ j) + h2

24
� f (τi, τ j), i, j = 1, . . . , N + 1.

Note that in contrast to the other QSC OSMs discussed in this subsection,
the systems of equations arising in Step 2 of Algorithm MDA are tridiagonal.
In [91], this method is extended to Helmholtz problems subject to Dirichlet,
Neumann, mixed and periodic boundary conditions.

Maack [151] also formulated a superconvergent QSC method for the bihar-
monic Dirichlet problem (3.23)–(3.26) which involves the Schur complement
approach and an MDA.

6 Spectral methods

Throughout this section, unless otherwise specified, � = (−1, 1) × (−1, 1). As
the first example of an application of MDA, we consider a special case of
the Legendre spectral collocation of [40] for the solution of (1.5). First, for
a positive integer N, we define P0

N to be the set of all polynomials of degree
≤ N on [−1, 1] which are zero at the endpoints of the interval, and we take
{ξi}N−1

i=1 and {wi}N−1
i=1 to be the nodes and weights, respectively, of the (N − 1)-

point Gauss–Legendre quadrature on [−1, 1]. We then seek an approximate
solution U ∈ P0

N ⊗ P0
N of the form

U(x, y) =
N−1∑

m=1

N−1∑

n=1

Um,nφm(x)φn(y) (6.1)

such that

−�U(ξi, ξ j) = f (ξi, ξ j), i, j = 1, . . . , N − 1. (6.2)
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As a basis for P0
N , we choose the functions {φm}N−1

m=0 defined by

φm = cm
(
Lm−1 − Lm+1

)
, m = 1, . . . , N − 1, (6.3)

where

cm = (4m + 2)−1/2, m = 2, . . . , N − 1, cN−1 = [(4N − 2)(2 − 1/N)
]−1/2

,

and Lk is the Legendre polynomial of degree k on [−1, 1]; cf. [176]. Substitut-
ing (6.1) into (6.2) and using (1.10) and (1.11), we obtain

(A ⊗ B + B ⊗ A) u = f, (6.4)

where

A = [ai,m
]N−1

i,m=1, ai,m = −φ′′
m(ξi) B = [bi,m

]N−1
i,m=1, bi,m = φm(ξi),

u = [U1,1, . . . , U1,N−1, . . . , UN−1,1, . . . , UN−1,N−1
]T

,

and

f = [ f1,1, . . . , f1,N, . . . , fN−1,1, . . . , fN−1,N−1
]T

, fi, j = f
(
ξi, ξ j

)
.

With W = diag(w1, . . . , wN−1), we premultiply (6.4) by BT W ⊗ BT W to
obtain

(
Ã ⊗ B̃ + B̃ ⊗ Ã

)
u = f̃, (6.5)

where

Ã = BT W A, B̃ = BT W B, f̃ = (BT W ⊗ BT W
)

f.

The matrix Ã = I while B̃ is symmetric, positive definite and pentadiagonal
with zeros on the first super- and sub-diagonals. Since B is a dense matrix,
the cost of computing f̃ is O(N3). Note that (6.5) is of the form (1.1) with
A1 = A2 = I and B1 = B2 = B̃. Since B̃ is symmetric and positive definite,
there exists a real diagonal matrix � = diag(λi)

N−1
i=1 with λi > 0 and a real

orthogonal matrix Z such that Z T B̃Z = �. It follows from the structure
of B̃ that the computation of � and Z reduces to solving two symmetric
eigenvalue problems with tridiagonal matrices. Further, using the QR algo-
rithm for determining the eigenvalues and inverse iteration for determining
the corresponding eigenvectors, � and Z can be computed at a cost of O(N2).
The system (6.5) can then be solved by Algorithm MDA with Y = Z T . Note
that the costs of steps 1 and 3 in this algorithm are O(N3) and the cost of step
2 is O(N2). Hence the total cost of solving (6.4) is O(N3). In [40], a similar
algorithm is formulated for the Helmholtz equation

−�u + κu = f (x, y), (x, y) ∈ �,

with constant κ , subject to Robin BCs. For the case in which the constant
κ is replaced by the variable coefficient κ(x, y), this algorithm is used in
conjunction with the PCG method.
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In [41], the Legendre spectral collocation solution of (1.5) in an L-shaped
region and also in a rectangle with a cross point are considered. The compu-
tational procedure developed for each case is similar to that of [26] described
in Section 3 for OSC. The total cost of each algorithm is O(N3), where the
number of unknowns is proportional to N2.

A similar idea to that developed in [40] is used in [38], where a Legendre
spectral collocation method is formulated for the solution of the mixed form
of the biharmonic Dirichlet problem (3.23), (3.26) on a square. The solution
and its Laplacian are approximated using the basis functions given by (6.3).
A Schur complement approach is used to reduce the resulting linear system
to one involving the approximation of the Laplacian of the solution on the
two vertical sides of the square. The resulting system is again solved by
a PCG method leading to an algorithm with total cost O(N3). The corre-
sponding Galerkin formulation for problem (3.23), (3.26) with g1 = g2 = 0 is
presented in [39].

The work on the biharmonic Dirichlet problem described in [38, 39] is
related to MDAs in [50] and [176] for a Legendre spectral Galerkin method
applied to the biharmonic equation directly instead of the mixed formulation
considered in [39]. Legendre spectral Galerkin MDAs are used in [10] and
[11] for the solution of the two- and three-dimensional Helmholtz equations,
respectively. In [13], the MDA of [176] is applied to an algorithm for solving
the stream function-vorticity version of the Navier-Stokes equations, while in
[9], a Legendre spectral Galerkin MDA is applied to Helmholtz Neumann
problems. In [137], a Legendre Galerkin MDA is used in the context of the
spectral element method for the solution of the two- and three-dimensional
Helmholtz problems. In [120], a Legendre Galerkin spectral method is applied
to the Poisson equation and the resulting system recast in such a way that the
coefficient matrices are symmetric and positive definite, before an MDA is
applied. Legendre Galerkin MDAs for Poisson problems in cylindrical-type
domains are proposed in [48, 136]. Other applications of Legendre Galerkin
MDAs can be found in [51, 67, 97, 180]. An MDA is used in [14] to invert
the matrix corresponding to the Laplace operator appearing in the conjugate
gradient iteration for the solution of the system resulting from a spectral
Galerkin Laguerre-Legendre spectral discretization of the Stokes equations in
a semi-infinite channel. Similarly, an MDA is used in [205] in an extension
of the method of [14] for the solution of the Navier–Stokes equations in
unbounded domains. A Galerkin Legendre-Jacobi MDA is employed in [12] in
the solution of the three-dimensional Helmholtz equation in finite cylindrical
domains.

One of the first spectral MDAs was proposed in [99], where the numerical
solution of Poisson’s equation using a Chebyshev polynomial approximation
is studied. The discretization is carried out using the recurrence relations for
the derivatives of Chebyshev polynomials. In [100], this Chebyshev spectral
MDA is extended to three–dimensional Helmholtz problems subject to non–
homogeneous linear BCs. The MDA of [99, 100] and variants of it have been
applied to systems arising from Fourier-Chebyshev collocation [65, 109, 110,
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155], Chebyshev collocation [15, 83, 147, 160] and Chebyshev/wavelet collo-
cation [94] methods to two- and three-dimensional Helmholtz and Poisson
problems which arise in fluid dynamics. Chebyshev Galerkin MDAs similar to
the Legendre Galerkin MDAs developed in [176] for the solution of second
and fourth order problems in two and three dimensions are proposed in
[177]. Chebyshev spectral MDAs based on the approach of [99] have been
developed for second and fourth order problems by Heinrichs [103, 106]. Var-
ious applications of Chebyshev spectral MDAs based on the Petrov-Galerkin
method, the approach of [99] and collocation, can be found in [84, 125, 157],
respectively. In [119], a Chebyshev spectral Galerkin method based on the so-
called quasi-inverse technique and related to an MDA is proposed. Further, a
brief description of the Chebyshev MDA of [99] and its development are given
in [60, pp. 314–317] and [62, pp. 181–185].

The advantage of using Chebyshev polynomial approximations is that,
unlike other polynomial approximations, FFTs may be used. As an example,
consider the spectral Chebyshev collocation approach for (1.5) proposed in
[43], the development of which is very similar to that of the Legendre spectral
collocation method described at the beginning of this section. In this case,
{ξi}N

i=0 and {wi}N
i=0 are the nodes and weights, respectively, of the (N + 1)-point

Chebyshev Gauss-Lobatto quadrature on [−1, 1], and we take {φm}N−1
m=1 as a

basis for P0
N , where

φm(x) = (1 − x2)Tm−1(x), m = 1, . . . , N − 1, (6.6)

and Tm−1(x) is the Chebyshev polynomial of degree m − 1. We again obtain a
system of equations of the form (6.5); in this case, the matrix Ã is nonsym-
metric and pentadiagonal with zeros on the first super- and sub-diagonals,
while B̃ is symmetric and enneadiagonal with zeros on the first and third
superdiagonals. Then, from [96],

ÃZ = B̃Z� or Z −1 Ã−1 B̃Z = �−1, (6.7)

where � = diag (λi)
N−1
i=1 with distinct, positive λi, and Z is real and nonsingular.

Thus, in this case, (6.5) can be solved using Algorithm MDA with Y =
Z −1 Ã−1, �A = I and �B = �−1. Because of the structures of Ã and B̃, the
systems arising in Step 2 of the algorithm can be solved at a cost of O(N2).
Since entries of B are given in terms of Chebyshev polynomials, FFTs can be
used in the computation of f̃. The total cost of the algorithm is O(N3).

Spectral MDAs based on Jacobi polynomial approximations are proposed
for the Helmholtz equation in [104, 105]. A spectral Galerkin MDA involv-
ing Laguerre functions is developed in [179]. Spectral Galerkin MDAs for
Helmholtz problems using ultraspherical polynomials are presented in [73, 76].
This approach is extended to spectral Galerkin MDAs for Helmholtz problems
using Jacobi polynomials in [72, 75]. Spectral-Galerkin approaches are also
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applied to Helmholtz Neumann problems in [78] and to fourth order problems
in [72, 77] using Jacobi polynomials, and to problems of order 2n in [74] using
ultraspherical polynomials.

Other spectral Galerkin MDA applications similar to those described in the
preceding can be found in [143–145, 178]. An MDA-related spectral approach
for Jacobi polynomials is given in [117].

We next describe a spectral collocation MDA for the solution of Poisson’s
equation in a disk. Specifically, the solution of (2.10) with homogeneous
Dirichlet BCs is obtained in [42] as follows. For a positive integer Mθ , we
define Vθ = span

{
ψ0(θ), . . . , ψ2Mθ

}
, where

ψ0(θ) = 1, ψ2l−1(θ) = cos(lθ), ψ2l(θ) = sin(lθ), l = 1, . . . , Mθ .

Also, for a positive integer N, we define PN(0, 1) to be the set of all polynomi-
als of degree ≤ N on [0, 1] and

V = PN(0, 1)⊗Vθ , Ṽ = {v ∈ V : v(0, θ) = c, θ ∈ [0, 2π ]},

where c is a constant. If {ξi}N
i=0 and {wi}N

i=0 are again the nodes and weights,
respectively, of the (N + 1)-point Chebyshev Gauss-Lobatto quadrature on
[−1, 1], let {ξ (r)

i }N−1
i=1 and {ξ (θ)

j }2Mθ

j=0 be the sets of collocation points given by

ξ
(r)
i = l−1(ξi), ξ

(θ)

j = 2 jπ
2Mθ + 1

,

where l(r) = 2r − 1 is the linear function mapping [0, 1] onto [−1, 1]. The
spectral collocation solution of (3.13) is U ∈ Ṽ satisfying (3.15). We seek U
in the form (3.16), where U (1), U (2) ∈ V satisfy (3.17) and (3.18), respectively,
and c is given by (3.19).

To solve (3.17) in this case, we introduce

φk(r) = [1 − l2(r)
]
Tk−1(l(r)), k = 1, . . . , N − 1,

and take

U (1)(r, θ) =
N−1∑

m=1

2Mθ∑

n=0

Um,nφm(r)ψn(θ). (6.8)

Substituting (6.8) into the first equation of (3.17) and using (3.14), we obtain

(
Ar ⊗ Bθ + Br ⊗ Aθ

)
u = f, (6.9)
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where

Ar =
[
a(r)

i,m

]N−1

i,m=1
, a(r)

i,m = (ξ (r)
i

)2
φ′′

m

(
ξ

(r)
i

)+ ξ
(r)
i φ′

m

(
ξ

(r)
i

)
,

Br =
[
b (r)

i,m

]N−1

i,m=1
, b (r)

i,m = φm
(
ξ

(r)
i

)
,

Aθ =
[
a(θ)

n,l

]2Mθ

j,n=0
, a(θ)

j,n = ψ ′′
n

(
ξ

(θ)

j

)
,

Bθ =
[
b (θ)

j,n

]2Mθ

j,n=0
, b (θ)

j,n = ψn
(
ξ

(θ)

j

)
, (6.10)

and

u = [U1,0, . . . , U1,2Mθ
, . . . , UN−1,0, . . . , UN−1,2Mθ

]T
,

f = [ f1,0, . . . , f1,2Mθ
, . . . , fN−1,0, . . . , fN−1,2Mθ

]T
, fi, j = f

(
ξ

(r)
i , ξ

(θ)

j

)
.

with

W = diag
(
w1, . . . , wN−1

)
, D = diag

(
1 + ξ1, . . . , 1 + ξN−1

)
,

B = [
bi,n
]N−1

i,n=1, bi,n = χn(ξi),

where

χn(x) = (1 − x2)Tn−1(x), n = 1, . . . , N − 1,

(cf. (6.6)), we premultiply (6.14) by BT W D−1 ⊗ I to obtain
(

Ãr ⊗ Bθ + B̃r ⊗ Aθ

)
u = f̃, (6.11)

where Ãr = BT W D−1 Ar, B̃r = BT W D−1 Br and f̃ = (BT W D−1 ⊗ I)f. System
(6.11) can be solved as follows, using a variant of Algorithm MDA in which
the diagonalization is performed in the θ variable. It is shown in [42] that

B−1
θ Aθ = � = diag

(
λ0, . . . , λ2Mθ

)
, (6.12)

where

λ0 = 0, λ2l−1 = λ2l = −l2, l = 1, . . . , Mθ .

It follows from (6.12) that (6.11) is equivalent to
(

Ãr ⊗ I + B̃r ⊗ �
)
u = ũ, (6.13)

where ũ = (I ⊗ B−1
θ )f. Introducing

u j = [U1, j, . . . , UN−1, j
]T

, ũ j = [ũ1, j, . . . , ũN−1, j
]T

, j = 0, . . . , 2Mθ ,
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and using (6.12), we see that (6.13) reduces to

(
Ãr + λ j B̃r

)
u j = ũ j, j = 0, . . . , 2Mθ , (6.14)

2Mθ + 1 independent heptadiagonal systems the solution of which yields U (1).
Further, let z ∈ PN(0, 1) be such that

ξ
(r)
i z′′(ξ (r)

i

)+ z′(ξ (r)
i

) = 1, i = 1, . . . , N − 1, z(0) = 0, z(1) = 0. (6.15)

Then

U (2)(r, θ) = z(r) + 1 − r

is a solution of (3.18). With

z(r) =
N−1∑

m=1

βmφm(r),

the linear system corresponding to (6.15) is a special case of (6.14) with j = 0.
Finally, it can be shown that

c = − 4
∑N−1

m=1(−1)mUm,0

1 + 4
∑N−1

m=1(−1)mβm

.

Using FFTs, the cost of solving a system with the matrix Bθ of (6.10) is
O(Mθ log Mθ ). Also, in the premultiplication of (6.14) by BT W D−1, FFTs can
be used to multiply a vector by BT at a cost of O(N log N). Moreover, the cost
of solving each heptadiagonal linear system is proportional to the number of
unknowns. Hence, for Mθ = N, the cost of the algorithm is O(N2 log N).

The MDA of [99] was used in [66] for the solution of Poisson’s equation in
a disk using a spectral collocation scheme.

7 The method of fundamental solutions and related techniques

MDAs have also been used in applications of the method of fundamental solu-
tions (MFS) for the solution of certain harmonic and biharmonic axisymmetric
problems [92, 181, 182, 191] and axisymmetric problems in linear elasticity
and thermoelasticity [126, 127]. As an example, we describe the MFS MDA
proposed in [181] for the three-dimensional axisymmetric potential problem,

�u = 0 in �, u = g(x, y, z), (x, y, z) ∈ ∂�,

where � denotes the Laplacian in three dimensions, � is an axisymmetric
region in R3, and ∂� denotes the boundary of �. Axisymmetric means that
� is formed by rotating a region �′ ∈ R2 about the z-axis.
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In the MFS, the solution u is approximated by

UMN(P) =
M∑

m=1

N∑

n=1

Um,n K(P,Qm,n), P ∈ �, (7.1)

where the specified singularities Qm,n are located outside �. The function
K(P,Q) is the fundamental solution of Laplace’s equation in R3 given by

K(P,Q) = 1

4π |P − Q| ,

where |P − Q| denotes the distance between the points P and Q. Let
{Pi, j}M,N

i=1, j=1 be a set of MN collocation points placed on ∂�. Then the

coefficients {Um,n}M,N
m=1,n=1 are determined by collocating the boundary condi-

tion at these points; that is,

UMN(Pi, j) = g(Pi, j), i = 1, . . . , M, j = 1, . . . , N. (7.2)

Substituting (7.1) into (7.2), we obtain an MN × MN linear system

Gu = g, (7.3)

where u and g are the vectors containing {Um,n}M,N
m=1,n=1 and {g(Pi, j)}M,N

i=1, j=1,
respectively. If the collocation points and the singularities are positioned
appropriately (see [181] for details), the matrix G has the block circulant
structure

G =

⎛

⎜
⎜⎜
⎝

A1 A2 · · · AM

AM A1 · · · AM−1
...

...
...

A2 A3 · · · A1

⎞

⎟
⎟⎟
⎠

≡ circ[A1, A2, . . . , AM], (7.4)

where the matrices A�, � = 1, · · · , M, are N × N with

(A�) j,n = 1

4π |P1, j − Q�,n| , j, n = 1, . . . , N.

If P is the M × M permutation matrix P = circ(0, 1, 0, · · · , 0), then

G =
M∑

k=1

Pk−1 ⊗ Ak.

If Z is the M × M unitary matrix

Z = 1

M1/2

⎛

⎜
⎜⎜
⎜
⎜
⎝

1 1 1 · · · 1
1 ω ω2 · · · ωM−1

1 ω2 ω4 · · · ω2(M−1)

...
...

...
...

1 ωM−1 ω2(M−1) · · · ω(M−1)(M−1)

⎞

⎟
⎟⎟
⎟
⎟
⎠

,
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where ω = e2πι/M, ι2 = −1, then

Z ∗ Z = IM, Z ∗ PZ = D, (7.5)

where Z ∗ is the conjugate transpose of Z and

D = diag
(
d1, . . . , dM

)
, dm = ωm−1. (7.6)

It follows from (7.5) that

(Z ∗ ⊗ IN)

(
M∑

k=1

Pk−1 ⊗ Ak

)

(Z ⊗ IN) =
M∑

k=1

Dk−1 ⊗ Ak.

Thus the system (7.3), (7.4) is equivalent to
(

M∑

k=1

Dk−1 ⊗ Ak

)

ũ = g̃, (7.7)

where

ũ = (Z −1 ⊗ IN)u, g̃ = (Z ∗ ⊗ IN)g.

It follows from (7.6) that (7.7) decomposes into the M independent N × N
systems,

Bmũm = g̃m, m = 1, 2, . . . M,

where Bm =
M∑

k=1

dk−1
m Ak, and ũm and g̃m are the corresponding subvectors of

ũ and w, respectively. The (r, s) entry of the matrix Bm, r, s = 1, . . . , N, m =
1, . . . , M, is determined from

[(B1)rs, . . . , (BM)rs]
T = M1/2 Z

[
(A1)rs, . . . , (AM)rs

]T
.

We thus have the following MDA for solving (7.3):

MFS MDA

Step 1. Compute g̃ = (Z ∗ ⊗ IN)g.

Step 2. Construct Bm =
M∑

k=1

dk−1
m Ak, m = 1, . . . , M.

Step 3. Solve Bmũm = g̃m, m = 1, . . . , M.

Step 4. Compute u = (Z ⊗ IN)ũ.

The cost of performing steps 1 and 4 using FFTs is O(NM log M). Similarly,
step 2 can be carried out at a cost of O(N2 M log M). In step 3, we need to solve
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M complex linear systems of order N. This is done using an LU-factorization
with partial pivoting at a cost of O(MN3). Hence the total cost of the algorithm
is O(MN3).

Systems possessing block circulant structures also arise in the application of
the MFS to harmonic and biharmonic problems in regular polygonal domains
[122], and in the application of the so–called MFS-K to problems in circular
domains [123]. MFS MDAs have also been developed for wave scattering by
circular cylinders [5, 192, 193]. The MDA approach used, which is essentially
that proposed in [181], is also described in [194]. Similar ideas are employed
in [124] in the development of an MDA for solving elliptic problems in
three dimensions using radial basis functions. In the context of the boundary
element method, MDAs are developed for potential problems in [154, 169],
linear elasticity problems in [170, 171] and electromagnetic problems in [132].
A MDA for an integral equation method for scattering from cylindrically
periodic structures is proposed in [6].

8 Concluding remarks

This paper provides a comprehensive account of the formulation and applica-
tion of MDAs in commonly used discretizations of Poisson problems. While
emphasis has been placed on the treatment of problems with homogeneous
Dirichlet boundary conditions, methods can be extended to handle non–
homogeneous Dirichlet and Neumann conditions and mixed combinations of
these, as well as periodic boundary conditions, and to equations of the form
(1.6) and (1.7). Methods for Poisson problems have been employed in the
treatment of the biharmonic Dirichlet problem written in the form (3.23),
(3.26). Furthermore, such methods have been used frequently as precondi-
tioners in iterative techniques for the solution of linear systems arising from
the discretization of quite general elliptic equations and of problems in more
general regions. In addition, MDAs have been used for the solution of the
linear systems resulting when the Laplace or biharmonic operator is discretized
in the numerical solution of linear and nonlinear time-dependent problems
including the Navier–Stokes equations.

In many papers, results of numerical experiments are provided to demon-
strate some measure of the accuracy of the method under consideration.
However, the rigorous convergence analysis of several of the techniques
presented herein remains an open problem. In particular, there is very little
analysis to support the convergence rates of the spline collocation methods of
Section 5.

While we have made reference to a number of methods that have exten-
sions to problems in three dimensions, there is still work to be done on the
implementation and application of these extensions to non-trivial problems.
In general, little information is given on the implementation of MDAs. A
challenging project would be the development of a software library comprising
standardized implementations of MDAs for the various discretization methods
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in two and three dimensions. Such a library would be a valuable asset for the
community.

The formulation and implementation of extensions of MDAs to higher
order PDEs and to systems of PDEs in two and three dimensions, such as the
Cauchy-Navier equations of elasticity, are topics of future research. Moreover,
there has been considerable research activity recently on the approximation of
functions and particular solutions of elliptic PDEs using radial basis functions.
This is of much practical importance since once a particular solution of the
PDE in question is known, the associated BVP can be reformulated as one
governed by a homogeneous PDE, which, in turn, can be solved by a boundary
method at considerably less expense and implementational effort. The approx-
imation of functions/particular solutions in certain domains possessing radial
symmetry using MDAs similar to that described in Section 7 is also an area
worthy of investigation.
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