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Abstract We introduced an algorithm for unconstrained optimization based
on the transformation of the Newton method with the line search into a
gradient descent method. Main idea used in the algorithm construction is ap-
proximation of the Hessian by an appropriate diagonal matrix. The steplength
calculation algorithm is based on the Taylor’s development in two successive
iterative points and the backtracking line search procedure. The linear conver-
gence of the algorithm is proved for uniformly convex functions and strictly
convex quadratic functions satisfying specified conditions.

Keywords Line search · Gradient descent methods · Newton method ·
Convergence rate

Mathematics Subject Classifications (2000) 90C30 · 90C06

1 Introduction

We consider the unconstrained optimization problem

min f (x), x ∈ R
n, (1.1)

where R
n denotes the set of n-tuples with elements in the set of real numbers

R and f : R
n → R is given objective function. It is assumed that the function
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f : R
n → R is twice continuously differentiable. The most frequently used

general iterative scheme aimed to solve the multivariable unconstrained mini-
mization problem (1.1) is of the form

xk+1 = xk + tkdk,

where xk+1 is a new iterative point, xk is the previous iterative point, tk > 0 is a
steplength, and dk is a search direction. The key problem is to find the descent
direction vector dk and a suitable stepsize tk.

We use the following notations for convenience:

g(x) = ∇ f (x), G(x) = ∇2 f (x), gk = ∇ f (xk), Gk = ∇2 f (xk),

where ∇ f (x) denotes the gradient of f and ∇2 f (x) denotes the Hessian of f .
For x ∈ R

n, xT denotes the transpose of x.
The search direction dk is generally required to satisfy the descent condition

gT
k dk < 0.

There are several procedures for the choice of the search direction [16, 30]. The
descent direction dk in the Newton method with the line search is generated by
solving the linear system Gkd = −gk. In the gradient descent (GD) method dk

is defined by dk = −gk. Various conjugate gradient methods update the search
direction by the general rule

dk =
{

−gk, k = 0;
−gk + βkdk−1, k ≥ 1,

where βk is a scalar parameter depending of the method. For example, well-
known methods are:

βF R
k = gT

k gk

gT
k−1gk−1

, (Fletcher-Reeves method [12])

β PRP
k = gT

k

(
gk − gk−1

)
gT

k−1gk−1
, (Polak-Ribière-Polyak method [20, 21]).

The steplength tk can be also computed in various ways. There is a class of
algorithms known as the line search, whose general strategy is to determine the
stepsize tk such that the objective function value decreases, i.e. f (xk + tkdk) <

f (xk). Two main strategies in the line search algorithms have been proposed:
exact line search and inexact line search. The exact line search is based on
well-known formula (see, for example [27, 30])

tk = arg min
t>0

f
(
xk + tdk

)
.

Theoretically exact optimal stepsize generally cannot be found in practical
computation, and it is also expensive to find almost exact stepsize. Therefore
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the most frequently used algorithm in practice is the inexact line search, which
try to sufficiently decrease the value of f along the ray xk + tdk, t ≥ 0. Some of
inexact line search methods are developed in [3, 12, 14, 15, 18, 22, 23, 27, 31].

On the other hand, there are a lot of heuristics for improving the stepsize
tk in conjunction with the negative gradient direction. Barzilai and Borwein
suggested an algorithm in [4] (well known as BB algorithm) which essentially
is a gradient one, where the choice of the stepsize along the negative gradient
is derived from a two-point approximation to the secant equation from quasi-
Newton methods. Considering Gk = γk I as an approximation to the Hessian of
f at xk, in order to make that the matrix Gk follows the quasi-Newton property,
Barzilai and Borwein chose γk according to the rule

Gk = arg min
G=γ I

‖Gsk−1 − yk−1‖2, (1.2)

where sk−1 = xk − xk−1 and yk−1 = gk − gk−1, yielding the following iterative
scheme:

xk+1 = xk − 1

γ BB
k

gk, γ BB
k = sT

k−1 yk−1

sT
k−1sk−1

. (1.3)

The result of Barzilai and Borwein was modified in many articles. For example,
see [5–10, 13, 24, 25, 28, 29].

The general iterative scheme for the implementation of the line search
methods is given as follows (see, for example [30]):

Algorithm 1.1 General scheme for line search methods.
Require: Objective function f (x), initial point x0 ∈ Rn and tolerance 0≤ε�1.

1: k = 0.
2: (Verify termination criterion) If ||gk|| ≤ ε then return xk, f (xk) and stop

the algorithm; else continue by the next step.
3: (Finding the direction) Find the vector dk which is a descent direction.
4: (Finding the stepsize) Find the step size tk such that f (xk + tkdk) < f (xk).

5: Compute xk+1 := xk + tkdk.
6: (Loop) Set k := k + 1 and go to Step 2.

The paper is organized as follows. The motivation of the article is given in
the second section. We detect a class of gradient descent algorithms based on
the multiplication of the stepsize tk by an appropriate acceleration parameter,
where tk is computed by the line search procedure. We use the term accelerated
gradient descent algorithms with the line search for such a class of methods.
An explanation of an algorithm for choosing the acceleration parameter in an
alternative way with respect to the algorithm used in [1] is given. In the third
section we introduced an accelerated gradient descent method arising from the
Newton method with the line search. The acceleration parameter is derived
reducing the Hessian by an appropriately generated diagonal matrix, and the



506 Numer Algor (2010) 54:503–520

steplength tk is obtained according to the backtracking inexact line search. The
convergence analysis of the algorithm for uniformly convex functions as well
as strictly convex quadratic functions under certain assumptions is given in
Section 4. Numerical results are presented in the last section.

2 Accelerated gradient descent algorithms

The accelerated gradient descent iterative scheme of the form

xk+1 = xk − θktkgk, (2.1)

is introduced in [1]. The iterative process (2.1) is based on the usage of
the steplength tk and the acceleration parameter θk > 0 which improves the
behavior of the gradient descent algorithm.

On the other hand the Newton’s method with the line search, defined by the
iterative scheme

xk+1 = xk − tkG−1
k gk

is successful because it uses the Hessian which offers an useful curvature
information. However, for various practical problems, the computation of
the Hessian matrix and its inverse in each iterative step is very expensive,
or even the Hessian is not available analytically. These difficulties initiate a
class of methods that only use the function values and the gradients of the
objective function and that are closely related to the Newton’s method. Quasi-
Newton methods do not need to compute the Hessian, but generates a series
of Hessian approximations, and at the same time maintains a fast rate of
convergence. The basic motivation behind the quasi-Newton methods is to
try to obtain, at least on the average, the rapid convergence associated with
Newton’s method without explicitly evaluating the Hessian at every step. This
can be accomplished by constructing approximations of the inverse Hessian
based on the information gathered during the descent process [16, 30]. It is well
known that Quasi-Newton methods satisfy a quasi Newton equation given by

Sk+1 yk = sk,

where
sk = xk+1 − xk, yk = gk+1 − gk

and Sk is symmetric n × n matrix, selected as an approximation of the Hessian
inverse. Let us now observe the general iterative scheme

xk+1 = xk − tkSkgk, (2.2)

for which the matrix Sk possesses positive definiteness, and it is not required
to satisfies the quasi-Newton equation. Such a method is so called a modified
Newton method [30].
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The main goal in the present paper is to investigate further possibilities of
the general scheme (2.1), choosing the acceleration parameter θk in another
way, using main properties of the modified Newton iterative scheme (2.2). If
we take the following diagonal approximation to the inverse of the Hessian

Sk = γ −1
k I, γk ∈ R, (2.3)

the modified-Newton scheme (2.2) reduces to the iterative scheme

xk+1 = xk − tkγ
−1
k gk, (2.4)

which is essentially a technique for the steplength calculation in the frame of
the gradient descent general iterative scheme. In this way, we combine ideas
used in [1] and the modified Newton scheme (2.4).

Formal comparison of the iterative schemes (2.4) and (2.1) shows that (2.4)
requires the computation of the real number γk with respect to the construction
of the modification parameter θk in (2.1). The steplength tk is a common scalar
which appears in both iterative processes (2.4) and (2.1).

Following essential ideas in these iterative schemes, we observed that (2.1)
tends to accelerate the basic gradient descent algorithm, while the iterations
(2.4) appears as an aspect of the modified Newton method of the general
form (2.2). Since the final result in both (2.4) and (2.1) is the acceleration
of the gradient descent algorithm and since the scalar parameter tk in both
iterative methods is computed by means of the backtracking inexact line search
procedure, we use the common term accelerated gradient descent with line
search for all like methods.

In this paper we introduce a technique of taking the length of the accelera-
tion parameter γk in the descent method (2.4) for the unconstrained optimiza-
tion. Algorithm is developed using the approximation of the Hessian by means
of the diagonal matrix whose entries are appropriately computed. Therefore,
we derive the algorithm based on the general iterative scheme (2.4), where
γk = γ (xk, xk−1) ∈ R determines appropriately computed approximation γk I
of the Hessian Gk and where tk is a real parameter generated after the line
search with backtracking.

3 Acceleration based on a modified Newton method

Main idea used in the algorithm construction is approximation of the Hessian
inverse in (2.2) by a diagonal matrix using (2.3), where γk = γ (xk, xk−1) is
appropriately selected real number based on Taylor’s approximation of the
function f at the point xk+1, computed by means of (2.4). Therefore, we start
from

f (xk+1) ≈ f (xk) − tkgT
k γ −1

k gk + 1

2
t2
k

(
γ −1

k gk
)T∇2 f (ξ)γ −1

k gk, (3.1)
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where ξ ∈ [xk, xk+1] is defined by

ξ = xk + α
(
xk+1 − xk

) = xk − αtkγ
−1
k gk, 0 ≤ α ≤ 1. (3.2)

Having in mind that the distance between xk and xk+1 is small enough (using
the local character of searching) we can take α = 1 in (3.2) and get the
approximation ξ = xk+1. Thus we obtain

∇2 f (ξ) ≈ γk+1 I. (3.3)

Now, from (3.1) and (3.3) it is not difficult to verify

f (xk+1) ≈ f (xk) − tkγ −1
k ‖gk‖2 + 1

2
t2
kγk+1γ

−2
k ‖gk‖2. (3.4)

As an straight implication from (3.4), for the choice of the acceleration para-
meter we obtain

γk+1 = 2γk
γk

[
f (xk+1) − f (xk)

] + tk‖gk‖2

t2
k‖gk‖2

. (3.5)

It is well-known that if the point xk is a local minimum of a smooth function,
then the gradient gk of the function vanishes and the Hessian is positive
semidefinite (Second-Order Necessary Conditions); and conversely, if the
gradient vanishes at some point and the Hessian is positive definite, then the
objective function has a local minimum in that point (Second-Order Sufficient
Conditions) [30]. Therefore, the condition γk+1 > 0 is ultimate. In the case
γk+1 < 0 we take γk+1 = 1. Motivation for such a solution is as follows. When
Gk is not a positive definite matrix, then choosing γk+1 = 1, produces that the
next iterative point xk+2 is actually computed by the usual gradient descent
method: xk+2 = xk+1 − tk+1gk+1.

Once the parameter γk+1 > 0 is found, we need to compute the parameter
tk+1 in order to determine the next iterative point xk+2 = xk+1 − tk+1γ

−1
k+1gk+1.

For that purpose we use the inexact backtracking line search procedure. In
order to derive an upper bound for the backtracking we analyze the function

�k+1(t) = f
(
xk+1

) − tgT
k+1γ

−1
k+1gk+1 + 1

2
t2

(
γ −1

k+1gk+1
)T ∇2 f (ξ)γ −1

k+1gk+1,

where ξ ∈ [xk+1, xk+2], t ≥ 0 and γk+1 > 0. In the case when the approximation
ξ ≈ xk+1 is applied, we obtain

�k+1(t) = f
(
xk+1

) − tγ −1
k+1‖gk+1‖2 + 1

2
t2γk+1γ

−2
k+1‖gk+1‖2

= f
(
xk+1

) − tγ −1
k+1‖gk+1‖2 + 1

2
t2γ −1

k+1‖gk+1‖2.
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It is clear that in the case γk+1 > 0 the function � is convex, and it is obvious
that �k+1(0) = f (xk+1) as well as �′

k+1(t) = (t − 1)γ −1
k+1‖gk+1‖2. The function �

decreases in the case �′
k+1(t) < 0 which is true when t ∈ (0, 1). Also we have

�′
k+1(t) = 0 ⇔ t̄k+1 = 1, (3.6)

which means that the minimum of �k+1 is achieved for t = 1. Moreover, ac-
cording to (3.4), the objective function f is decreasing in the case when the
condition γk > 0 is ensured in each iteration. We determine the stepsize tk+1

using the backtracking line search procedure from [1]. In accordance with
(3.6), we conclude that the best choice for the initial value of the line search
parameter is t = 1. Therefore, we use the following algorithm for the inexact
line search.

Algorithm 3.1 The backtracking line search starting from t = 1.
Require: Objective function f (x), the direction dk of the search at the point

xk and numbers 0 < σ < 0.5 and β ∈ (σ, 1).
1: t = 1.
2: While f (xk + tdk) > f (xk) + σ tgT

k dk, take t := tβ.
3: Return tk = t.

In this way, we introduce the following algorithm (called SM method), which
is the main result of the article:

Algorithm 3.2 The gradient descent algorithm defined by (2.4) and (3.5).
Require: Objective function f (x) and chosen initial point x0 ∈ dom( f ).

1: Set k = 0, compute f (x0), g0 = ∇ f (x0) and take γ0 = 1.
2: If test criteria are fulfilled then stop the iteration; otherwise, go to the next

step.
3: (Backtracking) Find the step size tk ∈ (0, 1] using Algorithm 3.1 with

dk = −γ −1
k gk.

4: Compute xk+1 = xk − tkγ −1
k gk, f (xk+1) and gk+1 = ∇ f (xk+1).

5: Determine the scalar approximation γk+1 of the Hessian of f at the point
xk+1 using (3.5).

6: If γk+1 < 0, then take γk+1 = 1.
7: Set k := k + 1, go to the step 2.
8: Return xk+1 and f (xk+1).

In order to make a comparison in the computational complexity between the
AGD algorithm and SM method let us restate that AGD algorithm computes
the acceleration parameter θk using the following steps 3 and 4 from AGD
algorithm, introduced in [1]:

3: Compute: z = xk − tkgk, gz = ∇ f (z) and yk = gz − gk.
4: Compute ak = tkgT

k gk, b k = −tk yT
k gk and θk = ak/b k.
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The main difference between the AGD algorithm and SM method is in the
following: AGD algorithm is based on the usage of the acceleration parameter
θk which is computed applying just restated steps 3 and 4, while SM method
assumes a single computation of the real value γk by means of (3.5). It is clear
that computation of the parameter γk in Algorithm 3.2 is simpler with respect
to the calculation of the parameter θk. Also, a significant difference between
the AGD and SM algorithm is in the following: AGD method calculates in
Step 2 the steplength tk using the backtracking line search with dk = −gk and
later computes the acceleration parameter θk in Steps 3 and 4; on the other
hand, SM method, firstly, calculates the acceleration parameter γk and later
applies the backtracking line search with dk = −γ −1

k gk, in order to determine
the stepsize tk.

4 Convergence analysis

In this section we are concerned with the convergence of SM method. Firstly,
we consider the set of uniformly convex functions and later analyze the
convergence properties of the method for a subset of strictly convex quadratic
functions.

In the following proposition and lemma we restate and derive some basic
statements needful for analyzing the convergence properties of Algorithm 3.2
for uniformly convex functions. The proof of the next proposition can be found
in [19, 26].

Proposition 4.1 If the function f : R
n → R is twice continuously differentiable

and uniformly convex on R
n then:

1) the function f has a lower bound on L0 = {x ∈ R
n | f (x) ≤ f (x0)}, where

x0 ∈ R
n is available;

2) the gradient g is Lipschitz continuous in an open convex set B which
contains L0, i.e. there exists L > 0 such that

‖g(x) − g(y)‖ ≤ L‖x − y‖, ∀ x, y ∈ B.

Lemma 4.1 Under the assumptions of Proposition 4.1 there exist real numbers
m, M satisfying

0 < m ≤ 1 ≤ M, (4.1)

such that f (x) has an unique minimizer x∗ and

m‖y‖2 ≤ yT∇2 f (x)y ≤ M‖y‖2, ∀ x, y ∈ R
n; (4.2)

1

2
m‖x − x∗‖2 ≤ f (x) − f (x∗) ≤ 1

2
M‖x − x∗‖2, ∀ x ∈ R

n; (4.3)

m‖x − y‖2 ≤ (
g(x) − g(y)

)T
(x − y) ≤ M‖x − y‖2, ∀ x, y ∈ R

n. (4.4)

Proof Follows directly using known results from [19, 26]. ��
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The following lemma will tell us how much, at least, the value of an
uniformly convex objective function is decreasing in each iteration.

Lemma 4.2 For twice continuously differentiable and uniformly convex func-
tion f on R

n, and for sequence {xk} generated by Algorithm 3.2 the following
inequality is valid

f (xk) − f (xk+1) ≥ μ‖gk‖2, (4.5)

where

μ = min

{
σ

M
,
σ (1 − σ)

L
β

}
. (4.6)

Proof Observe that our backtracking line search corresponds to the partial
case sk = 1 of the backtracking procedure described in [1]. Therefore, ac-
cording to the backtracking line search Algorithm 3.1 we have the following
inequality

f (xk) − f (xk+1) ≥ −σ tkgT
k dk, ∀ k ∈ N. (4.7)

In the rest of the proof we consider two different cases: tk < 1 and tk = 1.
In the case tk < 1, similarly as in [27], we get

tk > −β(1 − σ)

L

gT
k dk

‖dk‖2
.

If we substitute dk = −γ −1
k gk immediately follows

tk >
β(1 − σ)γk

L
. (4.8)

Applying (4.8) into the (4.7) we finally get

f (xk) − f (xk+1) ≥ −σ tkgT
k dk

>
−σ(1 − σ)βγk

L
· −gT

k gk

γk

>
σ(1 − σ)β

L
‖gk‖2.

On the other hand, in the case tk = 1, using the fact that γk < M (follows from
(4.2) and (4.1), having in mind the way of computing γk) we have

f (xk) − f (xk+1) ≥ −σgT
k dk ≥ σ

M
‖gk‖2.
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Finally from the last two inequalities we get

f (xk) − f (xk+1) ≥ min

{
σ

M
,
σ (1 − σ)

L
β

}
‖gk‖2 (4.9)

and the proof is completed. ��

In the next theorem we prove a linear convergence of SM method for
uniformly convex functions.

Theorem 4.1 If the objective function f is twice continuously differentiable
as well as uniformly convex on R

n, and the sequence {xk} is generated by
Algorithm 3.2 then

lim
k→∞

‖gk‖ = 0, (4.10)

and the sequence {xk} converges to x∗ at least linearly.

Proof Since the objective f is bounded below and f (xk) decreases, it follows
that

lim
k→∞

(
f (xk) − f (xk+1)

) = 0,

which implies together with (4.5) and (4.6)

lim
k→∞

‖gk‖ = 0.

If we put x∗ = y in the inequality (4.4) and apply mean value Theorem as well
as the Cauchy-Schwartz inequality we get (see, for example [19, 26])

m‖x − x∗‖ ≤ ‖g(x)‖ ≤ M‖x − x∗‖, ∀ x ∈ R
n. (4.11)

Now, after applying (4.11) and (4.3) we obtain

μ‖gk‖2 ≥ μ m2‖xk − x∗‖2 ≥ 2μ
m2

M

(
f (xk) − f (x∗)

)
.

We conclude that the lim
k→∞

‖xk − x∗‖ = 0 which implies that the sequence {xk}
converges to x∗.

To prove that the convergence is linear, it is necessary to show

ρ =
√

2μ
m2

M
< 1.
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In the case μ = σ/M we have

ρ2 = 2μ
m2

M
= 2

σm2

M2
≤ 2σ < 1.

Similarly, in the case μ = σ(1 − σ)β/L we have

ρ2 = 2μ
m2

M
= 2β

σ(1 − σ)

L
m2

M

<
m2

ML
< 1,

because from (4.4) inequality m ≤ L holds.
Applying the result of Theorem 4.1 from [27] we obtain

‖xk − x∗‖ ≤
√

2
(

f (x0) − f (x∗)
)

m

√
1 − ρ2

k

and the proof is completed. ��

Let us now observe strictly convex quadratic objective function f given by

f (x) = 1

2
xT Ax − b T x, (4.12)

where A is a real n × n symmetric positive definite matrix and b ∈ R
n. Denote

the eigenvalues of the matrix A as λ1 ≤ λ2 ≤ . . . ≤ λn.
It is known that the convergence analysis of BB method, as well as other

gradient methods, is difficult and non-standard so that the convergence results
are often provided for convex quadratics (see [4, 11, 17]). Molina and Raydan
in [17] established the Q-linear rate of convergence of the (preconditioned)
BB method under the additional assumption λn < 2λ1. We consider the con-
vergence of SM method under similar assumptions.

Lemma 4.3 For the strictly convex quadratic function f given by the expression
(4.12) which involves symmetric positive definite matrix A ∈ R

n×n and the
gradient descent method (2.4), where the parameters γk and tk are determined
according to (3.5) and Algorithm 3.1, the following holds

λ1 ≤ γk+1

tk+1
≤ 2λn

σ
, k ∈ N, (4.13)

where λ1 and λn are, respectively, the smallest and the largest eigenvalues of A.
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Proof Let us start with

f
(
xk+1

) − f (xk) = 1

2
xT

k+1 Axk+1 − b T xk+1 − 1

2
xT

k Axk + b T xk.

After the replacement xk+1 = xk − tkγ −1
k gk we obtain

f (xk+1) − f (xk) = 1

2

(
xk − tkγ −1

k gk
)T

A
(
xk − tkγ −1

k gk
) − b T(

xk − tkγ −1
k gk

)

−1

2
xT

k Axk + b T xk

= 1

2
xT

k Axk − 1

2
tkγ

−1
k gT

k Axk − 1

2
tkγ

−1
k xT

k Agk + 1

2
t2
kγ

−2
k gT

k Agk

−b T xk + tkγ
−1
k b T gk − 1

2
xT

k Axk + b T xk.

After the usage of the identity gk = Axk − b , immediately follows

f
(
xk+1

) − f (xk) = tkγ −1
k

(
b T gk − xT

k Agk
) + 1

2
t2
kγ

−2
k gT

k Agk

= −tkγ −1
k gT

k gk + 1

2
t2
kγ

−2
k gT

k Agk.

If we substitute the last equality in (3.5) we get

γk+1 = 2γk
−tk‖gk‖2 + 1

2 t2
kγ

−1
k gT

k Agk + tk‖gk‖2

t2
k‖gk‖2

= gT
k Agk

gT
k gk

.

Hence, the γk+1 is the Rayleigh quotient of the real symmetric matrix A at the
vector gk, which means that the following holds

λ1 ≤ γk+1 ≤ λn, k ∈ N. (4.14)

The left inequality in (4.13) immediately follows, since 0 < tk+1 ≤ 1. To prove
the right inequality in (4.13), let us observe the inequality

γk+1

tk+1
<

L
β(1 − σ)

, (4.15)
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which follows straight from (4.8). Taking into account g(x) = A(x) − b , and
the fact that the real matrix A is symmetric, we get

‖g(x)−g(y)‖=‖Ax − Ay‖=‖A(x−y)‖≤‖A‖‖x − y‖=λn‖x−y‖. (4.16)

This means that for Lipschitz constant L in (4.15) we can take the largest eigen-
value λn of matrix A. This fact together with choices of parameters 0 < σ < 0.5
and β ∈ (σ, 1) from backtracking algorithm, produces the following

γk+1

tk+1
<

L
β(1 − σ)

= λn

β(1 − σ)
<

2λn

σ
,

and the proof is completed. ��

Theorem 4.2 For the strictly convex quadratic function f given by (4.12) and the
gradient descent method (2.4), under the additional assumption λn < 2λ1 for the
eigenvalues of matrix A, we have(

dk+1
i

)2 ≤ δ2(dk
i )

2, (4.17)

where

δ = max

{
1 − σλ1

2λn
,
λn

λ1
− 1

}
,

as well as

lim
k→∞

‖gk‖ = 0. (4.18)

Proof Let {xk} be the sequence generated by Algorithm 3.2. Assume that
orthonormal eigenvectors of A are {v1, v2, . . . , vn}. Then for arbitrary vector
xk, using gk = Axk − b , we have that there exist real constants dk

1, dk
2, . . . , dk

n
such that

gk =
n∑

i=1

dk
i vi. (4.19)

Namely, using (2.4) as well as the fact that gk = Axk − b , one can simple verify
the following

gk+1 = A
(
xk − tkγ

−1
k gk

) − b = (
I − tkγ

−1
k A

)
gk. (4.20)

Therefore, using the simple linear representation for gk+1 of the form (4.19),
we obtain

gk+1 =
n∑

i=1

dk+1
i vi =

n∑
i=1

(
1 − tkγ −1

k λi
)
dk

i vi. (4.21)
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To prove (4.17) we have to show that |1 − λi/γkt−1
k | ≤ δ. Let us observe to

different cases. In the case λi ≤ γk/tk, as a straight implication from (4.13)
we get

1 >
λi

γkt−1
k

≥ σλ1

2λn
=⇒ 1 − λi

γkt−1
k

≤ 1 − σλ1

2λn
≤ δ.

If the case γk/tk < λi is satisfied, we obtain

1 <
λi

γkt−1
k

≤ λn

λ1
=⇒

∣∣∣∣∣1 − λi

γkt−1
k

∣∣∣∣∣ ≤ λn

λ1
− 1 ≤ δ.

Now, in order to prove limk→∞ ‖gk‖ = 0, we use the orthonormality of the
eigenvectors {v1, v2, . . . , vn} as well as (4.19) and get

‖gk‖2 =
n∑

i=1

(
dk

i

)2
.

Since (4.17) is satisfied and 0 < δ < 1 holds, we get limk→∞ ‖gk‖ = 0, which
completes our proof. ��

5 Numerical results

In this section we report some numerical results obtained by testing our
method, named SM method, with respect to the, previously mentioned, AGD
method, as well as the gradient descent (GD) method with the backtracking
line search based on Algorithm 3.1. We have selected 30 functions from [2]
given in generalized or extended form as a large scale unconstrained test
problems. For each test problem we have considered 10 different numerical ex-
periments with the number of variables: 100, 500, 1000, 2000, 3000, 5000, 7000,
8000, 10000 and 15000. The stopping conditions for Algorithm 3.2 as well as
two other algorithms are:

‖gk‖ ≤ 10−6 and
| f (xk+1) − f (xk)|

1 + | f (xk)| ≤ 10−16.

The backtracking parameters for all methods are σ = 0.0001 and β = 0.8,
which means that we accept a small decrease in f predicted by linear approxi-
mation at the current point.

During the execution of algorithms we observed and later reported three
different indicators: number of iterations, CPU time, as well as the number of
function evaluations, in order to show dominance of SM algorithm with respect
to AGD and GD method. The codes are written in the visual C++ program-
ming language on a Workstation Intel Celeron 2.0 GHz.
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Table 1 Summary numerical results for SM, AGD and GD tested on 30 large scale test functions

Test function No. of iterations CPU time No. of funct. evaluation
SM AGD GD SM AGD GD SM AGD GD

Extended 1735 86574 205737 15.1 3161.5 5942.0 14183 2323901 6003899
Rosenbrock

Extended 547 276 1196 5.1 10.0 58.6 2872 7643 44104
penalty

Perturbed 79429 351987 384579 681.1 17132.7 29539.9 445587 13882174 16610440
quadratic

Raydan-1 15117 21718 54183 50.2 190.1 895.0 82001 432311 1471691
Raydan-2 90 40 60 0.2 0.2 0.2 190 90 130
Diagonal 1 7557 38454 35025 29.2 881.3 866.5 40502 1319921 1327459
Diagonal 3 8664 107944 55385 56.3 4485.0 2679.3 47165 3855094 2083028
Hager 729 2410 3055 3.2 31.4 39.4 3474 36465 54374
Generalized 278 570 662 1.6 10.9 15.2 952 7835 10948

tridiagonal - 1
Extended 4320 3322 1250746 40.4 18.7 6910.9 38446 13318 6372398

tridiagonal - 1
Extended three 141 398 1874 0.6 2.4 12.0 700 3324 19117

expon
Diagonal 4 80 100 8892 0.4 0.8 117.6 530 1110 173914
Diagonal 5 60 30 40 0.3 0.2 0.2 130 70 90
Extended 164 335 1355 1.0 7.9 32.9 558 5835 24705

Himmelblau
Quadr. Diag. 31157 2005445 891082 238.5 63203.8 31549.2 316264 72179199 35601182

perturbed
Quadratic QF1 43601 261485 211981 287.3 47169.1 33466.7 245060 9213885 7997891
Extended quad. 235 191 567 5.9 4.4 18.2 2398 2305 10748

penalty QP1
Extended quad. 2232 247742 134484 19.7 12493.2 3281.2 16179 6172728 3878140

penalty QP2
Quadratic QF2 62988 99547 309459 796.9 7164.1 31029.3 347920 3976538 13972221
Extended EP1 63 40 501 0.8 1.0 15.1 584 816 13776
Extended 438 1433 1153 2.3 5.2 5.7 2429 7058 9504

tridiagonal - 2
Arwhead 256 684 43224 7.9 16.0 5646.4 4325 17997 1920203
Almost perturbed 43229 253483 200957 291.4 49128.1 36337.1 244132 9689916 8201237

quadratic
Engval1 319 701 573 6.0 13.1 15.6 2601 6300 8724
Quartc 244 144 478799 0.6 0.5 1306.1 538 338 957648
Diagonal 6 90 40 60 0.2 0.1 0.1 216 90 130
Generalized 157 158 1377 1.0 1.7 42.1 423 715 17683

quartic
Diagonal 7 90 60 544 0.3 0.4 3.6 223 284 3313
Diagonal 8 98 50 584 0.4 0.4 4.7 303 256 3840
Diagonal 9 12556 312344 211607 28.0 4814.4 1716.6 77830 12519797 9152384

The results in Table 1 represent the total number of iterative steps, total
CPU time (given in seconds) and the total number of function evaluations,
respectively, derived from 10 numerical experiments for each test function.

As one can see from Table 1 it is obvious that SM method outperforms
other two methods. For 20 test functions SM method shows the best results in
the sense of number of iterations needful to achieve requested accuracy, while
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Table 2 Numerical results for 5 additional test functions

Test function No. of iterations CPU time No. of funct. evaluation
SM AGD GD SM AGD GD SM AGD GD

Extended White 2962 621538 574171 3.1 1953.6 1918.3 26321 18638690 18808384
& Holst

Tridia 56309 447900 346994 24.0 1629.1 1381.0 264738 17073495 14102900
LIARWHD 3841 64754 166334 7.1 423.6 1485.6 28819 2139319 6193310
DIXON3DQ 1123659 6543592 6493407 656.2 4032.8 5019.3 6544136 39261562 53196428
BIGGSB1 1015243 6001285 5959373 582.8 3659.1 4833.6 5917974 36007720 48821414

AGD is the best in the remaining 10 test problems. On the other hand, our
method shows better performance for 23 test functions observing CPU time, as
well as the number of function evaluations. Additionally, we selected 5 more
test problems from [2] and considered 10 numerical experiments with number
of variables 100, 200, . . . , 1000. In this case the dimensions of the problems
are essentially smaller with respect to the previous experiment, applied on 30
functions. The reason is much bigger number of iterations, which requires a
lot of the time for the program execution of the AGD and GD methods. The
results are shown in Table 2.

It is clear that SM algorithm is superior in number of iterations,CPU time, as
well as in the number of function evaluations for all 5 test problems. Moreover,
these results demonstrate a greater superiority of SM algorithm with respect
to the superiority derived upon Table 1.

It is important to point out that the difference between observed parameters
in the case when AGD outperformed SM method is incomparable smaller with
respect to the opposite case. As an approvement for this statement we have
Table 3, where the average number of iterations, CPU time, and number of
function evaluations for all 350 numerical experiments are given.

According to the presented results we conclude that our SM method has
in average about 7 times better characteristics in number of iterations, and
approximately 16 times smaller number of function evaluations with respect to
AGD and GD method. On the other hand, referring to CPU time, it is evident
that SM is almost 60 times faster than AGD and GD method.

The total number of iterations for SM method applied on all 350 numerical
experiments is 2518678 while the number of cases from Algorithm 3.2 in which
the gamma is negative is 716. This means that SM method behaved like GD
method in only 0.03% of cases.

Table 3 Average numerical outcomes for 35 test functions tested on 10 numerical experiments

Average performances SM AGD GD

Number of iterations 7196.22 49933.64 51514.34
CPU time (sec) 10.99 633.28 589.10
Number of function evaluations 42059.15 710851.71 734478.16
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6 Conclusion

We present an idea for choosing the acceleration parameter in a gradient
descent method using an alternative approach with respect to the algorithm
used in [1]. More precisely, we introduce an accelerated gradient descent
method, arising from the Newton method with the line search, reducing the
Hessian by an appropriately generated diagonal matrix.

The linear convergence of the algorithm is proved for uniformly convex
functions and for a subset of strictly convex quadratics.

From Table 1, Table 2 and Table 3 we conclude that the introduced SM
method produces better results with respect to the AGD method from [1] and
the GD method. Comparative criteria are the number of iterative steps, spent
CPU time, and the number of the function evaluations.

Let us, finally, remark that the problem stated in the paper can be exploited
in many different ways, since the problem of finding an arbitrary acceleration
parameter anyhow is still actual.

Acknowledgement The authors gratefully acknowledge support from the research project
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