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Abstract Explicit parallel two-step peer methods use s stages with essentially
identical properties. They are quite efficient in solving standard nonstiff initial
value problems and may obtain a parallel speed-up near s on s processors
for expensive problems. The two-step structure requires s − 1 initial approxi-
mations which have been computed by one-step methods in earlier versions.
We now present a self-contained starting procedure using parallel Euler steps
in the initial interval. Low order error terms introduced by this step are elim-
inated by special coefficient sets increasing the order to s after s − 2 time steps.
An estimate for the initial stepsize is discussed, as well. Parallel OpenMP
experiments with realistic problems demonstrate the efficiency compared to
standard codes.
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1 Introduction

Explicit parallel peer methods approximate the solution of the initial value
problem

y′(t) = f (t, y(t)), y(tst) = y0 ∈ R
n (1)
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by a time stepping scheme using s stages Ymi
∼= y(tmi) per time step associated

with off-step points tmi = tm + hmci, i = 1, . . . , s of some time grid t0, t1, . . ..
In contrast to Runge–Kutta methods all these stages are peers, having the
same properties like order s, for instance. Parallel execution of the time step
with stepsize hm = tm+1 − tm is possible since the actual stages Ymi, i = 1, . . . , s,
depend only on the previous ones. The scheme has the form

Ymi =
s∑

j=1

bijYm−1, j + hm

s∑

j=1

aij f
(
tm−1, j, Ym−1, j

)
, i = 1, . . . , s, (2)

with coefficients aij, bij and nodes ci. A more compact formulation is obtained

by stacking the stages Ymi into Ym := (
YT

m1, . . . , YT
ms

)T ∈ R
sn and, accordingly,

F(Ym) := (
f (tm1, Ym1)

T, . . . , f (tms, Yms)
T
)T. Then, (2) corresponds to

Ym = (Bm ⊗ I)Ym−1 + hm(Am ⊗ I)F
(
Ym−1

)
(3)

with coefficient matrices Bm = (bij)
s
i, j=1, Am = (aij)

s
ij,=1. The index m indicates

that (some of) these coefficients may depend on the time step. This class
of peer methods has been introduced recently in its non-parallel form using
derivatives hm

∑
j<i rij f (tmj, Ymj) from the actual time step in [9] and discussed

further in [6, 10]. (3) closely resembles earlier versions of General Linear
Methods as in the first edition of Butcher’s textbook [1]. However, Butcher was
looking for a general form covering most known methods and did not specify
the meaning of the variables Ymi in the form we do here. Our class of peer
methods yields high order approximations Ymi − y(tmi) = O(hs

m), i = 1, . . . , s,
uniformly in all stages. So, dense output is available cheaply. Earlier work on
two-step peer methods concentrated on semi-implicit versions for stiff equa-
tions, see [4, 5, 7]. Other types of two-step methods similar to Runge–Kutta
methods were developed by Jackiewicz, Tracogna [3] and others and Wright
[11]. The problem of starting a two-step Runge–Kutta method with lower stage
orders was addressed by Verner [8].

Due to the two-step structure with s stages all peer methods require s initial
values Y0i at the beginning. So far these starting values have been computed
by Runge–Kutta methods like DOPRI5 [2] which also provides an estimate
for the initial stepsize h0. The purpose of the present paper is to derive a
new starting procedure which does not rely on other schemes (and codes) and
is parallel at the same time. The required parallelism leaves as only option
a parallel Euler step of low order. Then, we introduce a scheme that elimi-
nates low order terms by using peer methods with adapted coefficient sets
for a small number of time steps after the start. The elimination strategy is
developed with the aid of a polynomial representation of the peer step for
linear test equations. However, we also show that this strategy works for
nonlinear problems, too. Finally, we address the numerical computation of the
error eliminating coefficients, present a heuristic for the choice of the initial
stepsize h0 and some realistic parallel numerical experiments in OpenMP.

Replacing the starting procedure has only a marginal effect on computing
time, in general. However, it may also reduce the possibility of an undesirable
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error structure after a one-step start. A further motivation for studying a self-
contained start for peer method is its relation to order control. Since the basic
idea of the parallel two-step structure is that s is essentially the number of
processors used, a change of order should not affect the stage number as it
is common for sequential methods. Since our starting strategy increases the
orders from 2 to s in a few steps we expect that similar strategies may be
developed for increasing the order from a value below s in order control.

The paper continues with a short review of stability and error properties
of explicit peer methods in Section 2 and shortly describes the parallel Euler
starting step in Section 3. The structure of the low order errors introduced by
this start and their elimination is investigated in Section 4 for linear problems.
Section 5 covers nonlinear problems and the coefficients for error elimination
are computed in Section 6. With an additional heuristic for the starting step-
size h0 the whole starting procedure is described in Section 7. The parallel
performance of this new peer implementation is compared in Section 8 with
the old Runge–Kutta start and with DOPRI5 on a parallel machine.

2 Basic properties

For the scalar test equation y′ = λy the scheme (3) is a simple matrix multipli-
cation Ym = Mm(z)Ym−1 with the stability matrix

Mm(z) = Bm + zAm, z := hmλ. (4)

The uniform boundedness of solutions in the trivial test case λ = 0 (zero
stability) requires the boundedness of all matrix products Bm Bm−1 · · · Bk and
may lead to severe theoretical difficulties for general matrices. We avoid these
problems by choosing B fixed with optimal zero stability requiring

Bm ≡ B, det(xI − B) = xs − xs−1. (5)

The eigenvalue one is necessary due to preconsistency (see below), but all
others are chosen to be zero. However, we will have to modify this specification
for the starting steps.

Order conditions are linear in A, B (cf. [9]) and depend on the stepsize ratio

σm := hm

hm−1
, m ≥ 1, (6)

due to the two-step structure. These stepsize ratios will be bounded above by
σm ≤ σ̄ but not below. In fact, with the conditions

AB(q) : (1+σmci)
k−

s∑

j=1

bijck
j − kσm

s∑

j=1

aijc
k−1
j , i = 1, . . . , s, k = 0, . . . , q−1,

(7)
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the local error in step m is of order O
(
hq−1

m−1

)
, i.e.

hm�mi := y(tmi) −
s∑

j=1

bijy(tm−1, j) − hm

s∑

j=1

aijy′(tm−1, j)

= O(hq
m−1) (8)

under AB(q). The first condition AB(1) is always assumed since it corresponds
to preconsistency

B1l = 1l, 1l = (1, . . . , 1)T (9)

and requires that one is an eigenvalue of B leading to the restriction �(B) ≥ 1
for the spectral radius of B. This eigenvalue condition was already incorpo-
rated in (5). Evidently, additional order conditions AB(q), q > 1 require step
dependend parameters. Since zero stability is easier accomplished for constant
B, see (5), it is convenient to solve the order conditions for a σ -dependent
coefficient Am. For our purposes it has some advantages to display order con-
ditions for a Nordsieck-type formulation in terms of Taylor coefficients of Ym.
These conditions are formulated for transformed matrices Ãm = V−1 AmV,
B̃ = V−1 BV where V is the Vandermonde matrix V = (

c j−1
i

)s
i, j=1 associated

with the nodes ci. Then, (9) means B̃e1 = e1 with the first unit vector e1 and
order s, i.e. AB(s + 1), leads to the following matrix representation

σm Ãm = (I + σm F)Sm PD−1 − B̃FD−1, (10)

with the diagonal matrices Sm = diag(1, σm, . . . , σ s−1
m ), D = diag(1, 2, . . . , s)

and with

P =
((

j − 1
i − 1

))s

i, j=1
, F = F0 − φeT

s :=

⎛

⎜⎜⎜⎝

0 0 . . . 0
1 0 0

. . .
...

1 0

⎞

⎟⎟⎟⎠ −
⎛

⎜⎝
φ0
...

φs−1

⎞

⎟⎠ eT
s .

The Pascal matrix P contains the binomial coefficients and F is the Frobenius
companion matrix of the node polynomial ϕ(t) = ∏s

i=1(t − ci) = ∑s
j=0 φ jt j.

The form (10) is equivalent with (12) in [6] since σm FSm(D−1 P − PD−1) =
SPD−1 − e11lT D−1.

Now, a peer method of order s is fully determined by choosing the nodes
ci and the fixed matrix B with the restrictions (5), (9). Such methods have
been constructed in [6, 9] with the additional aims of good stability, small error
constants and moderate coefficient magnitudes. An additional topic was an
order increase to s + 1 by a certain superconvergence property [10]. However,
in all implementations so far, the estimate for the initial stepsize and the
required starting values Y0i have been computed by Runge–Kutta methods.
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3 Parallel start

If the main features of the peer method (2) are to be preserved in the com-
putation of starting values Y0i, i = 0, . . . , s, parallelism and explicit step, there
is hardly an alternative to a parallel Euler step

Y0i := y0 + cih0 f (y0), i = 1, . . . , s. (11)

In principle, only s − 1 approximations have to be computed in (11) by fixing
the first grid point t0 such that tst = t0 + h0 mini ci holds. This also prevents
f -evaluations to the left of tst. However, we will use (11) with t0 = tst in order to
simplify the error analysis. Of course, the error introduced by the Euler step is
of order O(h2

0) only and it is the main purpose of this paper to design methods
to eliminate this large initial error again in few time steps.

The precise form of the error introduced by (11) is

h0�0i = y(t0i) − y(t0) − cih0 y′(t0) =
q−1∑

k=2

hk
0

k! y(k)(t0)ck
i + O

(
hq

0

)

or in compact form with ck := (
ck

i

)s
i=1

h0�0 =
q−1∑

k=2

hk
0ck ⊗ wk + O

(
hq

0

)
, wk := y(k)(t0)

k! . (12)

We consider first the propagation of the errors Em := Ym − ym, yT
m :=(

y(tmi)
T
)s

i=1 in the first few steps. Restricting the discussion to autonomous
problems from now on we replace function increments through

f
(
y(tmi) + Emi

) − f
(
y(tmi)

) = Jmi Emi (13)

where Jmi is a mean value of derivatives fy. Hence, F(ym + Em) − F(ym) =
Jm Em, where Jm is a block diagonal matrix of the form Jm = I ⊗
fy(tm, y(tm)) + O(hm). In the short start phase we will allow varying coefficients
Bm. So, the first three errors are

E0 = −h0�0

E1 = −h1�1 − h0((B1 ⊗ I)�0 + h1(A1 ⊗ I)J0�0)

E2 = −h2�2 − h1((B2 ⊗ I)�1 + h2(A2 ⊗ I)J1�1)

−h0((B2 B1 ⊗ I)�0 + h1(B2 A1 ⊗ I)J0�0)

−h0h2(A2 ⊗ I)J1((B1 ⊗ I)�0 + h1(A1 ⊗ I)J0�0).

We have written down this in length to motivate some decisions concerning
error control. Since old errors gain one order by the multiplication with hm Am

but not in the product with Bm it may be expected to gain one order per step,
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yielding Em = O(hm+2), m ≤ s − 2, by choosing Bm appropriately, but only
one order since Bm and Am are coupled through order conditions. Then, one
also could use initially peer methods of lower, increasing order according to
hm�m = O(hm+2), 1 ≤ m ≤ s − 2. In this case however, it would be extremely
difficult to track the propagation of the different error terms ck from (12)
through the first intervals. Hence we decided to always use peer methods of
full order s after step zero. Full order s through matrices Am given by (10) also
simplifies the elimination of terms like B2 A1ck as in the representation of E2.
In order to avoid tediuos algebraic computations we develop our strategy in
a polynomial formulation for the test equation y′ = λy and show later that it
also works for general equations.

4 Polynomial error elimination

The analysis of error propagation can be simplified by considering a poly-
nomial p(x) = ∑s

k=1 Zkxk−1 interpolating the stage values in stretched
coordinates, i.e.

p(c j) = Ym−1, j, j = 1, . . . , s. (14)

Accordingly, r(x) will denote the polynomial of degree s − 1 interpolating
r(c j) = Ymj, j = 1, . . . , s. Throughout the next sections we will use x ∈ R as
a dimensionless variable relative to a given time step, e.g., p(x) ∼= y(tm−1 +
hm−1x). This polynomial representation yields a second description of the peer
step and we will switch between algebraic and polynomial formulation and use
whichever is more convenient. The multiplication Ym−1 	→ BmYm−1 may be
written as an operator Bm acting on polynomials defined by

(Bm p)(x) =
s∑

i, j=1

bijLi(x)p(c j),

with the Lagrangian basis polynomials Li of degree s − 1. However, its precise
form will play no role with the exception of the reproduction of constant func-
tions Bm1 = 1 due to (9). We note, that Bmϕ = 0 by definition. The multiplica-
tion with the matrix Am can be expressed by simple operations for high order
AB(s + 1).

Lemma 1 Let Ãm be given by (10) and let p be the interpolating polynomial
(14). Then the interpolating polynomial r of Ym = Mm(z)Ym−1 after one step of
the method (2) applied to y′ = λy is given by

r = Bm

(
p − z

∫ ·

0
p(ξ) dξ

)
+ z

∫ 1+σm·

0
p(ξ) dξ − z

σ s
m

s! p(s−1)ϕ (15)

with z = hm−1λ.
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Proof We represent the multiplication by the different matrices in (10) as
operations on polynomials p(x) = ∑s

k=1 Zkxk−1. The index m is dropped here.
Shifting of Taylor coefficients and scaling by D−1 corresponds to integration

s∑

k, j=1

xk−1(FD−1)kjZ j =
s−1∑

k=1

xk 1
k

Zk −
s∑

k=1

xk−1φk−1
1
s

Zs

=
s∑

k=1

xk 1
k

Zk −
s∑

k=0

xkφk
1
s

Zs

=
∫ x

0
p(ξ)dξ − ϕ(x)

p(s−1)

s! ,

with an additional error term depending on Zs = p(s−1)/(s − 1)!. The scaled
Pascal matrix SP means extrapolation, so

s∑

k, j=1

xk−1(SPD−1)kjZ j =
s∑

k, j=1

(σ x)k−1
(

j − 1
k − 1

)
1
j
Z j

=
s∑

k=1

(1 + σ x)k−1 1
k

Zk.

Combining with
s∑

k, j=1

xk−1(σ FSPD−1)kjZ j = σ x
s∑

k=1

(1 + σ x)k−1 1
k

Zk − σ s Zs

s

s∑

k=0

φkxk,

reveals the meaning of the multiplication by σ Ã from (10):

σ

s∑

k, j=1

xk−1ãkjZ j =
s∑

k=1

(1 + σ x)k 1
k

Zk − σ s

s
Zsϕ(x)

−
(
B

(∫ ·

0
p(ξ)dξ − Zs

s
ϕ

))
(x)

=
∫ 1+σ x

0
p(ξ)dξ −

(
B

∫ ·

0
p(ξ)dξ)

)
(x) − σ s

s! p(s−1)ϕ, (16)

since Bϕ = 0. Hence, the full multiplication by M̃ = B̃ + hmλÃ = B̃ + zσm Ã
corresponds to (15). ��

Remarks

1. The error term in (15) multiplied by p(s−1) reduces the degree of the
integrals on the right hand side to s − 1 = deg r again. In fact, both∫ x

0 p(ξ) dξ − ϕ(x)p(s−1)/s! and
∫ 1+σmx

0 p(ξ) dξ − ϕ(x)σ s
m p(s−1)/s! have de-

gree s − 1 and are reproduced exactly by interpolation in the nodes ci,
i = 1, . . . , s.
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2. We note that integration constants cancel out in (15) due to preconsistency
(9). So,

∫ 1+σm·
α

p(x) dx − Bm
∫ ·
α

p(x) dx is independent of α ∈ R.

Going back to error elimination, we first consider only the test equation
y′ = λy. Since the disturbing error terms in (12) are polynomials of lower
degree, the correction term with p(s−1) in (15) vanishes. In fact, writing �0 as a
polynomial with �0i = �0(t0 + h0ci), i = 1, . . . , s, and the monomials μk(x) :=
xk, we have

h0�0(t0 + h0x) =
s−1∑

k=2

hk
0μk(x)wk + O

(
hs

0

)
(17)

for q = s. So, using the same notation for the errors Em, with h1�1 = O
(
hs+1

1

)

we get by (15) up to O(hs)-terms

E1(t1 + h1x) = −
s−1∑

k=2

hk
0wk

(
B1

(
μk − h0λ

∫ ·

0
μk dξ

)
+ h0λ

∫ 1+σ1x

0
μk(ξ) dξ

)

= −
s−1∑

k=2

hk
0wk

(
B1

(
μk − h0λ

k + 1
μk+1

)
+ h0λ

k + 1
μk+1(1 + σ1x)

)
.

No error terms μ
(s−1)

k appear, they vanish for k < s − 1 and are of order
O(hs) for k = s − 1. This first step already reveals the principles by which the
initial errors μk(x) appear in subsequent steps: one contribution is evaluated
in the original coordinates x = (t − t0)/h0 and mapped by B1 and the second
contribution is just an integration evaluated in the next interval 1 + σ1x =
(t − t0)/h0 where t = t1 + h1x. We note that upon integration terms gain one
factor h0, here. Since it is hard to model the integration of the terms B1μk in
later time steps for general Bm, we simply eliminate all such terms having order
below hs by the strategy:

Bmμk

(
tm−1 − t0 + hm−1·

h0

)
= 0, 2 ≤ m + 1 ≤ k ≤ s − 1. (18)

The full elimination up to degree s − 1 will also be beneficial in the non-
linear case. The conditions (18) may be scaled differently, for instance as
Bmμk(τm−1 + x) = 0 with

τm−1 := (tm−1 − t0)/hm−1, m ≥ 1. (19)

Together with (9) this gives the following algebraic conditions on Bm:

B1
(
1l, c2, c3, . . . , cs−1) = (

1l, 0, . . . , 0
)
,

B2
(
1l, (τ11l + c)3, . . . , (τ11l + c)s−1) = (

1l, 0, . . . , 0
)
,

B3
(
1l, (τ21l + c)4, . . . , (τ21l + c)s−1) = (

1l, 0, . . . , 0
)
,

. . .

Bs−2
(
1l, (τs−31l + c)s−1) = (

1l, 0
)
. (20)
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In the first step (20) almost completely defines the rank-two matrix B1 =
(1leT

1 + beT
2 )V−1 with arbitrary b ∈ R

n. With each further step the rank of Bm

may grow. The concrete choice of Bm will be described later. We will show
now, that the error elimination strategy (18) indeed increases the order of the
errors by one at each step. In order to balance the different errors to some
extent it makes sense to use a small starting stepsize h0 and increase hm in the
following steps with higher order. This situation is considered in the formu-
lation of the following theorem which gives the precise error structure for the
test equation.

Theorem 1 Let the peer method be applied to the equation y′ = λy with a
parallel initial Euler step (11) and stepsizes h0 ≤ h1 ≤ . . . ≤ hs−2. If the method
uses coefficients Bm according to (18) and Am according to (10), then the errors
Emi = Ymi − y(tmi), i = 1, . . . , s, 0 ≤ m ≤ s − 2 are given by

Emi = −λm
s−1∑

k=m+2

(tm − t0 + hmci)
k 1

k! y(k−m)(t0) + O
(
hs

m

)
. (21)

Proof Since the map Y 	→ M(z)Y is linear and its polynomial version may be
described by (15), we track the different error terms hk

0 xk = hk
0μk(x) in (17)

inductively with the aid of (15) and drop terms eliminated by (18). Since E0 =
−h0�0 has the asserted form we apply (15) for m ≥ 1 with a single term p(x) =
λm−1(tm−1 − t0 + hm−1x)k, k < s − 1. Hence,

r = Bm

(
λm−1(tm−1 − t0 + hm−1·)k − λm

k + 1
(tm−1 − t0 + hm−1ξ)k+1

∣∣∣
·
0

)

+ λm

k + 1
(tm−1 − t0 + hm−1ξ)k+1

∣∣∣
1+σm·
0

Now Bm eliminates the first two terms due to (18) with the exception of the
integration constant at ξ = 0 which is reproduced, Bm(tm−1 − t0)k+1 = (tm−1 −
t0)k+1 and cancels the constant of the second integral. So, only (tm−1 − t0 +
hm−1(1 + σmx))k+1 = (tm − t0 + hmx)k+1 remains and yields

−r(x)
1
k! y(k−m+1)(t0) = − λm

(k + 1)! (tm − t0 + hmx)k+1 y(k+1−m)(t0)

which proves the assertion after an index shift for k < s − 1. For k = s − 1
the correction term with p(s−1) = (s − 1)!(hm−1λ)s−1 in (15) does not vanish.
However, all terms except Bm p = 0 are multiplied by z = hm−1λ and are of
order O(hs

m). ��

5 Nonlinear equations

For nonlinear problems the polynomial peer step (15) has to be modified
since g(x) := f

(
p(x)

)
is not a polynomial, in general. The correct formulation
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is the interpolation of g at the nodes x = ci, i = 1, . . . , s, and (16) is applied
to this interpolating polynomial Ps−1g. Since this interpolation operator Ps−1
reproduces polynomials up to degree s − 1, (16) applies to polynomial error
expansions up to this degree, for instance to the sum in the representation (12)
of the initial error E0,

e0(x) = −
s−1∑

k=2

(h0x)kwk + O
(
hs

0

)
.

Accordingly, in time step m we consider em−1(x) = p(x) − y(tm−1 − t0 +
hm−1x) with p from (14) and replace the linearization (13) by a full Taylor
expansion. For the initial steps with m ≤ s − 2 and h0 ≤ . . . ≤ hm we use
y(t) − y0 = O(hm) and em−1 = O(h2

m). Then, with q = s/2� holds

f
(
y(t) + em−1(x)

) − f
(
y(t)

)

=
q∑

j=1

1
j! f ( j)(y0)

(
(y(t) + em−1(x) − y0)

j − (y(t) − y0)
j) + O

(
hs

m

)

=
q∑

j=1

1
j! f ( j)(y0)

j∑

k=1

(
j
k

)(
y(t) − y0

) j−k
ek

m−1(x) + O
(
hs

m

)
. (22)

Of course, f ( j)(y0) is a j-linear symmetric map and the powers in the last
formula mean a corresponding repetition of the argument. Now, y(t) − y0 =∑s−1

k=1(t − t0)kwk + O(hs
m) has an expansion in powers of t − t0 = tm−1 − t0 +

hm−1x and we will show that this holds for em−1, too. Compared to the model
case of Theorem 1 nonlinearity adds additional terms of higher degree only
which are cancelled by the full elimination strategy (18).

Theorem 2 Let the peer method be applied to the Eq. (1) with a parallel
initial Euler step (11) and stepsizes h0 ≤ h1 ≤ . . . ≤ hs−2. If the method uses
coefficients Bm according to (18) and Am according to (10), then its errors satisfy

Emi = Ymi − y(tmi) = O
(
hm+2

m

)
, i = 1, . . . , s, 0 ≤ m ≤ s − 2.

Proof As a generalization of (21) we will prove inductively that the errors have
the form

em(x) =
s−1∑

k=m+2

(tm − t0 + hmx)kumk + O
(
hs

m

)
(23)

with umk ∈ R
n. For m = 0 it is known from (12). Using the error expansion

(23) with index m − 1 in the Taylor formula (22) of the difference function



Numer Algor (2010) 53:363–381 373

g(x) = f
(
y(t) + em−1(x)

) − f
(
y(t)

)
, t = tm−1 + hm−1x, we see that it also has an

expansion in these polynomials

f
(
y(t) + em−1(x)

) − f
(
y(t)

) =
s−1∑

k=m+1

(t − t0)kwm−1,k + O
(
hs

m

)
,

with wm−1,k ∈ R
n. Applying (16) after interpolation with ḡ = Ps−1g we get

em = Bm

(
em−1 − hm−1

∫ ·

0
ḡ(ξ)dξ

)
+ hm−1

∫ 1+σm·

0
ḡ(ξ)dξ + O

(
hs

m

)
.

Here, we have used again the fact that hm−1ḡ(s−1) = O(hs
m). Since the expansion

polynomials of both em−1 and g start with degree m + 1 and have the form
(tm−1 − t0 + hm−1x)k, m + 1 ≤ k ≤ s − 1, they are eliminated in the multiplica-
tion with Bm by (18) up to order O(hs

m). The remaining terms are

hm−1

∫ 1+σmx

0
(tm−1 − t0 + hm−1ξ)kdξ = 1

k + 1
(tm − t0 + hmx)k+1

and yield (23) with umk = 1
k+1wm−1,k. ��

Since the starting procedure eliminates all low order terms of a standard
Taylor expansion from a certain degree upwards it is clear that the result also
holds for non-autonomous problems.

6 Computing starting coefficients

The implementation of the starting strategy requires the choice of matrices
Bm according to (20). Beside the starting phase the coefficient matrix B satis-
fying (5) is chosen in order to provide rather large stability regions for the
peer method. However, due to the low order of the Euler step it should be
advisable to use small starting stepsizes and so, the stability region is a minor
issue while rounding errors still may count. For small hm rounding errors are
essentially proportional to ‖Bm‖ and we may seek minimal norm solutions of
(20). Considering the Frobenius norm here leads to a simple result.

Lemma 2 The solution Bm of the condition (20), 1 ≤ m ≤ s − 2 with minimal
Frobenius norm has rank one, Bm = 1lvT

m, with vT
m = eT

1 R−1 QT and the QR
decomposition

QR = (
1l, (τm−11l + c)m+1, . . . , (τm−11l + c)s−1), Q ∈ R

s×(s−m).

Proof The matrix T :=(1l, (τm−11l + c)m+1, . . . , (τm−11l + c)s−1)= QR (cf. (19))
has full rank s − m since it is part of a Vandermonde matrix. Hence, the
unique minimal norm solution of the underdetermined system vTT = eT

1 can
be computed with the QR decomposition: TTv = RT QTv = e1 ⇐⇒ QTv =
(RT)−1e1. Since the orthogonal complement of the kernel of QT is the range of
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the orthogonal matrix Q, the minimal norm solution is vm = Q(RT)−1e1. Since
both the system BmT = 1leT

1 and the Frobenius norm decouple for the different
rows of Bm the solution for all rows is the same, Bm = 1lvT

m. ��

Remarks

1. Although varying matrices Bm are used only for the first s − 2 steps, one
might still worry about large products B1 . . . Bm, m ≥ 1. However, the
choice of rank-one matrices according to the lemma gives an easy answer,
since with Bk = 1lvT

k and vT
k 1l = 1 follows

Bk · · · Bm = 1lvT
m, 1 ≤ k ≤ m ≤ s − 2.

2. The norm ‖Bm‖2 = √
s‖vm‖2 still depends on the condition number of the

system in Lemma 2. It is plain that this system is badly conditioned for
large τm−1 since all columns are nearly multiples of 1l. However, in this
situation hm−1 is much smaller than h0 which does not look like a sensible
starting stepsize sequence. On the contrary, we will consider geometrically
increasing sequences hm = σ m

starth0, σstart > 1, where

τm = 1 + σstart + . . . + σ m−1
start

σ m
start

= 1 − σ−m
start

σstart − 1
∈

[
0,

1
σstart − 1

)
, m ≥ 0.

This consideration was the reason for rescaling the conditions (18) in the
form (20).

3) We note that the characteristic polynomial of explicit peer methods having
a rank-one matrix B has special properties investigated in [6].

In principle, the vector vm from Lemma 2 may be computed with effort
O(s3) which is no big overhead for large problem dimensions n. Instead, we
found that it is possible to use fixed starting sequences hm = σ m

starth0 with rather
large σstart. In fact, we used σstart = 2 for s ≤ 6 leading to τm < 1 and σstart = 3/2

Fig. 1 Varying the number
of initial elimination steps
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Table 1 Properties of the
explicit parallel peer methods

Name s r σ̄ σstart C0

epp4 4 0.741 1.6 2 0.3
epp6 6 0.579 1.5 2 1.0
epp8 8 0.466 1.4 1.5 0.5

for s = 8 where τm < 2. In this case, all vectors vm can be computed once and
stored in the code. Hence, the starting method has only the nodes ci in common
with the peer method used after the start.

Since the numerical experiments in Section 8 will be concerned with large
problems and automatic stepsize control, the elimination strategy is demon-
strated here with a small numerical example using constant stepsizes after
the start. The nonlinear, non-autonomous initial value problem y′ = −ty2,
y(−1) = 2/3 with the solution y(t) = 2/(2 + t2) is solved on the interval [−1, 1].
The diagram in Fig. 1 shows the error plots of runs for the six-stage method
epp6 from Table 1 with an initial parallel Euler step. Then a number i ≤ s − 2
of starting steps is used with Bm from Lemma 2 and hm = 2mh0, 1 ≤ m ≤ i.
After the start the computation continued with constant stepsizes, hm = hi,
m > i. Varying i from zero to four leads to the different lines showing the
expected error slopes 2 to 6 due to error elimination very nicely. The solid
line belongs to a run with exact starting values Y0i = y(t0i), i = 1, . . . , s,
and has order 7 due to a superconvergence of this method for constant
stepsizes, [10].

7 Estimating the initial step size

Starting the peer method also requires a guess for an appropriate initial step-
size h0. Since our starting procedure eliminates the low order errors from the
Euler step, the estimate for h0 should be based on the full order peer method.
The local error of the peer method is estimated in practice by comparing Yms

with an embedded approximation of order s − 1. In fact, this estimate essen-
tially is an approximation for hs

m y(s)(tm) by a difference quotient ∇s−1 F(Ym),
where ∇s−1 corresponds to the last row eT

s V−1 of the Vandermonde matrix. In
the initial point t0 the exact derivative has the form

y(s)(t0) = f (s−1)(y0) f0 · · · f0 + . . . + ( f ′
0)

s−1 f0, f0 := f (y0), (24)

where most of the elementary differentials have been omitted. Standard pro-
cedures for guessing the initial stepsize try to approximate this expression
cheaply, [2]. In the beginning, where only f0 is available, the crude estimate
‖y(s)‖ ∼= ‖ f0‖s−1 for the first differential in (24) is commonly used. Now, with a
first guess h0 based on this estimate the Euler step (11) can be performed and
corresponding parallel f -evaluations F0i = f (Y0i), i = 1, . . . , s which are part
of the next peer step (3). With these function values, a better approximation
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of (24) is at hand. Since all vectors Y0i lie on one single line the difference
quotient

∇s−1 F0 = Chs−1
0 f (s−1)

0 f0 · · · f0 + O
(
hs

0

)
(25)

still approximates only the first elementary differential in (24), but with higher
accuracy. With a first difference ∇F0 := F(Y0s) − f0 ∼= h0 f ′

0 f0 also the last
differential in (24) may be approximated by

hs−1
0 ‖( f ′

0)
s−1 f0‖ ∼= ‖∇F0‖s−1

‖ f0‖s−2 . (26)

So with the supplemented approximation for (24) a second estimate h′
0 may be

obtained which replaces the first guess if h′
0 < h0. In the latter case however,

the initial Euler step (11) has to be repeated.
This casual description lacks some practical details. First, error control

usually mixes absolute and relative error criteria by using the norm

‖u‖tol :=
⎛

⎝ 1
n

n∑

j=1

(
ui

atol + rtol|yi(t0)|
)2

⎞

⎠
1/2

, u ∈ R
n, (27)

relative to y(t0) here, with user-specified tolerances. This norm has to be com-
bined with the usual norm ‖u‖n := ( 1

n

∑n
j=1 u2

j

)1/2 in approximations like (26).
Secondly, we will use the starting procedure of Section 6 with geometrically
increasing stepsize sequence hm = σ m

starth0. So, we will in fact guess the stepsize
hs−2 with the estimate of y(s)(t0) and reduce h0 by the factor σ 2−s

start for the Euler
step. Finally, we would like the first cheap guess based on ‖ f0‖ alone to be
appropriate in many cases and use a small factor for guessing h0 in order to
avoid repetition of the Euler step.

Combining these steps leads to the following starting procedure with step-
size estimate:

1. Choose h0 := h̄0σ
2−s
start with

h̄0 := 1
10

C0
(
‖ f0‖tol(1 + ‖ f0‖2

n)
s/2−1

)1/s . (28)

2. Perform parallel Euler step (11) with function evaluations f (Y0i).
3. Compute h′

0 := h̄′
0σ

2−s
start, where according to (25), (26)

h̄′
0 := C0h0

(
h0‖∇s−1 F(Y0)‖tol + ‖∇F0‖s−1

tol ‖ f0‖2−s
n

)1/s . (29)

4. For h′
0 < h0 repeat steps 2 and 3 with h0 := h′

0 once.
5. Perform s − 2 parallel peer steps with stepsizes hm = σ m

starth0, m = 1, . . . ,

s − 2, matrices Bm = 1lvT
m from Lemma 2 and Am according to (10).

6. Continue using the original peer method with fixed B and standard stepsize
control.
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8 Numerical tests

The starting procedure was incorporated in a modified version of the
FORTRAN90 code used in [6] replacing the Runge–Kutta start. For ease
of reading we recall some implementation details.

The computation of the coefficient matrix Am corresponding to (10) in each
time step with the stepsize ratio σm is implemented with the decomposition
σ Am = A′ + (CV)(σmSm)(D−1 PV−1) in (10). The cost is O(s2) FLOPs per
processor and time step and is not much overhead if the problem dimension
n is large. The three fixed matrices CV, A′ = (

1l1lT − BCV
)
D−1 and D−1 PV−1

are precomputed. The last row eT
s D−1 PV−1 of the last matrix corresponds to a

difference quotient of order s − 1 and so,

ee := eT
s D−1 PV−1 F(Ym) ∼= σ s

s
eT

s PV−1(y′(tm, j)
)s

j=1
∼= hsσ s

s! y(s)(tm)

can be used as error estimate in the current step. In fact, for the computation
of ee the new function evaluations F(Ymi) are performed which are lost in case
of a stepsize rejection. This is different to the version used in [6], where ee
was computed from the previous values F(Ym−1,i). The error criterion mixes
absolute and relative criteria in a standard way by requiring ‖ee‖tol ≤ 1, cf.
(27). Computations were performed on one four processor node of the MARC
Opteron cluster at Marburg. Hence the full parallel potential of the 6- and
8-stage method could not be exploited.

The test problems are chosen with right-hand sides having different eval-
uation costs in order to show possible differences in parallel performance.
Two well-known test problems are modified for larger dimensions in order
to produce a visible computer load.

– BRUS2h, the Brusselator with the parameters from [2] but larger 200 × 200
grid. The diffusion constant ν = 10−5 is smaller in order to obtain a mildly
stiff problem. The dimension is n = 80000.

– PLEI1t, the Pleiades problem from [2] for 7 stars in R
2. 1000 identical

copies give dimension n = 28000.
– MBOD4h, a celestial multi-body problem with 400 objects in R

3 moving
only under the forces of gravity from an initial disk-shaped distribution.
The dimension is n = 2400.

The computational cost of the f -evaluation for the Brusselator is quite low,
∼= 10n, but the multi-body problem is rather expensive since O(n2) forces have
to be computed. A reference solution for PLEI1t is known, those for BRUS2h
and MBOD4h were computed by DOPRI5 with T OL = 10−14. Each problem
is solved with tolerances rtol = atol = T OL ∈ {10−3, 10−4, . . . , 10−12}.

Three explicit parallel peer methods with stage numbers s ∈ {4, 6, 8} are
used to solve this problem both with Runge–Kutta start and the parallel start
from Sections 3 and 6. Table 1 contains some properties of these methods,
where r is the stability abscissa with �(M(z)) < 1, z ∈ (−r, 0] ⊆ R, stepsize
increases are limited by σm ≤ σ̄ , σstart is the fixed stepsize ratio for the start and
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Fig. 2 Parallel and
Runge–Kutta start for
4-stage method
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C0 the constant in the estimates (28) and (29). The choice of C0 was optimized
by a few test runs on all three test problems. We note that only the 4- and
6-stage methods are identical with those from [6].

Each combination of methods and problems was solved for a series of
tolerances with atol = rtol = T OL ∈ {10−2, 10−3, . . . , 10−12}. ERR is the final
error in the scaled Euclidean norm

( 1
n

∑n
j=1 e2

i

)1/2.
As the first topic we investigate if the parallel start developed here can

replace the Runge–Kutta start including the estimate of the initial stepsize.
No big savings in computing time are to be expected from the parallel start
since it takes only a small fraction of the overall computation. The first three
diagrams in Figs. 2, 3, and 4 show computing times for each of the three
methods applied to all three problems. Runge–Kutta start is marked with
filled symbols and parallel start with open ones. Computing times for both
starting procedures are almost identical showing that the parallel Euler start

Fig. 3 Parallel and
Runge–Kutta start for
6-stage method

1e-012

1e-010

1e-008

1e-006

0.0001

0.01

1

1 10 100

lg
(E

R
R

)

time

bruss-P
bruss-R
plei1t-P
plei1t-R

mbod4h-P
mbod4h-R



Numer Algor (2010) 53:363–381 379

Fig. 4 Parallel and
Runge–Kutta start
for 8-stage method
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with subsequent error elimination works efficiently. Run time differences are
probably rather due to variations in the starting stepsize. In order to show
that explicit parallel peer methods are also competitive we compare with
the sequential Runge–Kutta code DOPRI5 having 6 (+1) stages and order 5,
marked by crosses in the diagrams of Figs. 5, 6, and 7. For the Brusselator the
parallel 4-stage method outperforms DOPRI for almost all tolerances, while
the 6-stage method leads for small final errors ERR ≤ 10−8. For the many
copies of the Pleiades problem the picture is similar, however, the run times
of the 4-stage peer method and DOPRI get nearer for sharp tolerances. Still,
the solutions of method epp4 are more accurate. Here, the 8-stage peer method
is the most efficient one for ERR ≤ 10−5. The error scale for the multi-body
problem in Figs. 7 and 8 is different from the others since this ODE is quite
sensitive to perturbations, all observed errors ERR are magnitudes larger
than T OL. Here with increasing order the different peer methods outperform

Fig. 5 Run times for problem
BRUS2h
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Fig. 6 Run times for problem
PLEI1t

1e-012

1e-010

1e-008

1e-006

0.0001

0.01

1

1 10 100

lg
(E

R
R

)

time

epp4-P
epp6-P
epp8-P
DoPri5

Fig. 7 Peer methods and
DOPRI5 for problem
MBOD4h
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Fig. 8 Peer methods for
problem MBOD4h on 1
and 4 processors
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each other and DOPRI5 at different tolerances. Again, the peer methods epp4
and epp6 produce much more accurate solutions than DOPRI5 for the same
tolerance. The problem MBOD4h is also the most interesting one with respect
to parallel performance, since it has a rather expensive right hand side due
to the many forces which have to be computed. For this reason Fig. 8 also
shows the run times of the three peer methods on one single processor marked
by filled symbols. For this expensive problem the F-evaluations dominate the
cost and the 4- and 8-stage methods obtain an almost optimal speed-up near 4.
We note that the speed-up of the 6 and 8-stage methods may even be larger if
more than 4 processors are available.

9 Conclusions

We presented a parallel starting method for the class of explicit parallel peer
methods which uses a parallel Euler start of low order. By variation of some
method coefficients in a few steps afterwards the order is efficiently raised to
s again being also the number of stages. This error elimination strategy was
developed from a polynomial representation of the method being valid only
for linear autonomous problems. Still it was proven to work also for non-
linear problems both in theory an practice. The order increase after the Euler
start by using special parameter sets is a test case for general order control of
explicit parallel peer methods using a fixed number of processors. Realistic
numerical experiments demonstrate the parallel efficiency of explicit peer
methods compared to standard ODE codes.
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