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Abstract We extend Clenshaw–Curtis quadrature to the square in a nontenso-
rial way, by using Sloan’s hyperinterpolation theory and two families of points
recently studied in the framework of bivariate (hyper)interpolation, namely
the Morrow–Patterson–Xu points and the Padua points. The construction is
an application of a general approach to product-type cubature, where we
prove also a relevant stability theorem. The resulting cubature formulas turn
out to be competitive on nonentire integrands with tensor-product Clenshaw–
Curtis and Gauss–Legendre formulas, and even with the few known minimal
formulas.
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1 Introduction

One of the most popular one-dimensional quadrature tools is the Clenshaw–
Curtis formula [15]. Recently, it has been object of a renewed interest. Its
properties have been revisited and further investigated, in order to explain
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rigorously the fact that its performance is very often comparable with that
of Gauss–Legendre quadrature [19], despite the theoretically lower degree
of precision; see [43, 46]. As known, one of the strengths of Clenshaw–Curtis
formula is that its nodes are known explicitly and that it can be implemented
quite efficiently by the FFT algorithm [43], see also the recent paper [45]
concerning fast computation of the weights. Once the weights are known, its
tensorial extension is straightforward.

In this paper we give an answer to the following question: is it possible to
extend the construction of Clenshaw–Curtis formulas to the square, with a gen-
eral weight function, in a nontensorial fashion? Extension of Clenshaw–Curtis
quadrature to general one-dimensional weight functions has been studied since
the 1970s, for example in the framework of the so-called “product integration
rules”; see e.g. [6, 21, 23, 32, 37, 38] and references therein.

The answer is positive, and rests on the concept of hyperinterpolation,
introduced by Sloan [36]. Indeed, Clenshaw–Curtis quadrature ultimately con-
sists of integrating the truncated Fourier–Chebyshev expansion of the given
function, where the Fourier coefficients are computed by the Chebyshev–
Gauss–Lobatto formula. Hyperinterpolation gives an extension of discretized
Fourier expansion with respect to orthogonal polynomials over general multi-
dimensional regions (or lower-dimensional manifolds), and integration of any
hyperinterpolant provides a generalized Clenshaw–Curtis cubature formula.
Even in the case of tensor-product domains, where tensor-product orthogonal
expansions can be used (see, e.g., [24, 42]), hyperinterpolation is intrinsically
nontensorial and thus generates nontensorial cubature formulas. As known,
there are also other ways of constructing useful nontensorial cubature formu-
las, like the so-called sparse grids introduced by Smolyak in the 1960s (cf., e.g.,
[7, 28, 30, 31, 40] and references therein). In the present bidimensional context
numerical tests and comparisons with available implementations (like, e.g.,
[8]), have shown that nontensorial formulas generated via (hyper)interpolation
seem more effective.

The paper is organized as follows. In the next section, we briefly recall the
method of polynomial hyperinterpolation over general regions and a related
convergence result concerning generalized product integration. Moreover, we
prove a theorem on the stability of the relevant product integration formulas.
Then, we apply such results to the construction of nontensorial Clenshaw–
Curtis cubature formulas over the square, using two families of nodes recently
studied in the literature on polynomial interpolation and hyperinterpola-
tion, namely the “Morrow–Patterson–Xu points” (cf. [2, 9, 11, 27, 44]) and
the “Padua points” (cf. [3, 5, 10, 12, 14]). Finally, we compare the perfor-
mance of the resulting formulas (implemented in Matlab) with tensor-product
Clenshaw–Curtis and Gauss–Legendre formulas on several test functions.
The numerical results show that such nontensorial Clenshaw–Curtis cubature
formulas are more accurate than the tensorial version (at close cardinalities of
the cubature point sets). They appear also more accurate than available Matlab
implementations of nontensorial formulas based on sparse grids. Moreover,
they are competitive with tensor-product Gauss–Legendre cubature and even
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with the few known minimal cubature formulas, on integrands which are not
“too regular” (nonentire).

2 From hyperinterpolation to stable cubature

Polynomial hyperinterpolation of multivariate continuous functions over com-
pact domains or manifolds, originally introduced by Sloan [36], is a discretized
orthogonal projection on polynomial subspaces, which provides an approxima-
tion method more general than polynomial interpolation. Though the idea is
very general and flexible, and the problem in some sense much easier than
multivariate polynomial interpolation, till now it has been used effectively
in few cases: originally for the sphere [34, 39], and more recently the square
[9, 11], the disk [22], and the cube [13].

Indeed, hyperinterpolation requires two basic ingredients, i.e. the explicit
knowledge of a family of orthogonal polynomials w.r.t. any measure μ on the
domain, and a “good” cubature formula for that measure (positive weights and
high algebraic degree of exactness). It is always convergent in the L2

dμ
norm,

and it becomes an effective approximation tool in the uniform norm when its
norm as a projection operator (the so-called Lebesgue constant) grows slowly
(cf. [11, 22, 34, 39]).

Now we briefly summarize the structure of hyperinterpolation. Let � ⊂ R
d

be a compact subset (or lower dimensional manifold), and μ a positive and
finite measure on �. We focus here our attention on absolutely continuous
measures, i.e. measures with an nonnegative integrable density with respect
to the standard Lebesgue (or surface) measure. The results below could be
extended, with some restrictions, to other measures, like for example discrete
measures.

For every function f ∈ C(�) the μ-orthogonal projection of f on �d
n(�)

(the subspace of d-variate polynomials of total degree ≤ n restricted to �) is

Sn f (x) =
∑

|α|≤n

cα pα(x) , cα :=
∫

�

f (x) pα(x) dμ , (1)

where x = (x1, x2, . . . , xd) is a d-dimensional point, α is a d-index of length |α|
α = (α1, . . . , αd) ∈ N

d , |α| := α1 + . . . + αd , (2)

and the set of polynomials {pα , 0 ≤ |α| ≤ n} is any μ-orthonormal basis of
�d

n(�), with pα of total degree |α| (concerning the theory of multivariate
orthogonal polynomials, we refer the reader to the recent monograph by
Dunkl and Xu [18]). Clearly, Sn p = p for every p ∈ �d

n(�).
Now, given a cubature formula for μ with N = N(n) nodes ξ ∈ Xn ⊂ �,

ξ = (ξ1, ξ2, . . . , ξd), and positive weights {wξ }, which is exact for polynomials
of degree ≤ 2n,

∫

�

p(x) dμ =
∑

ξ∈Xn

wξ p(ξ) ∀p ∈ �d
2n(�) , (3)
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we obtain from (1) the polynomial approximation of degree n by the discretized
Fourier coefficients {c̃α}

f (x) ≈ Ln f (x) :=
∑

|α|≤n

c̃α pα(x) , c̃α :=
∑

ξ∈Xn

wξ f (ξ) pα(ξ) , (4)

where c̃α = cα and thus Ln p = Sn p = p for every p ∈ �d
n(�). It is known that

necessarily N ≥ dim
(
�d

n(�)
)
, and that (4) is a polynomial interpolation at Xn

whenever the equality holds [36]. As for the convergence of hyperinterpola-
tion, we have the following basic estimate, valid for every f ∈ C(�)

‖ f − Ln f‖L2
dμ

(�) ≤ 2
√

μ(�) En( f ) → 0 , n → ∞ , (5)

where En( f ) := inf
{‖ f − p‖∞ , p ∈ �d

n(�)
}
. The convergence rate can then

be estimated by a multivariate version of Jackson theorem [33], which shows
that En( f ) = O(n−p) for f ∈ Cp(�), p ∈ R

+.
Moreover, hyperinterpolation allows to generalize product integration rules

(cf., e.g., [38]) in the following way, as discussed in [36, pp. 245–246]. Given
h ∈ L2

dμ
(�) and f ∈ C(�), we can approximate the integral of hf in dμ as

∫

�

h(x) f (x) dμ ≈
∫

�

h(x)Ln f (x) dμ

=
∑

|α|≤n

c̃α mα =
∑

ξ∈Xn

λξ f (ξ) , (6)

where the generalized “orthogonal moments” {mα} and the cubature weights
{λξ } are defined by

mα :=
∫

�

h(x) pα(x) dμ , λξ := wξ

∑

|α|≤n

pα(ξ) mα . (7)

Observe that the cubature formula (6) is exact for every f ∈ �d
n(�), and that

the {mα} are just the Fourier coefficients of h with respect to the μ-orthonormal
basis {pα}.

Application of the Cauchy–Schwarz inequality and (5) lead immediately to
the estimate

∣∣∣∣
∫

�

h(x) f (x) dμ −
∑

ξ∈Xn

λξ f (ξ)

∣∣∣∣ ≤ ‖h‖L2
dμ

(�) 2
√

μ(�) En( f ) , (8)

which ensures convergence for every f ∈ C(�). Observe that in general the
weights {λξ } are not all positive. Nevertheless, applying the Banach–Steinhaus
theorem (cf. [35]) to the sequence of cubature functionals, as in the proof of
the classical Polya–Steklov theorem (cf. [20]), we get that their norms remain
bounded as n → ∞

∃K > 0 :
∑

ξ∈Xn

∣∣λξ

∣∣ ≤ K , (9)
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ensuring stability of the cubature formula (6). The stability formula (9) can
be made more precise, in the form of a limit theorem. We state and prove
the result, since it is quite general and apparently is not reported in the liter-
ature on hyperinterpolation. It is relevant to the construction of nontensorial
Clenshaw–Curtis cubature in the next section.

Theorem 1 Let all the assumptions for the construction of the cubature formula
(6) be satisfied, and in particular let be h ∈ L2

dμ
(�). Then the sum of the absolute

values of the cubature weights has a finite limit

lim
n→∞

∑

ξ∈Xn

∣∣λξ

∣∣ =
∫

�

|h(x)| dμ . (10)

Proof First, observe that in view of (7) and (1)

∑

ξ∈Xn

∣∣λξ

∣∣ =
∑

ξ∈Xn

wξ |Snh(ξ)| ,

since the {mα} are the Fourier coefficients of h and the weights {wξ } are positive
by assumption. Fix ε > 0 and let πε be a polynomial such that ‖πε − h‖L2

dμ
(�) ≤

ε, which exists since �d(�) is dense in L2
dμ

(�) (cf. [35]). Consider now the
inequality

∣∣∣∣
∑

ξ∈Xn

∣∣λξ

∣∣ −
∫

�

|h(x)| dμ

∣∣∣∣

≤
∣∣∣∣
∑

ξ∈Xn

wξ (|Snh(ξ)| − |πε(ξ)|)
∣∣∣∣

+
∣∣∣∣
∑

ξ∈Xn

wξ |πε(ξ)| −
∫

�

|πε(x)| dμ

∣∣∣∣

+
∣∣∣∣
∫

�

|πε(x)| dμ −
∫

�

|h(x)| dμ

∣∣∣∣ , (11)

and notice that the second summand on the right-hand side is infinitesimal as
n → ∞, since the cubature formula (3) is convergent on continuous functions,
being algebraic and with positive weights (by a simple generalization of Polya-
Steklov theorem, cf. e.g. [20] for the basic one-dimensional version). As for the
third summand in (11), by the Cauchy–Schwarz inequality in L2

dμ
(�) we have

∣∣∣∣
∫

�

|πε(x)| dμ −
∫

�

|h(x)| dμ

∣∣∣∣ ≤
∫

�

|πε(x) − h(x)| dμ

≤ √
μ(�) ‖πε−h‖L2

dμ
(�) ≤

√
μ(�) ε .
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Thus we restrict the attention to the first summand in (11) and write the
chain of inequalities∣∣∣∣

∑

ξ∈Xn

wξ (|Snh(ξ)| − |πε(ξ)|)
∣∣∣∣

≤
∑

ξ∈Xn

wξ |Snh(ξ) − πε(ξ)|

≤ √
μ(�)

( ∑

ξ∈Xn

wξ (Snh(ξ) − πε(ξ))
2
)1/2

= √
μ(�) ‖Snh − πε‖L2

dμ
(�)

≤ √
μ(�)

(
‖Snh − h‖L2

dμ
(�) + ‖h − πε‖L2

dμ
(�)

)

≤ √
μ(�)

(
‖Snh − h‖L2

dμ
(�) + ε

)
, n > deg(πε) ,

where the second is an application of Cauchy–Schwarz inequality to the
discrete inner product defined by 〈 f, g〉 := ∑

ξ∈Xn
wξ f (ξ)g(ξ), and the equality

stems from exactness of (3) in �d
2n(�). The proof is complete, since the first

summand on the right-hand side is infinitesimal as n → ∞ (recall that Snh is a
partial sum of a Fourier orthogonal series for h). ��

3 Nontensorial Clenshaw–Curtis cubature

An interesting and immediate consequence of the quite general cubature
formula (6) is that when μ is an absolutely continuous measure, namely

dμ = w(x) dx , w ∈ L1
+(�) , (12)

for which are known a family of orthogonal polynomials and an algebraic
cubature formula with degree of exactness at least 2n, we can obtain a
convergent and stable algebraic cubature formula with degree of exactness at
least n for any integrable weight function λ

∫

�

λ(x) f (x) dx ≈
∑

ξ∈Xn

λξ f (ξ) , (13)

provided that

h := λ

w
∈ L2

dμ(�) , or equivalently
λ2

w
∈ L1(�) . (14)

The stability result (10) becomes in this case

lim
n→∞

∑

ξ∈Xn

∣∣λξ

∣∣ =
∫

�

|λ(x)| dx . (15)
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The classical Clenshaw–Curtis quadrature falls just in this frame, where

� = [−1, 1], w(x1) = 1/

√
1 − x2

1, λ ≡ 1, the orthogonal polynomials are the
Chebyshev polynomials of the first kind and the underlying quadrature for-
mula (3) is the Chebyshev–Gauss–Lobatto formula. In this case there is an
explicit formula for the orthogonal moments (7), and it is known that the
weights {λξ } are all positive; cf. [24, 43]. Several one-dimensional general-
izations of Clenshaw–Curtis quadrature have been studied, where different
weight functions λ appear; e.g. [6, 21, 23, 32, 37] and references therein. For
these, the limit formula (10) was proved even for λ ∈ Lp(−1, 1), p > 1, cf.
[37, 38].

In order to extend Clenshaw–Curtis quadrature to cubature over the square
in a nontensorial way, we consider hyperinterpolation with respect to the
product Chebyshev orthonormal basis (cf. [18])

x = (x1, x2) ∈ � = (−1, 1)2 , w(x) = 1

π2

dx1 dx2√
1 − x2

1

√
1 − x2

2

,

pα(x) = T̂α1(x1) T̂α2(x2) , α = (α1, α2) , 0 ≤ α1 + α2 ≤ n , (16)

where T̂k(t), t ∈ [−1, 1], is the normalized Chebyshev polynomial of degree
k, that is T̂0(t) = 1, T̂k(t) = √

2 cos (k arccos t). The cardinality of the basis is
dim

(
�2

n(�)
) = (n + 1)(n + 2)/2.

Nontensorial Clenshaw–Curtis cubature is obtained simply by taking λ ≡ 1

in (13). Observe that h(x) = π2
√

1 − x2
1

√
1 − x2

2 is continuous and thus (14)
trivially holds. The convergence estimate (8) becomes
∣∣∣∣
∫

[−1,1]2
f (x) dx −

∑

ξ∈Xn

λξ f (ξ)

∣∣∣∣ ≤ 2

(
π

∫ 1

−1

√
1 − t2 dt

)
En( f ) = π2 En( f ) ,

(17)

and the limit relation (10) reads

lim
n→∞

∑

ξ∈Xn

∣∣λξ

∣∣ = 4 . (18)

Moreover, since the basis is of product type, there is an explicit formula for the
orthogonal moments in (7)

mα = μα1 μα2 , where μk :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2 k = 0

2
√

2

1 − k2
k even, k �= 0

0 k odd

(19)

Notice that the moments are nonzero only for pairs of even degrees (α1, α2).
The key point consists clearly in finding suitable algebraic cubature formulas

as in (3) for the product Chebyshev measure, with a low number of nodes. We
recall that the number of nodes of a minimal formula with degree of exactness
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2n + 1, according to a general result by Möller [26] on centrally symmetric
weight functions, is

Nmin := dim
(
�2

n+1(�)
) +

[
n + 1

2

]
= (n + 2)(n + 3)

2
+

[
n + 1

2

]
. (20)

To this respect, two families of Chebyshev-like points in the square are
interesting, and we discuss them below. The first family is given by the
“Morrow–Patterson–Xu” points, which have been studied in the contexts of
minimal cubature [1, 17, 27, 44], interpolation [2, 44] and hyperinterpolation
[9, 11, 13]. The second family, termed the “Padua points”, has been recently
studied in the interpolation context [3, 5, 10, 12, 14]. In what follows we use
the following notation for the set of ν + 1 one-dimensional Chebyshev–Gauss–
Lobatto nodes

Cν+1 := cos

(
jπ
ν

)
, j = 0, . . . , ν , (21)

and we denote by Ceven
ν+1 , Codd

ν+1 its restrictions to even and odd indices.

3.1 The Morrow–Patterson–Xu points

Such points give an algebraic cubature formula for the product Chebyshev
measure on the square with degree of exactness 2n + 1, which is minimal
[cf. (20)] for odd n, and almost minimal (up to 1 node) for even n. We have
termed them after Morrow and Patterson [27], who gave originally the explicit
formula in the odd case, and Xu [44], who obtained the explicit formula for
even instances (“even” and “odd” are interchanged here with respect the usual
setting, which refers to degree of exactness 2n − 1). Formulas of this type,
even in a more general setting, have been studied by various other authors,
for example in [1, 17].

The MPX (Morrow–Patterson–Xu) points are defined as union of the
bidimensional Chebyshev-like grids

• Case n odd

Xn = XMPX
n :=

(
Ceven

n+2 × Codd
n+2

)
∪

(
Codd

n+2 × Ceven
n+2

)
, (22)

with

N := card(Xn) = (n + 1)(n + 3)

2
.

The weights of the corresponding minimal cubature formula are, for ξ ∈
Xn, wξ = (n + 1)−2 for the boundary points, and wξ = 2(n + 1)−2 for the
interior points.

• Case n even

Xn = (
Ceven

n+2 × Ceven
n+2

) ∪
(

Codd
n+2 × Codd

n+2

)
, (23)
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with

N = (n + 2)2

2
.

The weights of the corresponding almost minimal cubature formula are,
for ξ ∈ Xn, wξ = (n + 1)−2/2 for ξ = (1, 1) and ξ = (−1, −1) (two corner
points), wξ = (n + 1)−2 for the other boundary points and wξ = 2(n + 1)−2

for the interior points.

These are good points for both, interpolation of degree n + 1 (though in
a subspace of total degree polynomials, see [44]), and hyperinterpolation of
degree n which is the present framework. In both applications it has been
proved that the Lebesgue constant (in the uniform norm) has optimal order
of growth O

(
(log n)2

)
; cf. [4, 11]. Notice that in the case of hyperinterpo-

lation the corresponding polynomial of degree n is not interpolant, since
N > dim

(
�2

n(�)
)
.

3.2 The Padua points

Such points give an algebraic cubature formula for the product Chebyshev
measure on the square which is exact on all polynomials of degree 2n + 2 that
are orthogonal to T2n+2(x1) in the Chebyshev measure, and thus in particular
on all polynomials of degree 2n + 1. It is not minimal, but we can term it
“near minimal” because its cardinality has the same asymptotic growth of the
minimal case [cf. (20)], that is ∼n2/2, and the additional points are “only”

[n+3
2

]
.

The Padua points are defined as union of the bidimensional Chebyshev-
like grids

Xn = XPad
n :=

(
Codd

n+2 × Ceven
n+3

)
∪

(
Ceven

n+2 × Codd
n+3

)
, (24)

with

N := card(Xn) = dim
(
�2

n+1(�)
) = (n + 2)(n + 3)

2
.

The weights of the corresponding near minimal cubature formula are, for
ξ ∈ Xn,

wξ = 1

(n + 2)(n + 3)
·

⎧
⎪⎪⎨

⎪⎪⎩

1/2 if ξ is a vertex point

1 if ξ is an edge point

2 if ξ is an interior point

(25)

Since N > dim
(
�2

n(�)
)
, the hyperinterpolation polynomial (4) is not

interpolant.
These points are also good points for polynomial interpolation (of degree

n + 1). They have been introduced experimentally in [10], and then studied
from the theoretical [3, 5] and the computational [12, 14] point of view. In fact,
the Padua points are the first known example of non tensor-product optimal
interpolation in two variables, since they are unisolvent and their Lebesgue
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constant has optimal order of growth O
(
(log n)2

)
. It is also worth recalling that

there are other three families of Padua points, obtained from (4) by successive
90-degree rotations of the square. We refer to [12] for a full description.

One noteworthy feature of the Padua points is that they lie on an algebraic
curve, the so-called “generating” curve, namely Tn+1(x1) + Tn+2(x2) = 0 for
the family (24) or γn+1(t) := [− cos ((n + 2)t), − cos ((n + 1)t)], t ∈ [0, π ] in
parametric form, and that they correspond to self-intersections and boundary
contacts of this curve. The cubature formula above for the bivariate Chebyshev
measure stems just from quadrature along the generating curve, and has been
the key to obtain an explicit form of the fundamental Lagrange polynomials
[3]. An important fact is that such cubature is exact not only in �2

2n+1(�),
but also for all bivariate polynomials of degree 2n + 2 which are μ-orthogonal
to T2n+2(x1), and in particular on all polynomials of the form pq with p, q ∈
�2

n+1(�) and either p or q are μ-orthogonal to Tn+1(x1).

3.2.1 Improving exactness at the Padua points

A consequence of the extended exactness property just described is that
hyperinterpolation at the Padua points can be made exact in a bigger space
than �2

n(�), namely in

Vn+1 := {
p ∈ �2

n+1(�) : p ⊥ Tn+1(x1)
} = (span{Tn+1(x1)})⊥ , (26)

or in other words the space of bivariate polynomials of degree n + 1 whose
representation in the Chebyshev orthogonal basis does not contain Tn+1(x1).
The new hyperinterpolation polynomial is

LVn+1 f (x) :=
∑

|α|≤n+1

c̃α pα(x) , (27)

where the discretized Fourier–Chebyshev coefficients {c̃α} are exactly as in (4),
the new nontensorial Clenshaw–Curtis cubature formula becomes

∫

[−1,1]2
f (x) dx ≈

∑

|α|≤n+1

c̃α mα =
∑

ξ∈Xn

λ̂ξ f (ξ) ,

λ̂ξ := wξ

∑

|α|≤n+1

pα(ξ) mα , (28)

cf. (16), (19), (24) and (25), and the convergence estimate (17) becomes
∣∣∣∣
∫

[−1,1]2
f (x) dx −

∑

ξ∈Xn

λ̂ξ f (ξ)

∣∣∣∣ ≤ π2 EVn+1( f ) , (29)

where EVn+1( f ) := inf {‖ f − p‖∞ , p ∈ Vn+1}. Moreover, it is easy to show
that (18) holds with λ̂ξ replacing λξ .

A further improvement can be obtained by integrating the interpolation
(instead of an hyperinterpolation) polynomial at the Padua points (24). This
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procedure is well located in the present framework, since it has been shown in
[12] that the interpolation polynomial can be written as

Ln+1 f (x) :=
∑

|α|≤n+1

c�
α pα(x) , (30)

where only a little correction is needed on one of the hyperinterpolation
coefficients (4)

c�
α = c̃α α �= (n + 1, 0) , c�

(n+1,0) = 1

2
c̃(n+1,0) . (31)

By unisolvence of the Padua points, Ln+1 p = p for every p ∈ �2
n+1(�). More-

over, in [5] it has been proved that there exists a constant cp > 0 such that for
every f ∈ C(�)

‖ f − Ln+1 f‖Lp
dμ

(�) ≤ cp En+1( f ) , 1 ≤ p < ∞ . (32)

We can then mimic all the procedure in Section 2 concerning construction of
generalized product integration rules, and in particular for h = 1/w and w the
bivariate Chebyshev density in (16), we get another nontensorial Clenshaw–
Curtis cubature formula

∫

[−1,1]2
f (x) dx ≈

∑

|α|≤n+1

c�
α mα =

∑

ξ∈Xn

λ�
ξ f (ξ) ,

λ�
ξ := wξ

∑

|α|≤n+1

pα(ξ) m�
α , m�

α = mα α �= (n + 1, 0) , m�
(n+1,0) = 1

2
m(n+1,0) ,

(33)

cf. (19), (24) and (25), along with the convergence estimate
∣∣∣∣
∫

[−1,1]2
f (x) dx −

∑

ξ∈Xn

λ�
ξ f (ξ)

∣∣∣∣ ≤ c2
π2

2
En+1( f ) . (34)

Again, (18) holds with λ�
ξ replacing λξ . Notice that at degree of exactness n

(replace n by n − 1 everywhere in the construction above), this formula uses
card(Xn−1) = (n + 1)(n + 2)/2 Padua points, which are less than those used by
nontensorial Clenshaw–Curtis cubature at the Morrow–Patterson–Xu points
[cf. (22) and (23)].

3.3 Implementation and numerical results

In order to summarize, we can say that we have constructed two main
nontensorial bivariate versions of Clenshaw–Curtis quadrature with degree of
exactness n, by integrating the hyperinterpolation polynomial of degree n at
N = (n + 1)(n + 3)/2 (n odd) or N = (n + 2)2/2 (n even) Morrow–Patterson–
Xu points

∫

[−1,1]2
Ln f (x) dx =

∑

|α|≤n

c̃α mα =
∑

ξ∈XMPX
n

λξ f (ξ) , (35)
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or by integrating the interpolation polynomial of degree n at N = (n + 1)(n +
2)/2 Padua points

∫

[−1,1]2
Ln f (x) dx =

∑

|α|≤n

c�
α mα =

∑

ξ∈XPad
n−1

λ�
ξ f (ξ) , (36)

(replace n by n − 1 everywhere in the construction of Section 3.2.1).
There are (at least) two ways to implement these formulas, the one based

on the coefficients of the underlying (hyper)interpolation polynomial, and that
based on the weights. Both rely on knowledge of the orthogonal moments,
for which the explicit formula (19) is available. In what follows, we assume
that some ordering of the cubature points and of the bi-indices α (i.e. of the
polynomial basis) have been fixed.

Concerning computation of the coefficients, we can resort to the matrix
formulation adopted in [9, 12, 14], which takes advantage of the optimized
linear algebra subroutines used for example by Matlab [25]. The main differ-
ence with respect to that formulation is that here only pairs of even indices are
needed, in view of (19).

Given a vector S = (s1, . . . , sN) ∈ [−1, 1]N , define the rectangular
Chebyshev matrix

�even
n (S) :=

⎡

⎢⎢⎢⎣

T̂0(s1) · · · T̂0(sN)

T̂2(s1) · · · T̂2(sN)
... · · · ...

T̂pn(s1) · · · T̂pn(sN)

⎤

⎥⎥⎥⎦ ∈ R([ n
2 ]+1)×N , pn := 2

[n
2

]
, (37)

and consider the vectors of the one-dimensional projections of the cubature
points

Zn,i := (ξi)ξ∈Zn
∈ R

N , i = 1, 2 , (38)

where

Zn = XMPX
n or Zn = XPad

n−1 , (39)

and the diagonal matrix

D( f ) := diag
([wξ f (ξ), ξ ∈ Zn]

) ∈ R
N×N . (40)

It is easy to check that the required coefficients correspond to the matrix

B0( f ) :=

⎡

⎢⎢⎢⎢⎢⎣

b(0,0) b(0,2) · · · · · · b(0,pn)

b(2,0) b(2,2) · · · b(2,pn−2) 0
...

... . .
.

. .
. ...

b(pn−2,0) b(pn−2,2) 0 · · · 0
b(pn,0) 0 · · · 0 0

⎤

⎥⎥⎥⎥⎥⎦
∈ R([ n

2 ]+1)×([ n
2 ]+1) , (41)

which is the upper-left triangular part of the matrix product

B( f ) := �1 D( f )�t
2 , �i := �even

n (Zn,i) , (42)
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cf. (37), where in the case of the Padua points b(pn,0) has to be substituted by
b(pn,0)/2 for n even. It is worth stressing that the matrix product by the diagonal
matrix, which corresponds to a scaling of rows or columns, can be conveniently
accelerated by using the sparse format in Matlab [25].

Observe that also the moments (19) can be computed by a matrix formula-
tion, as the matrix

M0 :=

⎡

⎢⎢⎢⎢⎢⎣

m(0,0) m(0,2) · · · · · · m(0,pn)

m(2,0) m(2,2) · · · m(2,pn−2) 0
...

... . .
.

. .
. ...

m(pn−2,0) m(pn−2,2) 0 · · · 0
m(pn,0) 0 · · · 0 0

⎤

⎥⎥⎥⎥⎥⎦
∈ R([ n

2 ]+1)×([ n
2 ]+1) , (43)

which is the upper-left triangular part of

M := (μeven)t μeven , μeven := (μ0, μ2, . . . , μpn) ∈ R
[ n

2 ]+1 . (44)

Concerning computation of the weights, a matrix formulation is still possi-
ble. Indeed, it is not difficult to show that the vector

(
diagonal of �t

1 M0 �2
) ∈ R

N , (45)

cf. (42)-(44), contains exactly the values that multiplied by the wξ give the
relevant weights λξ and λ�

ξ . Again, in the case of the Padua points m(pn,0) has
to be substituted by m(pn,0)/2 for n even.

The theoretical complexity of the bulks in computing the coefficients (42)
and the weights (44) is of the order of n4/4 flops. However, the use of optimized
linear algebra subroutines makes the matrix formulation very effective. A
first Matlab implementation of nontensorial Clenshaw–Curtis cubature by
such a formulation can be found in [41]. A faster implementation based on
the bivariate FCT (fast cosine transform) seems also possible, by exploiting
the fact that both the families of cubature points are union of subgrids of a
Chebyshev grid, and will be object of future work.

An important observation is that both the nontensorial Clenshaw–Curtis
formulas above are not positive, i.e. some of the weights can be negative.
On the other hand, we have the limit relation (18) which ensures, at least
asymptotically, an almost optimal stability. In order to appreciate the initial
behavior of the formula, in Table 1 we have reported the distance from the
limit (the area of the square) for the MPX and the Padua points at a sequence
of degrees. It is clear that the negative weights are few and of small size, and
that the formulas are quite stable already at low degrees (in particular, the
MPX weights at odd degrees turn out to be all positive).

Table 1 Distance of the sum of the weights absolute values from the area of the square for
nontensorial Clenshaw–Curtis cubature at the Morrow–Patterson–Xu and Padua points

n 5 10 15 20 25 30 35 40

MPX pts 4.4E-16 2.3E-3 0.0 2.3E-4 8.9E-16 5.5E-5 5.3E-15 2.0E-5
Padua pts 4.1E-2 2.5E-3 8.9E-4 2.4E-4 1.4E-4 5.7E-5 4.0E-5 2.0E-5
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Fig. 1 Relative cubature
errors versus the number of
cubature points (CC
Clenshaw–Curtis, GL
Gauss–Legendre, MPX
Morrow–Patterson–Xu, OS
Omelyan–Solovyan) for the
three test functions:
f (x) = (x1 + x2)

20 (top),
f (x) = exp (x1 + x2) (center),
f (x) = exp (−|x|2) (bottom);
the integration domain is
[−1, 1]2, the integrals up to
machine precision are,
respectively
18157.16017316017,
5.524391382167263 and
2.230985141404135
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In order to test the accuracy of nontensorial Clenshaw–Curtis cubature over
the square, we have considered comparisons with the tensor-product versions
of Clenshaw–Curtis (CC) and Gauss–Legendre (GL) quadrature formulas on
some test functions. Such functions are the bivariate analogous to those used
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Fig. 2 Relative cubature
errors versus the number of
cubature points (CC
Clenshaw–Curtis, GL
Gauss–Legendre, MPX
Morrow–Patterson–Xu, OS
Omelyan–Solovyan) for the
three test functions:
f (x) = 1/(1 + 16|x|2) (top),
f (x) = exp (−1/|x|2) (center),
f (x) = |x|3 (bottom); the
integration domain is [−1, 1]2,
the integrals up to machine
precision are, respectively
0.597388947274307,
0.853358758654305 and
2.508723139534059 0 100 200 300 400 500 600
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by L.N. Trefethen in [43] to compare the univariate CC and GL formulas
at the same interpolation degree (i.e., at the same number of quadrature
points). They are six, with diverse regularity, namely three entire functions
(i.e., analytic in the whole C

2: a polynomial, an exponential and a Gaussian),
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Table 2 Relative errors of minimal formulas (Omelyan–Solovyan) and of nontensorial CC
cubature at the Padua points, at two sequences of cardinalities (in parentheses: the theoretical
algebraic degree of exactness)

Number of OS pts. 44 (15) 56 (17) 68 (19) 81 (21) 100 (23)

Number of Padua pts. 45 (8) 55 (9) 66 (10) 78 (11) 81 (12)

EOS 5.1E-2 1.5E-4 1.9E-2 2.6E-2 1.2E-2
f (x) = 1/(1 + 16|x|2)

EPad 5.2E-3 4.4E-3 8.8E-4 1.9E-3 8.2E-4
EOS 6.4E-3 2.4E-3 3.3E-4 6.2E-4 8.4E-4

f (x) = exp (−1/|x|2)
EPad 2.8E-4 3.2E-4 1.8E-4 1.3E-4 1.1E-5
EOS 2.1E-4 1.2E-5 5.4E-5 8.1E-5 3.2E-5

f (x) = |x|3
EPad 3.3E-5 3.2E-6 1.7E-6 9.0E-6 1.9E-6

one analytic nonentire (a bivariate analogous to Runge’s function), one C∞
nonanalytic and one C2.

Here the comparisons have been made plotting the relative cubature
error versus the number of cubature points, which is more meaningful than
comparing versus the underlying (hyper)interpolation degree, since different
polynomial spaces are involved. On the other hand, the number of function
evaluations is typically the important parameter in the frame of numerical
integration.

The results are collected in Figs. 1 (the first three test functions) and 2
(the other three). For tensor-product cubature formulas, the sequence of car-
dinalities N of the point sets corresponds to underlying (hyper)interpolation
degrees n = 4, 5, . . . , 23, and for the nontensorial CC formulas the sequence
is n = 5, 6, . . . , 30. We recall that N = (n + 1)2 for tensor-product formulas,
whereas see (35)–(36) for the nontensorial CC formulas.

Moreover, we have also compared with the “best on the market” known
algebraic formulas, namely the minimal ones recently numerically determined
by Omelyan and Solovyan in [29], which have improved previous results [16].
Such formulas correspond to algebraic degree of exactness 15, 17, 19, 21, 23
with corresponding cardinalities N = 44, 56, 68, 81, 100. Computational dif-
ficulties in solving the relevant nonlinear systems have till now prevented
the construction of high order formulas. On the contrary, tensor-product CC
and GL, as well as nontensorial CC formulas, can be easily obtained at high
degrees.

Table 3 Relative errors of Sparse-Grids nontensorial cubature formulas based on univariate CC
rules, at a sequence of cardinalities

Number of pts. 29 65 145 321 705

f (x) = exp (−|x|2) 4.1E-3 1.8E-4 2.5E-6 7.0E-10 5.0E-14
f (x) = 1/(1 + 16|x|2) 1.4E+00 7.0E-1 2.3E-1 4.7E-2 6.0E-3
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Table 4 Relative errors of Sparse-Grids nontensorial cubature formulas based on univariate GL
rules, at a sequence of cardinalities

Number of pts. 22 75 224 613

f (x) = exp (−|x|2) 2.3E-3 1.1E-5 1.1E-10 2.6E-15
f (x) = 1/(1 + 16|x|2) 1.2E+00 4.0E-1 7.0E-2 8.7E-3

It is interesting to notice that, differently from the one-dimensional case,
tensor-product CC is not competitive with tensor-product GL. Moreover,
nontensorial CC formulas are more accurate than tensor-product CC in all
the tests, and less accurate than tensor-product GL and minimal formulas on
the entire functions.

The situation changes for the less regular test functions, where nontensorial
CC cubature at the Padua points gives the best error curve (up to 2–3 orders of
magnitude below the tensorial error curves). As an example, to have an error
of 10−6 in the integration of the less regular test function (Fig. 2, bottom),
we need around 100 Padua points, whereas the required number of tensor-
product GL points is more than 500. In order to clarify the comparison between
nontensorial CC cubature at the Padua points and minimal formulas, we
present also Table 2, where we report the relative errors in the integration
of the three nonentire functions of Fig. 2, at two sequences of cubature point
sets. If we take into account that the Omelyan–Solovyan formulas are minimal,
the performance of the nontensorial cubature formulas considered here is
surprisingly good.

It should be recalled that there are other ways of obtaining useful nontenso-
rial cubature formulas from Clenshaw–Curtis rules, like the so-called sparse
grids; cf., e.g., [7, 28, 30, 31, 40] and references therein. In Tables 3 and 4 we
report the relative cubature errors of two test functions versus the number of
nodes, obtained by the Sparse-Grids Matlab codes in [8], where the sequence
of cardinalities is determined by successive “levels” of the sparse grid. The
comparison with Fig. 1 (bottom) for the Gaussian function and with Fig. 2
(top) for the Runge function shows that nontensorial CC cubature generated
by (hyper)interpolation appears more accurate in dimension 2 than CC-like
and GL-like cubature with sparse grids.

The very good observed behavior of nontensorial CC cubature at the Padua
points is in some respect similar to the one-dimensional phenomenon discussed
in [43], where a sophisticated analysis explains the experimental fact that CC
quadrature has an accuracy close to GL, for univariate functions that are not
analytic in a large region of the complex plane surrounding the integration
interval.

References

1. Bojanov, B., Petrova, G.: On minimal cubature formulae for product weight functions.
J. Comput. Appl. Math. 85, 113–121 (1997)



426 Numer Algor (2008) 49:409–427

2. Bos, L., Caliari, M., De Marchi, S., Vianello, M.: Bivariate interpolation at Xu points: results,
extensions and applications. Electron. Trans. Numer. Anal. 25, 1–16 (2006)

3. Bos, L., Caliari, M., De Marchi, S., Vianello, M., Xu, Y.: Bivariate Lagrange interpolation at
the Padua points: the generating curve approach. J. Approx. Theory 143, 15–25 (2006)

4. Bos, L., De Marchi, S., Vianello, M.: On the Lebesgue constant for the Xu interpolation
formula. J. Approx. Theory 141, 134–141 (2006)

5. Bos, L., De Marchi, S., Vianello, M., Xu, Y.: Bivariate Lagrange interpolation at the Padua
points: the ideal theory approach. Numer. Math. 108, 43–57 (2007)

6. Branders, M., Piessens, R.: An extension of Clenshaw–Curtis quadrature. J. Comput. Appl.
Math. 1, 55–65 (1975)

7. Bungartz, H.J., Griebel, M.: Sparse grids. Acta Numer. 13, 147–269 (2004)
8. Burkardt, J.: Sparse_Grid_CC and Sparse_Grid_GL, sparse grids based on Clenshaw–Curtis

and Gauss–Legendre rules (available online at people.scs.fsu.edu/∼burkardt)
9. Caliari, M., De Marchi, S., Montagna, R., Vianello, M.: HYPER2D: a numerical code for

hyperinterpolation at Xu points on rectangles. Appl. Math. Comput. 183, 1138–1147 (2006)
10. Caliari, M., De Marchi, S., Vianello, M.: Bivariate polynomial interpolation on the square at

new nodal sets. Appl. Math. Comput. 165, 261–274 (2005)
11. Caliari, M., De Marchi, S., Vianello, M.: Hyperinterpolation on the square. J. Comput. Appl.

Math. 210, 78–83 (2007)
12. Caliari, M., De Marchi, S., Vianello, M.: Bivariate Lagrange interpolation at the Padua points:

computational aspects. J. Comput. Appl. Math. Published online 23 October 2007
13. Caliari, M., De Marchi, S., Vianello, M.: Hyperinterpolation in the cube. Comput. Math. Appl.

55, 2490–2497 (2008)
14. Caliari, M., De Marchi, S., Vianello, M.: Padua2D: Lagrange interpolation at Padua points on

bivariate domains. ACM Trans. Math. Softw. (2008, in press)
15. Clenshaw, C.W., Curtis, A.R.: A method for numerical integration on an automatic computer.

Numer. Math. 2, 197–205 (1960)
16. Cools, R.: An encyclopaedia of cubature formulas, numerical integration and its complexity

(Oberwolfach, 2001). J. Complex. 19, 445–453 (2003)
17. Cools, R., Schmid, H.J.: Minimal cubature formulae of degree 2k − 1 for two classical func-

tionals. Computing 43, 141–157 (1989)
18. Dunkl, C.F., Xu, Y.: Orthogonal Polynomials of Several Variables. Encyclopedia of Mathe-

matics and its Applications, vol. 81. Cambridge University Press, Cambridge (2001)
19. Gautschi, W.: Orthogonal Polynomials: Computation and Approximation. Numerical Math-

ematics and Scientific Computation. Oxford Science Publications, Oxford University Press,
New York (2004)

20. Krylov, V.I.: Approximate Calculation of Integrals. The Macmillan Co., New York (1962)
21. Kussmaul, R.: Clenshaw–Curtis quadrature with a weighting function. Computing 9,

159–164 (1972)
22. Hansen, O., Atkinson, K., Chien, D.: On the norm of the hyperinterpolation operator on the

unit disk. Reports on Computational Mathematics, vol. 167. Dept of Mathematics, University
of Iowa (2006)

23. Hunter, D.B., Smith, H.V.: A quadrature formula of Clenshaw–Curtis type for the
Gegenbauer weight function. J. Comput. Appl. Math. 177, 389–400 (2005)

24. Mason, J.C., Handscomb, D.C.: Chebyshev Polynomials. Chapman & Hall, Boca Raton
(2003)

25. The MathWorks: MATLAB documentation set. (2007, version). Available online at
http://www.mathworks.com

26. Möller, H.M.: Kubaturformeln mit minimaler Knotenzahl. Numer. Math. 25, 185–200 (1976)
27. Morrow, C.R., Patterson, T.N.L.: Construction of algebraic cubature rules using polynomial

ideal theory. SIAM J. Numer. Anal. 15, 953–976 (1978)
28. Novak, E., Ritter, K.: Simple cubature formulas with high polynomial exactness. Constr.

Approx. 15, 499–522 (1999)
29. Omelyan, I.P., Solovyan, V.B.: Improved cubature formulae of high degrees of exactness for

the square. J. Comput. Appl. Math. 188, 190–204 (2006)
30. Petras, K.: On the Smolyak cubature error for analytic functions. Adv. Comput. Math. 12,

71–93 (2000)

http://people.scs.fsu.edu/~burkardt
http://www.mathworks.com


Numer Algor (2008) 49:409–427 427

31. Petras, K.: Smolyak cubature of given polynomial degree with few nodes for increasing dimen-
sion. Numer. Math. 93, 729–753 (2003)

32. Piessens, R.: Computing integral transforms and solving integral equations using Chebyshev
polynomial approximations, J. Comput. Appl. Math. 121, 113–124 (2000)

33. Plésniak, W.: Remarks on Jackson’s theorem in R
N . East J. Approx. 2, 301–308 (1996)

34. Reimer, M.: Multivariate Polynomial Approximation. International Series of Numerical Math-
ematics, vol. 144. Birkhäuser (2003)

35. Rudin, W.: Real and Complex Analysis. McGraw-Hill, Singapore (1987)
36. Sloan, I.H.: Interpolation and Hyperinterpolation over General Regions. J. Approx. Theory

83, 238–254 (1995)
37. Sloan, I.H., Smith, W.E.: Product-integration with the Clenshaw–Curtis and related points.

Convergence properties, Numer. Math. 30, 415–428 (1978)
38. Sloan, I.H., Smith, W.E.: Properties of interpolatory product integration rules. SIAM J.

Numer. Anal. 19, 427–442 (1982)
39. Sloan, I.H., Womersley, R.: Constructive polynomial approximation on the sphere. J. Approx.

Theory 103, 91–118 (2000)
40. Smolyak, S.A.: Quadrature and interpolation formulas for tensor products of certain classes

of functions. Sov. Math., Dokl. 4, 240–243 (1963)
41. Sommariva, A., Vianello, M.: A Matlab code for nontensorial Clenshaw–Curtis cubature.

Available at http://www.math.unipd.it/∼marcov/publications.html (nonoptimized version)
42. Sommariva, A., Vianello, M., Zanovello, R.: Adaptive bivariate Chebyshev approximation.

Numer. Algorithms 38, 79–94 (2005)
43. Trefethen, L.N.: Is Gauss quadrature better than Clenshaw–Curtis? SIAM Rev. 50,

67–87 (2008)
44. Xu, Y.: Lagrange interpolation on Chebyshev points of two variables. J. Approx. Theory 87,

220–238 (1996)
45. Waldvogel, J.: Fast construction of the Fejér and Clenshaw–Curtis quadrature rules. BIT

Numer. Math. 46, 195–202 (2006)
46. Weideman, J.A.C., Trefethen, L.N.: The Kink Phenomenon in Fejér and Clenshaw–Curtis

quadrature. Numer. Math. 107, 707–727 (2007)

http://www.math.unipd.it/~marcov/publications.html

	Nontensorial Clenshaw--Curtis cubature
	Abstract
	Introduction
	From hyperinterpolation to stable cubature
	Nontensorial Clenshaw--Curtis cubature
	The Morrow--Patterson--Xu points
	The Padua points
	Improving exactness at the Padua points

	Implementation and numerical results

	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


