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Abstract In this paper, we discuss several (old and new) estimates for the
norm of the error in the solution of systems of linear equations, and we
study their properties. Then, these estimates are used for approximating the
optimal value of the regularization parameter in Tikhonov’s method for ill-
conditioned systems. They are also used as a stopping criterion in iterative
methods, such as the conjugate gradient algorithm, which have a regularizing
effect. Several numerical experiments and comparisons with other procedures
show the effectiveness of our estimates.

Keywords Ill-conditioned linear systems · Regularization · Error estimates

1 Introduction

The computation of the solution of an ill-conditioned system of linear equa-
tions is a difficult numerical problem which requires special techniques. In
particular, when using Tikhonov’s regularization, a value of the parameter has
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to be chosen, or, for an iterative method, a good stopping criterion has to be
implemented. In both cases, the norm of the error passes through a global
minimum, not necessarily unique, and this corresponds to the best value of the
regularization parameter. Obviously, the notion of “best value” is relative to
the particular norm used to measure the error. We will adopt, as it is usual, the
Euclidean norm.

Two of the most used procedures for finding the location of this minimum
are the L-curve [13] (see also [11]) and the generalized cross validation (GCV)
[5, 7]. These two techniques are quite general, since they can be applied
either to square or to rectangular linear systems. However, both can have
deficiencies.

In this paper we shall propose new methods for locating the minimum, under
the assumption that the matrix of the linear system is square, nonsingular,
and that the right hand side is affected by an error of unknown norm. These
methods are based on estimates of the norm of the solution error which are
obtained by an extrapolation procedure. Let us mention that extrapolation
has already been used for improving the quality of the results obtained by
Tikhonov’s regularization [3].

Our estimations of the norm of the error are presented in Section 2,
where it is shown how they are derived and where their properties are given.
Tikhonov’s regularization is discussed in Section 3. In Section 4, we explain
how our error estimates lead to the choice of a good approximation of the
optimal regularization parameter in Tikhonov’s method. The results of many
numerical experiments are reported in Section 5.

2 Error estimates for linear systems

We consider the p × p nonsingular system of linear equations

Ax = b .

Let x∗ be any vector. The problem we are addressing is to check whether x∗ is
a good approximation of the exact solution x. It is well known that the error
e = x − x∗ is related to the residual r = b − Ax∗ by Ae = r. Thus, it is not
feasible to compute the error from the residual.

If ‖A‖ or ‖A−1‖ are known (we note that hereafter the symbol ‖ · ‖ denotes
the two-norm), the quantities ‖r‖/‖A‖ and ‖A−1‖ · ‖r‖ can be considered as
estimates of ‖e‖, and we have the bounds

‖r‖
‖A‖ ≤ ‖e‖ ≤ ‖A−1‖ · ‖r‖.

However, these estimates require the knowledge of the Euclidean norm of
A or of its inverse and, moreover, in some cases the bounds can be quite
inaccurate.
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Although an estimate of any consistent norm of the error was given by
Auchmuty [1], we consider it only for the Euclidean norm. In particular, he
proved that the quantity

ẽ3 = ‖r‖2

‖ATr‖
(the notation for this estimate will be made clear below), is an approximation
of the 2-norm error ‖e‖. In fact, the Auchmuty estimate ẽ3 is a lower bound for
‖e‖ since, by the Cauchy–Schwarz inequality,

(r, r) = (

ATr, x − x∗) ≤ ‖ATr‖ · ‖e‖.
Moreover

‖e‖
ẽ3

≤ max
‖y‖=1

‖AT y‖ · ‖A−1 y‖.

This estimate was analyzed in depth by Galantai [6].
More estimates of ‖e‖2 were given in [2]. They are denoted by e2

i , for
i = 1, . . . , 5,

e2
1 = c4

1/c3
2

e2
2 = c0c2

1/c2
2

e2
3 = c2

0/c2

e2
4 = c3

0/c2
1

e2
5 = c4

0c2/c4
1

where

c0 = (r, r)

c1 = (r, Ar)

c2 = (Ar, Ar).

It was proved that

e2
1 ≤ e2

2 ≤ e2
3 ≤ e2

4 ≤ e2
5, (1)

and lower and upper bounds for ‖e‖2/e2
i were given.

However, it was not noticed earlier that these estimates could be gathered
into the compact formula

e2
i = ci−1

0

(

c2
1

)3−i
ci−4

2 , i = 1, . . . , 5. (2)

Moreover, the bounds given in [2] can be rewritten as

ρ(3−i)/2

κ
≤ ‖e‖

ei
≤ κρ(3−i)/2, (3)

where κ = ‖A‖ · ‖A−1‖ and ρ = c0c2/c2
1. Notice that, by the Cauchy–Schwarz

inequality, ρ ≥ 1.
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In order to generalize these formulae, we have to remind how they
were obtained. We consider the singular value decomposition (SVD) of the
matrix A

A = U�VT

with UU T = VVT = I, � =diag(σ1, . . . , σp) and σ1 ≥ σ2 ≥ · · · ≥ σp > 0. Let
u1, . . . , up and v1, . . . , vp denote respectively the columns of the matrices U
and V. Then, for any vector y, we have

Ay =
p

∑

i=1

σi(vi, y)ui

AT y =
p

∑

i=1

σi(ui, y)vi

A−1 y =
p

∑

i=1

σ−1
i (ui, y)vi. (4)

Setting αi = (ui, r) and βi = (vi, r), it follows immediately

c0 = (r, r) = (U Tr, U Tr) =
p

∑

i=1

α2
i

= (VTr, VTr) =
p

∑

i=1

β2
i

c1 = (r, Ar) =
p

∑

i=1

σiαiβi

c2 = (Ar, Ar) =
p

∑

i=1

σ 2
i β2

i (5)

and

c−1 = (A−1r, r) = (e, Ae) =
p

∑

i=1

σ−1
i αiβi (6)

c−2 = (A−1r, A−1r) = (e, e) =
p

∑

i=1

σ−2
i α2

i . (7)

Approximations of c−2, c−1, c0, c1 and c2 can be obtained by keeping only
the first term in the summations appearing in the right hand sides of the
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formulae above. Thus, we shall look for α, β and σ satisfying the interpolation
conditions

⎧

⎪

⎪

⎨

⎪

⎪

⎩

α2 = c0

αβσ = c1

β2σ 2 = c2,

(8)

and then extrapolate for the values −1 and −2 of the index. Thus, c−1 and c−2

will be respectively approximated by

c−1 � αβσ−1 and c−2 � α2σ−2.

Moreover, we will identify α2 and β2 since both furnish a truncated approxi-
mation of c0.

Computing the unknowns α, β and σ from the interpolation conditions (8),
which do not have a unique solution, we obtain the 5 estimates given by (2).

The estimates (2) could be extended to any real number ν

‖e‖2 � e2
ν = cν−1

0

(

c2
1

)3−ν
cν−4

2 , ν ∈ R. (9)

Indeed, replacing the ci’s by their expressions from (8), yields

e2
ν = (

α2
)ν−1 (

α2β2σ 2
)3−ν (

β2σ 2
)ν−4

.

After simplification, with the further approximation α2 � β2, we get

e2
ν � α2σ−2.

Using the inequalities c2
0/κ

2 ≤ c2‖e‖2 ≤ c2
0κ

2 and 0 ≤ c2
1 ≤ c0c2, we obtain

bounds generalizing those given in (3)

ρ(3−ν)/2

κ
≤ ‖e‖

eν

≤ κρ(3−ν)/2. (10)

More estimates can be obtained as follows. We have

ATr =
p

∑

i=1

σiαivi,

and we set

c̃2 = (ATr, ATr) =
p

∑

i=1

σ 2
i α2

i .

So, the last interpolation condition in (8) could be replaced by

α2σ 2 = c̃2,

and we obtain the estimates, also valid for any real number ν,

ẽ2
ν = cν−1

0 (c2
1)

3−ν c̃ ν−4
2 , ν ∈ R. (11)
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Indeed, as above,

ẽ 2
ν = (α2)ν−1(α2β2σ 2)3−ν(α2σ 2)ν−4,

and the results follows if we assume α2 � β2. Notice that Auchmuty’s estimate
is recovered for ν = 3.

Bounds similar to those given in (10) could be obtained by replacing ρ by
ρ̃ = c0c̃2/c2

1. It must be noticed that, when A is orthogonal, ‖e‖ = ρ(3−ν)/2eν =
ρ̃(3−ν)/2̃eν . If ν = 3 or if r is collinear to an eigenvector of A, then e3 = ẽ3 = ‖e‖.
For these reasons, these two estimates seem to be the best ones.

Let us now prove an inequality generalizing (1). Formula (9) can be
written as

e2
ν =

(

c0c2

c2
1

)ν

·
(

c6
1

c0c4
2

)

= ρνe2
0. (12)

Obviously, (11) could be put into a similar form

ẽ 2
ν =

(

c0c̃2

c2
1

)ν

·
(

c6
1

c0c̃4
2

)

= ρ̃ ν ẽ2
0. (13)

But ρ ≥ 1 and ρ̃ ≥ 1, which shows that the estimates eν and ẽν are increasing
functions of ν in (−∞, +∞). Thus

eν ≤ eν ′ , ẽν ≤ ẽν ′ , ν ≤ ν ′.

When ν ≤ 3, the inequality c2
1 ≤ c0c̃2 can be plugged into (11), thus leading

to ẽ 2
ν ≤ c2

0/ c̃2, and we get a result similar to Auchmuty’s [1]

ẽ 2
ν ≤ ‖e‖2, ∀ν ≤ 3.

This inequality has not been proved for ν > 3, nor for e2
ν .

Thus, by this inequality and (13), and since ẽ 2
ν tends to infinity with ν, it

exists ν̃ ≥ 3 such that ẽ̃ν = ‖e‖. This ν̃ is given by

ν̃ = 2 ln(‖e‖/̃e0)/ ln ρ̃. (14)

Since eν increases from 0 to +∞ when ν covers (−∞, +∞), it also exists
ν̃ such that ẽν = ‖e‖. Notice that c2

1 = (r, Ar)2 ≤ ‖r‖2 · ‖Ar‖2, and it follows
e2

3 ≤ ‖r‖2 ≤ ‖A‖2 · ‖e‖2. Thus, if ‖A‖ ≤ 1, this ν̃ is also greater or equal to 3.
Obviously, these values of ν̃ cannot be computed in practice.

When A is symmetric and positive definite, c−1 = (e, Ae) is the A-norm of
the error and, as explained above, it could be approximated by αβσ−1 after
solving the system (8). We obtain the following estimates (they have been
squared for an easier comparison with the estimates of the norm of the error)

(r, A−1r)2 = (e, Ae)2 � ê 2
ν = cν+1

0

(

c2
1

)2−ν
cν−3

2 , ν ∈ R. (15)

We also have

ê 2
ν =

(

c0c2

c2
1

)ν

·
(

c0c4
1

c3
2

)

= ρν ê 2
0 = c0ρe 2

ν (16)

which shows that êν is an increasing function of ν, and that there exists a value
of ν such that êν = (e, Ae).
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Remark 1 For any ν, μ ∈ R, it also holds e2
ν = ρν−μe2

μ. Ratios of the previous
estimates are also estimates of ‖e‖2. For example, fixing τ, γ, μ ∈ R, we have
e2τ
γ /e2τ−2

μ = e2
ν with ν = τ(γ − μ) + μ for τ ≥ 1 (for τ = 1, μ = 0). Similar

remarks and relations are also valid for ẽ 2
ν and ê 2

ν .

3 Tikhonov’s regularization

If the system Ax = b is ill-conditioned, Tikhonov’s regularization consists of
computing the vector xλ which minimizes the quadratic functional

J(λ, x) = ‖Ax − b‖2 + λ2‖Hx‖2 (17)

over all vectors x, where λ is a parameter, and H a given q × p (q ≤ p) matrix.
This vector xλ is the solution of the system

(C + λ2 E)xλ = ATb , (18)

where C = AT A and E = HT H. The vector xλ is also the least squares
solution of the system

[

A
λH

]

xλ =
[

b
0

]

. (19)

Indeed, multiplying both sides by [AT , λHT ], leads to (18). Thus, setting rλ =
b − Axλ, it holds

ATrλ = λ2 Exλ. (20)

Incidentally, let us note that Tikhonov’s method can be extended for
including several regularization terms [4] as follows

J(λ, x) = ‖Ax − b‖2 +
k

∑

i=1

λ2
i ‖Hix‖2, (21)

where λ denotes the multi-index (λ1, . . . , λk). The vector xλ minimizing J(λ, x)

is the solution of the system
(

C +
k

∑

i=1

λ2
i Ei

)

xλ = ATb ,

where Ei = HT
i Hi, and it can also be written as the least squares solution of a

system generalizing (19). In such a case, we have the following generalization
of (20) to the multi-parameter case

ATrλ =
k

∑

i=1

λ2
i Eixλ. (22)
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4 Parameter estimation in regularization

In many practical situations, due to the ill-conditioning, if λ is close to zero xλ

is badly computed while, if λ is far away from zero, xλ is well computed but the
norm of the error x − xλ is quite large. For decreasing values of λ, the norm
of the error ‖x − xλ‖ first decreases, and then increases when λ approaches 0.
Thus the error, which is the sum of the theoretical error and the error due to
the computer’s arithmetic, passes through a minimum corresponding to the
optimal choice of the regularization parameter. In particular problems, the
solution error may present more than one local minimum, or even an interval
on which its value is approximately constant, making the search for a good
value of the parameter more challenging.

Several methods have been proposed to obtain an effective choice of λ. The
most well known are the L-curve [13] and the generalized cross validation
(GCV) [5, 7]. The first one consists of plotting in log–log scale the values of
‖Hxλ‖ versus ‖rλ‖. The resulting curve is typically L-shaped and the selected
value of λ is the one corresponding to the corner of the L. However, there are
many cases where the L-curve exhibits more than one corner, or no corner at
all. The second method searches for the minimum of a function of λ which is a
statistical estimate of the norm of the residual. Occasionally, the value of the
parameter furnished by this method may be inaccurate because the function is
rather flat near the minimum.

Theoretically, if all the σi and all the αi appearing in formula (7) were known,
the value of λ could be estimated by minimizing the right hand side of this
formula, that is

p
∑

i=1

σ−2
i (ui, rλ)

2. (23)

Such computations were performed, for several values of the regularization
parameter, for an orthogonal random matrix with two noise levels, ε = 0 and
ε = 10−8 (the two graphs on the left of Fig. 1), and for the matrix Prolate [17]
(the two graphs on the right of Fig. 1), both of dimension 20. The condition
number of this Prolate matrix is 5.6 · 10+13. In both cases the regularization
matrix is the identity matrix. The norm of the error vector x − xλ is plotted
with respect to the variation of λ as a plain line, while the results obtained by
formula (23) are reported in dashed lines.

However, as it could be seen in Fig. 1, even if the σi and the αi can be
computed, formula (7) does not produce good results. Moreover, the SVD can
only be implemented for quite small matrices and, even in this case, the σi and
the αi can be polluted by large rounding errors if the matrix is ill-conditioned.
Quite similar problems arise when using (7) for computing the error achieved
by the truncated SVD, and also with formula (6) for the energy norm when
A is symmetric and positive definite. For these reasons, we will not use (7) for
approximating the optimal value of the regularization parameter in Tikhonov’s
method, but our estimates of the norm of the error.
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Fig. 1 Exact error (plain line) and error computed by formula (23)

There are two questions that have to be answered. Is xλ well computed?
Is xλ a good approximation of x?

For the first question, we propose the following test. From (20), it holds

λ2‖Exλ‖
‖ATrλ‖ = 1. (24)

So, a regularized solution xλ could be regarded as accurately computed if
this ratio is close to 1, while, on the contrary, either the numerator or the
denominator of (24) (or both) could have been strongly affected by the
propagation of rounding errors.

For answering the second question, the estimates (9) and (11) could be used.
However, due to the ill-conditioning of the problem, the computation of c̃2 =
‖ATrλ‖2, which appears in formulae (11), is not accurate when λ approaches
zero. So, according to (20), we will replace ATrλ by λ2 Exλ in ‖ATrλ‖ and in
(rλ, Arλ) = (ATrλ, rλ), and we finally obtain the error estimates

ẽ 2
ν = ‖rλ‖2ν−2(rλ, Exλ)

6−2ν‖Exλ‖2ν−8λ−4. (25)

Performing the same replacements in (15) or (16) for the A-norm of the error,
we get

ê 2
ν = ‖rλ‖2ν+2(rλ, Exλ)

4−2ν‖Exλ‖2ν−6λ−4. (26)

Let us remark that (rλ, Exλ) = (Hrλ, Hxλ), which avoids computing the
matrix E and, in several cases, leads to a more stable procedure.

Contrarily to the more general estimates (9) and (15), which are always valid
(that is for any direct or iterative numerical method for solving a system of
linear equations), formulae (25) and (26) are specially adapted to Tikhonov’s
regularization. So, they should lead to better numerical results. Testing the
equality in (24) is also only valid for Tikhonov’s regularization.
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For theoretical purpose, let us now show that the estimate ẽ3 is sharp, that
is there exist regularization matrices for which it is exact (even if such a matrix
cannot be computed in practice). To this end, we take H = vkv

T
k , for 1 ≤ k ≤ p.

We remind that, since Avk = σkuk and ATuk = σkvk, we have

x = (

I + λ2C−1vkv
T
k

)

xλ

C−1vk = 1

σ 2
k

vk,

rλ = λ2

σk
(vk, xλ)uk,

ATrλ = λ2(vk, xλ)vk

x − xλ = λ2

σ 2
k

(vk, xλ)vk.

So, it follows

‖x − xλ‖ = λ2

σ 2
k

|(vk, xλ)|.

On the other hand

‖rλ‖2 = λ4

σ 2
k

(vk, xλ)
2

‖ATrλ‖ = λ2|(vk, xλ)|,

and we finally obtain, as claimed,

‖x − xλ‖ = ‖rλ‖2

‖ATrλ‖ = ẽ3.

For the same choice of H, it could be checked that the estimate ê3 is exact, that
is ê3 = (x − xλ, A(x − xλ)). We stress again that this choice of the regulariza-
tion matrix, although not a practical one, is only an example to show that there
are cases for which the estimates are exact.

The preceding considerations are also valid in the multi-parameter case
(21), which can be treated similarly.

Remark 2 Another way of approximating the error could be based on pre-
conditioning. We have x − xλ = λ2C−1 Exλ. Let P � A be a preconditioner
for A, and replace in the preceding expression C by Q = PT P which is
a preconditioner for AT A. Then, an approximation of the error could be
obtained by one of the following formulae

x − xλ � λ2 Q−1 Exλ = Q−1 ATrλ.
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Obviously, Q can be directly taken as a preconditioner of AT A without
building P first. However, the numerical experiments we performed show that
these estimates are very sensitive to the choice of the preconditioner.

5 Numerical experiments

We performed many numerical experiments to ascertain the performance
of our estimates in the selection of the regularization parameter both in
Tikhonov’s method and in a regularizing iterative method (namely, the con-
jugate gradient algorithm). These experiments were executed with Matlab
7.4 [14] on an AMD64 computer running Debian Linux. The computa-
tion of the regularized solutions and the selection of the parameter by the
L-curve and GCV methods were performed by the Regularization Tools [10].
The Structured Matrices Toolbox [16] was used for the solution of large scale
Toeplitz systems by iterative methods.

We developed some Matlab functions, which automatize the application
of our estimates to Tikhonov regularization and iterative methods. The soft-
ware, which is available upon request, includes a few simple functions which
implement formulae (9), (11), (15), (25) and (26). These functions may be
used in Tikhonov regularization either when working on a grid, or if the
parameter is discrete, i.e. in iterative methods. Moreover, we developed a
function specialized for Tikhonov’s method, which searches for the minimum
of formula (25) by an adaptive algorithm, computing the regularized solution
either by employing the SVD in (17) or solving the normal system (18) by
the conjugate gradient method, depending on the user’s choice. The details
of this algorithm, which aims to minimize the number of evaluations of ẽν ,
each of which implying the solution of a linear system, will be described in a
forthcoming paper.

To construct each test linear system, we selected various matrices from the
Regularization Tools and the gallery function of Matlab (see list in Table 6).
For each matrix we computed the right hand side corresponding to a solution
chosen from a set of vectors with different degree of regularity, described in
Table 1. If the noise level is ε, this means that each component of the right

Table 1 Solution vectors given default solution for problems from [10],
shaw solution for the others

ones xi = 1

linear xi = i
p

parabola xi = ((

i − � p
2 �) /
 p

2 �)2

sin2pi xi = sin 2π(i−1)
p

linear+sin2pi/4 xi = i
p + 1

4 sin 2π(i−1)
p

step xi = 0, i ≤ � p
2 �

xi = 1, i > � p
2 �
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Table 2 Results for Example 1

ν 0 1 2 3 4 5

eν 6.33 · 10−19 8.15 · 10−18 1.05 · 10−16 1.35 · 10−15 1.74 · 10−14 2.24 · 10−13

ẽν 6.28 · 10−19 8.10 · 10−18 1.04 · 10−16 1.35 · 10−15 1.74 · 10−14 2.25 · 10−13

êν 2.51 · 10−32 3.23 · 10−31 4.16 · 10−30 5.36 · 10−29 6.90 · 10−28 8.89 · 10−27

hand side is perturbed by adding a normal random variable (null mean value
and unitary variance) scaled by the quantity ε.

To measure the quality of the results we used the 2-norm error ‖e‖ =
‖x − x∗‖ of an approximate solution x∗ with respect to the exact solution x.

5.1 Example 1

To show how our estimates approximate the error, we first considered a well-
conditioned system of dimension 15 with a random matrix, whose condition
number is 1378.3, and we assumed x = (1, . . . , 1)T as the solution vector.
Solving it by Gaussian elimination we obtained ‖e‖ = 5.548 · 10−14, |(e, Ae)| =
9.486 · 10−29, and ν̃ = 4.45 [see (14)]. For ν = 0, 1, . . . , 5, we get the results
shown in Table 2. Notice that, although the matrix is not symmetric, êν is a
very good estimate of |(e, Ae)|.

5.2 Example 2

In this section we give two examples to illustrate the behavior of our estimates
in Tikhonov regularization, in comparison to the L-curve and the GCV. The
first example is the Wing test problem from [10] with p = 40. The condition
number is about 1.6 · 1019. The Tikhonov functional (17) is minimized by
means of the SVD, and the regularization matrix H is the identity matrix.

The results are shown in Fig. 2, where the thick line gives the Euclidean
norm of the error with respect to the variation of λ, the dashed one is ẽ3, and
the dash-dotted line corresponds to the graph of the GCV function multiplied

Fig. 2 Wing example: left ε = 10−6, right ε = 10−3
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Table 3 Parameters and errors for the Wing example

Optimal ẽ3 L-curve GCV

ε = 10−6 λ 5.8 · 10−6 9.0 · 10−4 4.3 · 10−6 3.0 · 10−11

‖e‖ 2.5 · 10−1 3.4 · 10−1 2.5 · 10−1 2.8 · 104

ε = 10−3 λ 7.2 · 10−3 1.2 · 10−1 7.7 · 10−3 1.4 · 10−3

‖e‖ 3.5 · 10−1 4.7 · 10−1 3.5 · 10−1 5.6 · 10−1

by a factor 1010. On each curve, the minimum is indicated by a bullet. Where it
is visible, a circle indicates the value of the error coming out from the L-curve.
The graph on the left shows the results for a noise level ε = 10−6, while, on the
right, it corresponds to ε = 10−3. Table 3 displays the values of the parameters
and the errors furnished by the various methods. In the table, the “optimal”
parameter is the one which minimizes the error.

In this case, the L-curve gives very good results, while the GCV function is
extremely flat, resulting in a false minimum when ε = 10−6, which produces a
very large error. The estimate ẽ3 tends to overestimate the optimal parameter,
but this is generally less dangerous than underestimating it, and the errors are
acceptable.

In the second example we used the Pascal matrix with the solution coming
out from the Shaw problem from [10], p = 20, ε = 10−6, 10−3 and H = I. The
condition number is roughly 1.2 · 1020. The results are in Fig. 3 and Table 4.
In this case the GCV gives good results with both noise levels, while the L-
curve returns an off-scale parameter with a large error. Our technique still
overestimates the optimal parameter, but produces a good approximation of
the solution.

5.3 Example 3

Here we consider a particular example on which our method totally fails.
Since the construction of our estimate is based on truncating the SVD of the
cofficient matrix to just one term and then extrapolating, we built a matrix with
many large singular values.

Fig. 3 Pascal example: left ε = 10−6, right ε = 10−3
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Table 4 Parameters and errors for the Pascal example

Optimal ẽ3 L-curve GCV

ε = 10−6 λ 2.1 · 10−4 1.2 · 10−2 2.7 · 109 2.8 · 10−4

‖e‖ 2.9 · 10−3 1.4 · 10−2 4.4 3.1 · 10−3

ε = 10−3 λ 2.5 · 10−2 1.9 · 10−1 1.0 · 10−3 8.4 · 10−2

‖e‖ 1.8 · 10−2 2.0 · 10−2 1.8 · 10−1 1.9 · 10−2

So, we let p = 20 and

σi =
{

10, i = 1, . . . , 7,

e−.08(i−8)2
, i = 8, . . . , p.

Then, fixing a random vector w with unitary norm, we construct a Householder
matrix U = I − 2wwT , and we set

A = Udiag(σi)U T .

The right hand side of the system corresponds to the solution xi = .05,
i = 1, . . . , p. We took ε = 10−3 and H = I. The results are given in Fig. 4
and Table 5.

As it can be seen, the L-curve and the GCV both give good results, while
ẽ3 has the global minimum for a very small value of the parameter and a local
minimum near the optimal value.

5.4 Example 4

To better investigate the performance of our estimates in Tikhonov regulari-
zation, compared with the L-curve and the GCV, we consider 12 matrices
(1st column of Table 6), 7 different solutions (Fig. 1), 2 dimensions (20 and
100), 3 regularization matrices (identity, discretization of first and second

Fig. 4 Results for Example 3
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Table 5 Parameters and
errors for Example 3

Optimal ẽ3 L-curve GCV

λ 3.4 · 10−2 1.1 · 10−10 8.0 · 10−3 1.6 · 10−2

‖e‖ 5.1 · 10−2 9.4 · 101 7.2 · 10−2 6.0 · 10−2

derivatives), 4 noise levels (ε = 10−6, 10−4, 10−2, 10−1), and 5 realizations of
the random noise. So, we have a total number of 10,080 experiments, 840 for
each test matrix.

For each parameter estimation method, we measure the quality of the result
by computing the ratio of the norm of the error corresponding to the estimated
parameter divided by the norm of the minimal error. So, this ratio is always
greater or equal to 1, and it equals 1 only when the estimated parameter
furnishes the optimal error.

The parameter coming out from our estimate is computed by the above
mentioned adaptive minimization algorithm in the interval [10−30, 102]. The
values of λ for the L-curve and the GCV are obtained using the functions
l_curve and gcv from [10]. The optimal parameter is estimated by minimiz-
ing the function

ψ(ρ) = ‖x − xλ‖, with λ = 10ρ,

by the fminsearch function of Matlab, using as a starting point the logarithm
of the parameter furnished either by our estimate, or by the L-curve, or by
the GCV, which produces the lowest error. The regularized solution is then
computed by the tikhonov function from [10], which minimizes (17) by
applying the SVD.

In Table 6, we list what we consider the failures and severe failures, i.e. we
give the number of ratios larger than 102, and those greater than 104, obtained
by ẽ3, the L-curve, and the GCV, respectively. The condition numbers of
the matrices of dimension 20, as computed by the cond function of Matlab,

Table 6 Failures of methods for estimating λ, vs. test matrices

Matrix Cond. ẽ3 L-curve GCV

> 102 > 104 > 102 > 104 > 102 > 104

Baart 2.0 · 1017 0 0 149 121 123 68
Heat(1) 1.0 · 1020 26 0 283 190 39 0
Hilbert 3.1 · 1018 0 0 156 131 52 40
Ilaplace(3) 9.2 · 1030 2 0 231 218 45 24
Lotkin 2.1 · 1019 0 0 168 138 42 33
Moler 1.7 · 1013 223 48 235 49 173 42
Pascal 1.2 · 1020 509 280 548 383 298 280
Phillips 4.0 · 1003 247 20 108 36 31 0
Prolate 5.6 · 1013 0 0 149 105 114 84
Random 2.8 · 1002 80 8 202 44 141 12
Shaw 9.9 · 1015 0 0 113 96 63 8
Wing 1.7 · 1019 0 0 245 201 78 56

Total 1,087 356 2,587 1,712 1,199 647
11% 4% 26% 17% 12% 6%
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Table 7 Failures of methods for estimating λ, vs. regularization matrices

H ẽ3 L-curve GCV

> 102 > 104 > 102 > 104 > 102 > 104

I 311 160 390 130 372 144
D1 386 39 939 643 402 248
D2 390 157 1,258 939 425 255

Total 1,087 356 2,587 1,712 1,199 647

are displayed in the second column. A realistic estimation of the condition
numbers of the matrices of dimension 100 is not possible, and so we don’t
give them.

It is evident that, on this set of examples, the method we propose is more
robust than the L-curve and has a performance slightly better than the GCV,
especially for what regards the severe failures. We note that all the matrices
used in this test are severely ill-conditioned, with the exception of the random
and the Phillips matrices. The reason for including these test problems is to
investigate how the methods behave in the presence of a well conditioned
(or mildly ill-conditioned) matrix.

In Tables 7 and 8, the same results are displayed disaggregated with respect
to regularization matrices and to noise levels. It appears that the estimate ẽ3

is not particularly sensitive to these aspects. On the contrary, as it is obvious
given its statistical foundation, the GCV performance improves as the noise
level increases.

We observe that, in these tests, using the expression of ẽ3 given by formula
(25) is fundamental. In fact, if we repeat the tests using formula (11) to estimate
the error, the number of failures grows from 1,087 to 7,166.

5.5 Example 5

For large matrices, it is not possible to use the SVD to minimize the Tikhonov
functional (17). As a consequence, the classical implementation of the GCV
method is not applicable in these cases, since it also involves the use the
SVD. However, these difficulties may be overcome by an algorithm, based on

Table 8 Failures of methods for estimating λ, vs. noise level

ε ẽ3 L-curve GCV

> 102 > 104 > 102 > 104 > 102 > 104

10−6 343 117 724 399 500 226
10−4 302 78 560 302 320 174
10−2 197 78 520 378 202 129
10−1 245 83 783 633 177 118

Total 1,087 356 2,587 1,712 1,199 647



Numer Algor (2008) 49:85–104 101

Gaussian quadratures, which devises lower and upper bounds for the GCV
function and is particularly suited for large scale problems [8].

In this example, for λ = 10−10, 10−9, . . . , 10−1, 1, we solve the system (18)
by the conjugate gradient algorithm (CG) up to convergence. The matrix is
Prolate of dimension 10,000 with the parabola solution (see Fig. 1) and a noise
level of 10−4.

In Fig. 5, we show the results obtained letting ν = 2 in formula (11) (dashed
line) and in formula (25) (plain line). The thick line represents the exact error.
It is immediate to observe that both formulae identify correctly the minimum
of the error.

5.6 Example 6

Since the conjugate gradient itself has a regularizing effect on the solution of a
system Ax = b , here we use our estimates for stopping the iterations of CG.

We take the Gaussian matrix [15] of dimension 10,000, with a ones solution,
and a noise level of 10−4. Its asymptotic condition number, as defined in [15],
when the parameter ρ equals 0.01, is 1.0 · 10214. To solve this system we use the
pcg function of Matlab and the smt toolbox [16] which implements optimized
storage and fast arithmetics for Toeplitz and circulant matrices.

On the left of Fig. 6, we show the error in thick line, and the estimates ẽν for
ν = 1, . . . , 5, versus the iterations. The minima are indicated. They almost all
arise at the same iteration. On the right, we display the error (thick plain line),
the A-norm error (e, Ae)1/2 (thick dashed line), and the estimates ẽ3 (thin plain
line) and ( ê3)

1/2 (thin dashed line). The best error is 3.8 · 10−2, and it is attained
at iteration 46. Our estimates find a minimal error of 4.0 · 10−2 at iteration 52.
For the L-curve, a new algorithm for finding its corner was recently developed
in [12]. In the special case of a discrete regularization parameter, it gives better
results than the subroutine used in [10], and, in our case, it found the corner at
iteration 93 with an error of 6.3 · 10−1.

Fig. 5 Tikhonov/CG: Prolate
matrix
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Fig. 6 Regularizing CG:
Gaussian matrix

On this example, we see that the A-norm of the error is better estimated
than its L2-norm, maybe because ẽ3 does not take into account the symmetry
and the positive definiteness of the matrix A, while ê3 does.

Let us mention that estimations of the norm of the error specially adapted
to CG were obtained by Golub and Meurant [9].

5.7 Example 7

Finally, let us solve an image deblurring problem by CG. The size of the image
is 256 × 256, and so the dimension of the system is 2562 = 65,536.

We initially apply a Gaussian blur to a test image, displayed on the left of
Fig. 8, and contaminate it with a noise at level 10−4 and 10−2. Figure 7 reports

Fig. 7 CG: deblurring
problem
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test image blurred (ε=10–4) recovered (k=17)

Fig. 8 Images for the deblurring problem

the graph of the error (thick lines) and of e3 (thin lines) for the two noise levels.
Minima are indicated by a bullet.

The observed image and the reconstruction, for ε = 10−4, are shown in
Fig. 8.

6 Conclusions

In the first part of this paper, we extend the estimates given in [1] and [2] for the
norm of the error of any approximate solution of a system of linear equations.
We also give some properties of these estimates.

In the second part of the paper, we apply these estimates to the search
for the best regularization parameter λ in Tikhonov’s regularization method.
Computing this best value is a difficult problem. To this end, when the norm of
the error is unknown, two methods are essentially used: the L-curve, and GCV.
Each of them has its own drawbacks. Sometimes, the L-curve does not exhibit
a clear corner (corresponding to the optimal choice of the parameter). On the
other hand, the GCV function does not always present a clear minimum.

If an iterative method presenting a regularization effect is used for solving
the system, then the error initially becomes to decrease and then, due to the
propagation of initial errors, it increases. So, an efficient stopping criterion has
to be used.

If the SVD of the matrix of the system is available, in theory, the norm
of the error could be computed by formula (7). However, if the matrix is ill-
conditioned, the SVD is subject to rounding errors, and, if it is large, it may
not even be possible to obtain it. Motivated by these considerations, in this
paper we propose other techniques, based on various estimates of the norm
of the error. Of course these techniques, as any other, do not lead to an all-
purpose method. Nevertheless, our numerical experiments highlight that it is a
quite trustworthy procedure. Moreover, it is easy and cheap to implement. So,
it could either be an effective alternative to other techniques, or supplement
them.
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Finally, we note that our method, unlike GCV and L-curve, is not applicable
to rectangular linear system. Furthermore, its performance in the solution of
large scale problems should be compared with the algorithm proposed in [8]
for the computation of the GCV. Both these themes will be addressed in a
forthcoming paper.
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